
The XGC Libraries

C/C++ Libraries for Real-Time Applications

www.xgc.com

The XGC Libraries
C/C++ Libraries for Real-Time Applications

Order Number: XGC-LG-011022

XGC Technology

London
UK
Web: <www.xgc.com>

The XGC Libraries: C/C++ Libraries for Real-Time Applications
by Chris Nettleton

Publication date October 2001
© 1999, 2001, 2010 XGC Technology
© 1988 Free Software Foundation, Inc.

Abstract

This document includes information for users of the XGC software development systems.

Acknowledgements

The text of this manual is based on the relevant ANSI C and real-time POSIX standards, and is customized to conform to the libraries as supplied.

The XGC libraries were developed under European Space Agency contract 11935/NL/JG and are maintained by XGC Technology.

Contents

Preface xi
1 About This Manual xi
2 Audience xi
3 Reader's Comments xii
4 Conventions xii

Introduction 1Chapter 1

1.1 Program Startup 2
1.2 Program Termination 3
1.3 Standard Headers 3
1.4 Errors <errno.h> 4
1.5 Limits <float.h> and <limits.h> 4
1.6 Common definitions <stddef.h> 6

Diagnostics <assert.h> 9Chapter 2

2.1 Program Diagnostics 9

Character Handling <ctype.h> 11Chapter 3

3.1 Implementation Notes 11
3.2 Character Testing Functions 12

iii

3.3 Character Case Mapping Functions 16

Localization <locale.h> 19Chapter 4

Mathematics <math.h> 21Chapter 5

5.1 Treatment of Error Conditions 21
5.2 Notes 22
5.3 Trigonometric Functions 22
5.4 Hyperbolic Functions 27
5.5 Exponential and Logarithmic Functions 28
5.6 Power Functions 32
5.7 Nearest Integer, Absolute Value and Remainder
Functions 33

Nonlocal Jumps <setjmp.h> 37Chapter 6

6.1 Save Calling Environment 37
6.2 Restore Calling Environment 38

Signal Handling <signal.h> 41Chapter 7

7.1 Specify Signal Handling 43
7.2 Send Signal 44

Variable Arguments <stdarg.h> 47Chapter 8

8.1 Variable Argument List Access Macros 48

Input/output <stdio.h> 51Chapter 9

9.1 Formatted Input/Output Functions 51
9.2 Character Input/Output Functions 54

General Utilities <stdlib.h> 61Chapter 10

10.1 String Conversion Functions 62
10.2 Pseudo-Random Sequence Generation
Functions 67
10.3 Memory Management Functions 69
10.4 Communication with the Environment 72
10.5 Searching and Sorting Utilities 75
10.6 Integer Arithmetic Functions 76
10.7 Multi-byte Character Functions 80
10.8 Multi-byte String Functions 83

iv

The XGC Libraries

String Handling <string.h> 87Chapter 11

11.1 String Function Conventions 87
11.2 Copying Functions 87
11.3 Concatenation Functions 90
11.4 Comparison Functions 92
11.5 Search Functions 96
11.6 Miscellaneous Functions 101

Date and Time <time.h> 105Chapter 12

12.1 Time Manipulation Functions 106
12.2 Time Conversion Functions 109

Test Output <report.h> 115Chapter 13

13.1 Test Support Functions 116

POSIX Threads 119Chapter 14

14.1 Initialization Functions 120
14.2 Create and Destroy Functions 121
14.3 Scheduling Functions 124
14.4 Timing Functions 128
14.5 Pthread Attribute Functions 130
14.6 Pthread Cond Functions 137
14.7 Pthread Mutex Functions 140
14.8 Miscellaneous Functions 144

Index 149

v

The XGC Libraries

vi

Tables
1.1 Values in float.h 4
1.2 Values in limits.h 5

vii

viii

Examples
1.1 Function main 2
1.2 Function main with arguments 3
13.1 Test Program 116
13.2 Output from Test Program 116
13.3 Output from Failed Test Program 116

ix

x

Preface

The XGC Libraries provide a collection of functions that conform
to the ANSI C and real-time POSIX standards. They offer both the
minimal functionality required to start and run a program on the
target computer, as well as functions to support input-output,
multi-tasking, interrupts, dynamic memory, string operations, math
and diagnostics.

1. About This Manual

This manual is based on the text of the relevant ANSI and POSIX
standards.

2. Audience

This manual is written for the experienced programmer who is
already familiar with the C programming language and with
embedded systems programming in general. We assume some
knowledge of the target computer architectures and their limitations.

xi

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC manuals.

You can send your comments in the following ways:

• Email: readers-comments@xgc.com

Please include the following information along with your
comments:

• The full title of the manual and the order number. (The order
number is printed on the title page of this book.)

• The section numbers and page numbers of the information on
which you are commenting.

• The version of the software that you are using.

Technical support enquiries should be directed to the XGC web
site, http://www.xgc.com/.

4. Conventions

This document uses the following typographic conventions:

%, $
A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

#

A number sign represents the superuser prompt.

bash$ vi hello.c

Boldface type in interactive examples indicates typed user
input.

file

Italic (slanted) type indicates variable values, place-holders,
and function argument names.

xii

Preface

http://www.xgc.com/

[|], {|}
In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

...
In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat(1)
A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mb/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold (for example,
Ctrl+C).

xiii

Conventions

xiv

IntroductionChapter 1

XGC is a conforming free standing implementation of ANSI C as
specified in Section 4 of the ANSI C Standard. This means there
is no host environment and the means for starting a program, the
effect of program termination and the library facilities are
implementation defined.

The standard header files <float.h>, <limits.h>, <stdarg.h> and
<stddef.h> are supported as defined by ANSI C.

The remaining standard header files <assert.h> , <ctype.h> ,
<errno.h> , <locale.h> , <math.h> , <setjmp.h>, <signal.h>,
<stdio.h> , <stdlib.h> , <string.h> and <time.h> are also
supported, but only to the extent that makes sense for a program
running on an embedded target computer. In particular, the
functions from <stdio.h> that work with files other than the
standard files, are not supported.

The XGC run-time system and libraries comprise the following
components:

• The ANSI C header files.

• The start file crt0, which is also called art0.

1

• The ANSI C library libc.a.

• The ANSI C math library libm.a.

• The POSIX Threads library libpthread.a.

• Several implementation-defined header files and library
functions.

The library is written in C, using assembly language where
appropriate. Programs written in other languages, such as Ada 95
may also use the libraries by including the appropriate declarations
or bindings.

1.1. Program Startup

The entry point is in the run-time system module crt0, which
initializes the processor and the high level language environment
before executing any static constructors and calling the application
program main function.

The function main can be defined with no parameters, as follows:

Example 1.1. Function main

int
main (void)
{
 /* ... */

 return 0;
}

Note that the return statement may be omitted, in which case the
compiler assumes a return value of zero.

The main function may also be defined with two parameters
referred to here as argc and argv, though any names may be used,
as they are local to the function in which they are declared.

2

Chapter 1. Introduction

Example 1.2. Function main with arguments

int
main (int argc, char *argv [])
{
 /* ... */
}

The main function is always called with argc = 0. The value of
argv is undefined and will not necessarily be a valid address.

1.2. Program Termination

A return from the main program does not call the exit function, but
simply returns to the start file crt0. In the standard version of crt0
a return from main is followed by code to execute any static
destructors and a jump to the program entry point, where the
program will restart.

Note that crt0 may be customized to offer more appropriate
behavior for the application.

1.3. Standard Headers

Each library function is declared in a header whose contents are
made available by the #include directive. The header declares a
set of related functions plus any necessary types and macros
required. All the header files are compatible with C++.

The ANSI C standard headers are:

<stdlib.h><signal.h><limits.h><assert.h>

<string.h><stdarg.h><locale.h><ctype.h>

<time.h><stddef.h><math.h><errno.h>

<stdio.h><setjmp.h><float.h>

The real-time POSIX header is <pthread.h>.

XGC also supports the following implementation-defined header.

<report.h>

3

Program Termination

1.4. Errors <errno.h>

The header <errno.h> defines several macros all relating to the
reporting of error conditions.

The macros required by ANSI C are:

EDOM

ERANGE

which expand into integral constant expressions with distinct
non-zero values, suitable for use in #if pre-processing directives.
XGC also includes the following error definition macros:

ENOSYS

EIO

EBADF

EINVAL

ENODEV

ENOMEM

EBUSY

The variable errno is declared in the library libc.a and may be set
and tested at any time.

Note The POSIX Threads library ensures each thread has a
private copy of errno.

Note Signal handlers and interrupt handlers do not have a
private copy of errno.

1.5. Limits <float.h> and <limits.h>

The headers <float.h> and <limits.h> define several macros that
expand to various limits and parameters.

The values in <float.h> are as follows:

Table 1.1. Values in float.h

IEEE FormatM1750 FormatMacro Name

22FLT_RADIX

00FLT_ROUNDS

4

Chapter 1. Introduction

IEEE FormatM1750 FormatMacro Name

66FLT_DIG

1.19209290e-072.38418595e-7FLT_EPSILON

2423FLT_MANT_DIG

3.40282347e+381.7014116e38FLT_MAX

3838FLT_MAX_10_EXP

128126FLT_MAX_EXP

1.17549435e-381.46936794e-39FLT_MIN

-37-39FLT_MIN_10_EXP

-125-129FLT_MIN_EXP

1511DBL_DIG

2.2204460492503131e-163.637978807092e-12DBL_EPSILON

5339DBL_MANT_DIG

1.7976931348623157e+3081.701411834602e38DBL_MAX

30838DBL_MAX_10_EXP

1024126DBL_MAX_EXP

2.2250738585072014e-3081.469367938528e-39DBL_MIN

-307-39DBL_MIN_10_EXP

-1021-129DBL_MIN_EXP

The values in <limits.h> are as follows:

Table 1.2. Values in limits.h

32-Bit Targets16-Bit TargetsMacro Name

816CHAR_BIT

12732767CHAR_MAX

-128-32768CHAR_MIN

214748364732767INT_MAX

-2147483648-32768INT_MIN

21474836472147483647LONG_MAX

-2147483648-2147483648LONG_MIN

11MB_LEN_MAX

12732767SCHAR_MAX

-128-32768SCHAR_MIN

5

Limits <float.h> and <limits.h>

32-Bit Targets16-Bit TargetsMacro Name

3276732767SHRT_MAX

-32768-32768SHRT_MIN

25565535UCHAR_MAX

429496729565535UINT_MAX

42949672954294967295ULONG_MAX

6553565535USHRT_MAX

See the source files for more information.

1.6. Common definitions <stddef.h>

The following types and macros are defined in the standard header
<stddef.h>. Some are also defined in other headers, as noted in
their respective sub clauses.

The types are:

ptrdiff_t

which is the signed integral type of the result of subtracting two
pointers,

size_t

which is the unsigned integral type of the result of the sizeof
operator: and

wchar_t

which is an integral type whose range of values can represent
distinct codes for all members of the largest extended character set
specified among the supported locales: the null character shall have
the value zero and each member of the basic character set defined
in ANSI C 5.2.1 shall have a code value equal equal to its value
when used as a lone character in an integer character constant.

The macros are:

NULL

6

Chapter 1. Introduction

which expands to an implementation-defined null pointer constant:
and

offset_of(type, member-designator)

which expands to an integral constant expression that has type
size_t, the value of which is the offset in bytes, to the structure
member (designated by member-designator), from the beginning
of its structure (designated by type). The member-designator shall
be such that given static type t; then the expression
&(t.member-designator) evaluates to an address constant. (If the
specified member is a bit field, the behavior is undefined.)

7

Common definitions <stddef.h>

8

Diagnostics <assert.h>Chapter 2

The header <assert.h> defines the assert macro and refers to
another macro.

NDEBUG

which is not defined by <assert.h>. If NDEBUG is defined as a macro
name at the point in the source file where <assert.h> is included,
the assert macro is defined simply as

#define assert(ignore) ((void)0)

The assert macro is implemented as a macro, not as an actual
function. If the macro definition is suppressed in order to access
an actual function, the behavior is undefined.

2.1. Program Diagnostics

The assert macro

assert

9

Synopsis

#include <assert.h>

void assert (expression);

int expression;

Description

The assert macro puts diagnostics into programs. When it is
executed, if expression is false (that is, it compares equal to zero),
the assert macro writes information about the particular call that
failed (including the text of the argument, the name of the source
file, and the source line number–the latter are respectively the
values of the preprocessing macros __FILE__ and __LINE__) on the
standard error file in an implementation-defined format. It then
calls the abort function.

Returns

The assert macro returns no value.

See Also

The abort function [72]

Implementation Notes

The assert macro calls the library function _assert.

10

Chapter 2. Diagnostics <assert.h>

Character Handling
<ctype.h>

Chapter 3

The header <ctype.h> declares several functions useful for testing
and mapping characters. In all cases the argument is an int, the
value of which shall be representable as an unsigned char or shall
be equal to the value of the macro EOF. If the argument has any
other value, the behavior is undefined.

The behavior of these functions is effected by the current locale1.
Those functions that have implementation-defined aspects only
when not in the "C" locale are noted below.

The term printing character refers to a member of an
implementation-defined set of characters, each of which occupies
one printing position on a display device: the term control character
refers to a member of an implementation-defined set of characters
that are not printing characters.

3.1. Implementation Notes

All the character testing functions are defined as macros that test
one or more bits in a constant array indexed by the given character,
which must be in the range -1 to 255.

1The current locale is always the C locale.

11

3.2. Character Testing Functions

The isalnum function

isalnum

Synopsis

#include <ctype.h>

int isalnum (c);

int c ;

Description

The isalnum function tests for any character for which isalpha or
isdigit is true.

The isalpha function

isalpha

Synopsis

#include <ctype.h>

int isalpha (c);

int c ;

Description

The isalpha function tests for any character for which isupper or
islower is true, or any character that is one of an
implementation-defined set of characters for which non of iscntrl,
isdigit, ispunct, or isspace is true. In the "C" locale, isalpha
returns true for only the characters for which isupper or islower
is true.

The iscntrl function

iscntrl

12

Chapter 3. Character Handling <ctype.h>

Synopsis

#include <ctype.h>

int iscntrl (c);

int c;

Description

The iscntrl function tests for any control character.

The isdigit function

isdigit

Synopsis

#include <ctype.h>

int isdigit (c);

int c;

Description

The isdigit function tests for any decimal-digit character (as defined
in ANSI C refsection 5.2.1).

The isgraph function

isgraph

Synopsis

#include <ctype.h>

int isgraph (c);

int c;

Description

The isgraph function tests for any printing character except space
(' ').

13

The islower function

islower

Synopsis

#include <ctype.h>

int islower (c);

int c;

Description

The islower function tests for any character that is an lowercase
letter or is one of an implementation-defined set of characters for
which none of iscntrl, isdigit, ispunct or isspace is true. In the
"C" locale, islower returns true only for the characters defined as
lower case letters (as defined in ANSI C refsection 5.2.1).

The isprint function

isprint

Synopsis

#include <ctype.h>

int isprint (c);

int c;

Description

The isprint function tests for any of the printing characters including
space (' ').

The ispunct function

ispunct

Synopsis

#include <ctype.h>

14

Chapter 3. Character Handling <ctype.h>

int ispunct (c);

int c;

Description

The ispunct function tests for any printing character that is neither
a space (' ') nor a character for which isalnum is true.

The isspace function

isspace

Synopsis

#include <ctype.h>

int isspace (c);

int c;

Description

The isspace function tests for any character that is a standard white
space character or is one of an implementation-defined set of
characters for which isalnum is false. The standard white space
characters are the following: space (' '), form feed ('\f'), new_line
('\n'), carriage return ('\r'), horizontal tab ('\t'), and vertical
tab ('\v'). In the "C" locale, isspace returns true only for standard
white space characters.

The isupper function

isupper

Synopsis

#include <ctype.h>

int isupper (c);

int c;

15

Description

The isupper function tests for any character that is an uppercase
letter or is one of an implementation-defined set of characters for
which none of iscntrl, isdigit, ispunctor isspace is true. In the
"C" locale, isupper returns true only for the characters defined as
upper case letters (as defined in ANSI C refsection 5.2.1).

The isxdigit function

isxdigit

Synopsis

#include <ctype.h>

int isxdigit (c);

int c;

Description

The isxdigit functions tests for any hexadecimal-digit character (as
defined in ANSI C refsection 6.1.3.2).

3.3. Character Case Mapping Functions

The tolower function

tolower

Synopsis

#include <ctype.h>

int tolower (c);

int c;

Description

The tolower function converts an upper case letter to the
corresponding lower case letter.

16

Chapter 3. Character Handling <ctype.h>

Returns

If the argument is a character for which isupper is true and there
is a corresponding character for which islower is true, the tolower
function returns the corresponding character; otherwise, the
argument is returned unchanged.

The toupper function

toupper

Synopsis

#include <ctype.h>

int toupper (c);

int c;

Description

The toupper function converts an lower case letter to the
corresponding upper case letter.

Returns

If the argument is a character for which islower is true and there
is a corresponding character for which isupper is true, the toupper
function returns the corresponding character; otherwise, the
argument is returned unchanged.

17

18

Localization <locale.h>Chapter 4

The header <locale.h> declares two functions, one type and several
macros.

The type is

struct lconv

which contains members related to the formatting of numeric
values. The structure shall contain at least the following members,
in any order. The semantics of the members and their normal ranges
is explained in the ANSI C specification refsection 7.4.2.1. In the
“C” locale, the members shall have values specified in the
comments.

struct lconv
{
 char *decimal_point; /* "." */
 char *thousands_sep; /* "" */
 char *grouping; /* "" */
 char *int_curr_symbol; /* "" */
 char *currency_symbol; /* "" */
 char *mon_decimal_point; /* "" */
 char *mon_thousands_sep; /* "" */

19

 char *mon_grouping; /* "" */
 char *positive_sign; /* "" */
 char *negative_sign; /* "" */
 char int_frac_digits; /* CHAR_MAX */
 char frac_digits; /* CHAR_MAX */
 char p_cs_precedes; /* CHAR_MAX */
 char p_sep_by_space; /* CHAR_MAX */
 char n_cs_precedes; /* CHAR_MAX */
 char n_sep_by_space; /* CHAR_MAX */
 char p_sign_posn; /* CHAR_MAX */
 char n_sign_posn; /* CHAR_MAX */
};

The macros defined are NULL and the following:

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

The functions setlocale and localeconv are not supported in this
version of the library.

20

Chapter 4. Localization <locale.h>

Mathematics <math.h>Chapter 5

The header <math.h> declares several mathematical functions and
defines one macro. The functions take double arguments and return
double values.

The macro is defined as

HUGE_VAL

which expands to a positive double expression, not necessarily
representable as a float.

5.1. Treatment of Error Conditions

The behavior of each of these functions is defined for all
representable values of its input arguments. Each function shall
execute as if it were a single operation, without generating any
externally visible exceptions.

For all functions a domain error occurs if the input argument is
outside the domain over which the mathematical function is defined.
The description of each function lists any required domain errors:
an implementation may define additional domain errors, provided
that such errors are consistent with the mathematical definition of

21

the function. On a domain error the function returns an
implementation-defined value: the value of the macros EDOM is
stored in errno.

Similarly a range error occurs if the result of the function cannot
be represented as a double value. If the result overflows (the
magnitude of the result is so large that it cannot be represented in
an object of the specified type), the function returns the value of
the macro HUGE_VAL with the same sign (except for the tan function)
as the correct value of the function: the value of the macro ERANGE
is stored in errno. If the result underflows (the magnitude of the
result is so small that it cannot be represented in an object of the
specified type), the function returns zero: whether the integer
expression errno acquires the value of the macro ERANGE is
implementation-defined.

5.2. Notes

HUGE_VAL is defined as DBL_MAX.
XGC supports all the math functions defined in the ANSI standard.
XGC does not support math functions for long double arguments.
However because long double is defined to use the same machine
representation as double, the ANSI standard functions may be used.
Functions generally do not raise exceptions for domain errors.
Instead they return a value as if the argument was at the nearest
limit of the domain. For example, asin (1.5) will return pi/2. Thus
by ignoring the value of errno, and by masking the interrupts for
arithmetic overflow, we get a saturated arithmetic behavior.
Where applicable, the maximum and RMS error values are given.

5.3. Trigonometric Functions

The acos function

acos

Synopsis

#include <math.h>

double acos (x);

22

Chapter 5. Mathematics <math.h>

double x ;

Description

The acos function computes the principal value of the arc cosine
of x. A domain error occurs for arguments not in the range [-1, +1].

Returns

The acos function returns the arc cosine in the range [0, pi] radians.

Implementation Notes

For arguments < -1.0, acos returns zero and sets EDOM.
For arguments > +1.0, acos returns zero and sets EDOM.

The asin function

asin

Synopsis

#include <math.h>

double asin (x);

double x ;

Description

The asin function computes the principal value of the arc sine of
x. A domain error occurs for arguments not in the range [-1, +1].

Returns

The asin function returns the arc sine in the range [-pi/2, +pi/2]
radians.

Implementation Notes

For arguments < -1.0, asin returns -pi/2 and sets EDOM.
For arguments > +1.0, asin returns +pi/2 and sets EDOM.

23

The atan function

atan

Synopsis

#include <math.h>

double atan (x);

double x ;

Description

The atan function computes the principal value of the arc tangent
of x .

Returns

The atan function returns the arc tangent in the range [-pi/2, +pi/2]
radians.

See Also

The atan2 function [24]

The atan2 function

atan2

Synopsis

#include <math.h>

double atan2 (y, x);

double y;
double x;

Description

The atan2 function computes the principal value of the arc tangent
of y/x, using the signs of both arguments to determine the quadrant
of the return value. A domain error may occur if both arguments
are zero.

24

Chapter 5. Mathematics <math.h>

Returns

The atan2 function returns the arc tangent of y/x, in the range [-pi,
+pi] radians.

See Also

The atan function [24]

Implementation Notes

None

The cos function

cos

Synopsis

#include <math.h>

double cos (x);

double x ;

Description

The cos function computes the cosine of x (measured in radians).

Returns

The cos function returns the cosine value.

Implementation Notes

The absolute error over the range -2*pi to +2*pi is less than 2 *
DBL_EPSILON.

The sin function

sin

Synopsis

#include <math.h>

25

double sin (x);

double x ;

Description

The sin function computes the sine of x (measured in radians).

Returns

The sin function returns the sine value.

Implementation Notes

The absolute error over the range -2*pi to +2*pi is less than
2*DBL_EPSILON.

The tan function

tan

Synopsis

#include <math.h>

double tan (x);

double x ;

Description

The tan function returns the tangent of x (measured in radians).

Returns

The tan function returns the tangent value.

Implementation Notes

Over the range -pi/4 to +pi/4, the absolute error is less than 2 *
DBL_EPSILON. The absolute error increases considerably as the
argument approaches pi/2, or -pi/2.
Where the argument is close to any other odd multiple of pi/2, then
floating point overflow may be detected and HUGE_VAL or -HUGE_VAL
will be returned. If the corresponding interrupt is unmasked then
the signal SIGFPE will be raised.

26

Chapter 5. Mathematics <math.h>

5.4. Hyperbolic Functions

The cosh function

cosh

Synopsis

#include <math.h>

double cosh (x);

double x ;

Description

The cosh function computes the hyperbolic cosine of x. A range
error occurs if the magnitude of x is too large.

Returns

The cosh function returns the hyperbolic cosine value.

The sinh function

sinh

Synopsis

#include <math.h>

double sinh (x);

double x ;

Description

The sinh function computes the hyperbolic sine of x. A range error
occurs if the magnitude of x is too large.

Returns

The sinh function returns the hyperbolic sine value.

27

Hyperbolic Functions

Implementation Notes

None

The tanh function

tanh

Synopsis

#include <math.h>

double tanh (x);

double x ;

Description

The tanh function computes the hyperbolic tangent of x.

Returns

The tanh function returns the hyperbolic tangent value.

Implementation Notes

None

5.5. Exponential and Logarithmic Functions

The exp function

exp

Synopsis

#include <math.h>

double exp (x);

double x ;

28

Chapter 5. Mathematics <math.h>

Description

The exp function computes the exponential function of x. A range
error occurs if the magnitude of x is too large.

Returns

The exp function returns the exponential value.

The frexp function

frexp

Synopsis

#include <math.h>

double frexp (value, exp);

double value;
int *exp;

Description

The frexp function breaks a floating-point number into a normalized
fraction and an integral power of 2. It stores the integer in the int
object pointed to by exp.

Returns

The frexp function returns the value x, such that x is a double with
magnitude in the interval [1/2,1] or zero, and value equals x times
2 raised to the power *exp. If value is zero, both parts of the result
are zero.

See Also

The ldexp function [29]

The ldexp function

ldexp

29

Synopsis

#include <math.h>

double ldexp (x, exp);

double x;
int exp;

Description

The ldexp function multiplies a floating point number by an integral
power of 2. A range error may occur.

Returns

The ldexp function returns the value of x times 2 raised to the power
exp.

See Also

The frexp function [29]

Implementation Notes

None

The log function

log

Synopsis

#include <math.h>

double log (x);

double x ;

Description

The log function computes the natural logarithm of x. A domain
error occurs is the argument is negative. A range error may occur
if the argument is zero.

30

Chapter 5. Mathematics <math.h>

Returns

The log function returns the natural logarithm.

Implementation Notes

If the argument is zero, then errno is set to ERANGE, and -HUGE_VAL
is returned.
If the argument < zero, then errno is set to EDOM, and -HUGE_VAL is
returned.

The log10 function

log10

Synopsis

#include <math.h>

double log10 (x);

double x ;

Description

The log10 function computes the base-ten logarithm of x. A domain
error occurs if the argument is negative. A range error may occur
if the argument is zero.

Returns

The log10 function returns the base-ten logarithm.

Implementation Notes

The log10 function is computed by log10 (e) * log (x).
If the argument is zero, then errno is set to ERANGE, and -HUGE_VAL
is returned.
If the argument < zero, then errno is set to EDOM, and -HUGE_VAL is
returned.

The modf function

modf

31

Synopsis

#include <math.h>

double modf (value, iptr);

double value;
double *iptr;

Description

The modf function breaks the argument value into integral and
fraction parts, each of which has the same sign as the argument. It
stores the integral part as a double in the object pointed to by iptr.

Returns

The modf function returns the signed fraction part of value.

Implementation Notes

None

5.6. Power Functions

The pow function

pow

Synopsis

#include <math.h>

double pow (x, y);

double x;
double y;

Description

The pow function computes x raised to the power y. A domain error
occurs if x is negative and y is not an integral value. A domain
error occurs if the result cannot be represented when x is zero and
y is less than or equal to zero. A range error may occur.

32

Chapter 5. Mathematics <math.h>

Returns

The pow function returns the value of x raised to the power y.

Implementation Notes

None

The sqrt function

sqrt

Synopsis

#include <math.h>

double sqrt (x);

double x ;

Description

The sqrt function computes the non-negative square root of x. A
domain error occurs if the argument is negative.

Returns

The sqrt function returns the value of the square root.

Implementation Notes

The sqrt function returns 0.0 for arguments <= 0.0.

5.7. Nearest Integer, Absolute Value and Remainder Functions

The ceil function

ceil

Synopsis

#include <math.h>

double ceil (x);

33

double x ;

Description

The ceil function computes the smallest integral value not less than
x.

Returns

The ceil function returns the smallest integral value not less than
x, expressed as a double.

See Also

The floor function [35]

Implementation Notes

None

The fabs function

fabs

Synopsis

#include <math.h>

double fabs (x);

double x ;

Description

The fabs function computes the absolute value of a floating-point
number x.

Returns

The fabs function returns the absolute value of x.

Implementation Notes

The fabs function is built in, and the instructions to compute the
absolute value will be generated in line. Also the library contains
an fabs function for use where the address of the function is needed.

34

Chapter 5. Mathematics <math.h>

The floor function

floor

Synopsis

#include <math.h>

double floor (x);

double x ;

Description

The floor function computes the largest integral value not greater
than x.

Returns

The floor function returns the largest integral value not greater than
x, expressed as a double.

See Also

The ceil function [33]

Implementation Notes

None

The fmod function

fmod

Synopsis

#include <math.h>

double fmod (x, y);

double x;
double y;

Description

The fmod function computes the floating point remainder of x/y.

35

Returns

The fmod function returns the value x-i*y for some integer i such
that, if y is nonzero, the result has the same sign as x and a
magnitude less than the magnitude of y. If y is zero, whether a
domain error occurs or the fmod function returns zero is
implementation-defined.

Implementation Notes

If y is zero, then the floating point exception SIGFPE will be raised.
EDOM is not set.

36

Chapter 5. Mathematics <math.h>

Nonlocal Jumps
<setjmp.h>

Chapter 6

The header <setjmp.h> defines the macro setjmp, and declares one
function and one type, for bypassing the normal function call and
return discipline.

The type declared is

jmp_buf

which is an array type suitable for holding the information needed
to restore a calling environment.

6.1. Save Calling Environment

The setjmp macro

setjmp

Synopsis

#include <setjmp.h>

int setjmp (env);

37

jmp_buf env;

Description

The setjmp macro saves its calling environment in its jmp_buf
argument for later use by the longjmp function.

Returns

If the return is from a direct invocation, the setjmp macro returns
the value zero. If the return is from a call to longjmp function, the
setjmp macro returns a nonzero value.

Environmental Constraint

An invocation of the setjmp macro shall appear in one of the
following contexts:

• the entire controlling expression of a selection or iteration
statement:

• one operand of a relational or equality operator with the other
operand an integral constant expression, with the resulting
expression being the entire controlling expression of a selection
or iteration statement:

• the operand of a unary ! operator with the resulting expression
being the entire controlling expression of a selection or iteration
statement: or

• the entire expression of an expression statement (possibly cast
to void).

Implementation Notes

If the program is running with expanded memory, then the address
state is also saved in the jmp_buf argument.

6.2. Restore Calling Environment

The longjmp function

longjmp

38

Chapter 6. Nonlocal Jumps <setjmp.h>

Synopsis

#include <setjmp.h>

int longjmp (env, val);

jmp_buf env;
int val;

Description

The longjmp function restores the calling environment saved by
the most recent invocation of the setjmp macro in the same
invocation of the program, with the corresponding jmpbuf
argument. If there has been no such invocation or if the function
containing the invocation of the setjmp macro has terminated
execution than the the behavior is undefined.

Returns

After longjmp is completed, program execution continues as if the
corresponding invocation of the setjmp macro had just returned
the value specified by val. The longjmp function cannot cause the
setjmp macro to return the value 0: if val is 0, the setjmp macro
returns the value 1.

Implementation Notes

In GCC-1750, if longjmp is used with expanded memory then the
calling environment includes the address state.

39

40

Signal Handling
<signal.h>

Chapter 7

The header <signal.h> declares a type and two functions and
defines several macros for handling various signals (conditions
that may be reported during program execution).

The type defined is

sig_atomic_t

which is the integral type of an object that can be access as an
atomic entity, even in the presence of asynchronous interrupts.

The macros defined are:

SIG_DFL

SIG_ERR

SIG_IGN

which expand to constant expressions with distinct values that are
type compatible with the second argument to and the return value
of the signal function, and whose value compares unequal to the
address of any declarable function; and the following, each of
which expands to a positive integral constant expression that is the
signal number corresponding to the specified condition.

41

SIGHUP

Hangup (POSIX).

SIGINT

Interrupt (ANSI).

SIGQUIT

Quit (POSIX).

SIGILL

Illegal instruction (ANSI).

SIGABRT

Abort (ANSI).

SIGTRAP

Trace trap (POSIX).

SIGIOT

IOT trap (4.2 BSD).

SIGEMT

EMT trap (4.2 BSD).

SIGFPE

Floating-point exception (ANSI).

SIGKILL

Kill, unblock-able (POSIX).

SIGBUS

Bus error (4.2 BSD).

SIGSEGV

Segmentation violation (ANSI).

SIGSYS

Bad argument to system call (4.2 BSD)

SIGPIPE

Broken pipe (POSIX).

SIGALRM

Alarm clock (POSIX).

SIGTerm

Termination (ANSI).

42

Chapter 7. Signal Handling <signal.h>

SIGUSR1

User-defined signal 1 (POSIX).

SIGUSR2

User-defined signal 2 (POSIX).

SIGCHLD

Child status has changed (POSIX).

SIGCLD

Same as SIGCHLD (System V).

SIGPWR

Power failure restart (System V).

7.1. Specify Signal Handling

The signal function

signal

Synopsis

#include <signal.h>

(*signal (int sig, void (*func)(int))) signal
(int);

int;

Description

The signal function chooses one of three ways in which receipt of
the signal number sig is to subsequently handled. If the value of
func is SIG_DFL, default handling for that signal will occur. If the
value of func is SIG_IGN, the signal will be ignored. Otherwise func
shall point to a function to be called when the signal occurs. Such
a function is called a signal handler.

When a signal occurs, if func points to a function, first the
equivalent of signal(SIG,SIG_DFL); is executed or an
implementation-defined blocking of the signal is performed. (If
the value of the signal is SIG_KILL, whether the reset to SIG_DFL
occurs is implementation defined.) Next the equivalent of

43

Specify Signal Handling

(*func)(sig); is executed. The function func may terminate by
executing a return statement of by calling the abort, exit or
longjmp function. If func executes a return statement, and the
value of sig was SIGFPE or any other implementation-defined value
corresponding to a computational exception, the behavior is
undefined. Otherwise, the program will resume execution at the
point it was interrupted.

If the signal occurs other than as the result of calling the abort or
raise function, the behavior is undefined if the signal handler calls
any function in the standard library other than the signal function
itself (with a first argument of the signal number corresponding to
the signal that cause the invocation of the handler) or refers to any
object with status storage duration other than by assigning to a
static storage duration variable of type volatile sig_atomic_t.
Furthermore, if such a call to the signal function results in a SIG_ERR
return, the value of errno is indeterminate.

At program startup, the equivalent of signal(sig, SIG_IGN); is
executed for some signal selected in an implementation-defined
manner, the equivalent of signal(sig, SIG_DFL); is executed for
all other signals defined by the implementation.

The implementation shall behave as if no library function calls the
signal function.

Returns

If the request can be honored, the signal function returns the value
of func for the most recent call to signal for the specified signal
sig. Otherwise a value of SIG_ERR is returned and a positive value
is stored in errno.

See Also

The abort function [72]
The exit function [73]

7.2. Send Signal

The raise function

raise

44

Chapter 7. Signal Handling <signal.h>

Synopsis

#include <signal.h>

int raise (sig);

int sig;

Description

The raise function sends the signal sig to the executing program
or partition.

Returns

The raise function returns zero if successful, nonzero if
unsuccessful.

45

46

Variable Arguments
<stdarg.h>

Chapter 8

The header <stdarg.h> declares a type and defines three macros,
for advancing through a list of arguments whose number and types
and not known to the called function when it is compiled.

A function may be called with a variable number of arguments of
varying types. As described in the ANSI C Standard Section 6.7.1,
its parameter list contains one or more parameters. The rightmost
parameter plays a special role in the access mechanism, and will
be designated paramN in this description.

The type declared is:

va_list

which is a type suitable for holding information needed by the
macros va_start, va_arg, and va_end. If access to the varying
arguments is desired, the called function shall declare an object
(referred to as ap in this refsection) having type va_list. The object
ap may be passed as an argument to another function: if that
function invokes the va_arg macro with parameter ap the value of
ap in the calling function is indeterminate and shall be passed to
the va_end macro prior to any further reference to ap.

47

8.1. Variable Argument List Access Macros

The va_start macro

va_start

Synopsis

#include <stdarg.h>

void va_start (ap, paramN);

va_list ap;
paramN;

Description

The va_start macro shall be invoked before any access to the
unnamed arguments.

The va_start macro initializes ap for subsequent use by va_arg
and va_end.

The parameter paramN is the identifier of the rightmost parameter
in the variable parameter list in the function definition (the one just
before the , ...). If the parameter paramN is declared with the
register storage class, with a function or array type, or with a type
that is not compatible with the type that results after application of
the default argument promotions, the behavior is undefined.

Returns

The va_start macro returns no value.

See Also

The va_arg macro [48]
The va_end macro [49]

The va_arg macro

va_arg

48

Chapter 8. Variable Arguments <stdarg.h>

Synopsis

#include <stdarg.h>

type va_arg (ap, type);

va_list ap;
type;

Description

The va_arg macro expands to an expression that has the type and
value of the next argument in the call. The parameter ap shall be
the same as the va_list ap initialized by va_start. Each invocation
of va_arg modifies ap so that the values of successive arguments
are returned in turn. The parameter type is a type name specified
such that the type of a pointer to an object that has the specified
type can be obtained by simply postfixing a * to type. If there is
no actual next argument (as promoted according to the default
argument promotions), the behavior is undefined.

Returns

The first invocation of the va_arg macro after that of the va_start
macro returns the value of the argument after that specified by
paramN. Successive invocations return values of the remaining
arguments in succession.

See Also

The va_start macro [48]
The va_end macro [49]

The va_end macro

va_end

Synopsis

#include <stdarg.h>

void va_end (ap);

va_list ap;

49

Description

The va_end macro facilitates a normal return from the function
whose variable argument list was referred to by the expansion of
va_start that initialized the va_list ap. The va_end macro may
modify ap so that it is no longer usable (without intervening
invocation of va_start). If there is no corresponding invocation of
the va_start macro, or if the va_end macro is not invoked bore the
return, the behavior is undefined.

Returns

The va_end macro returns no value.

See Also

The va_start macro [48]
The va_arg macro [48]

50

Chapter 8. Variable Arguments <stdarg.h>

Input/output <stdio.h>Chapter 9

Support for <stdio.h> is limited to those function that are useful
in the embedded environment. In particular, the only files available
are the three standard files, stdin, stdout and stderr. Other files are
not available, and functions that operate on such files are omitted.

9.1. Formatted Input/Output Functions

The printf function

printf

Synopsis

#include <stdio.h>

int printf (format,);

const char *format ;
... ;

51

Description

The printf function is supported as specified in ANSI C 7.9.6.3.

Returns

The printf function returns the number characters printed.

Implementation Notes

The printf function uses an internal buffer of 256 characters. This
limits the length of the text printed by one call to printf to 255
characters.

The sprintf function

sprintf

Synopsis

#include <stdio.h>

int sprintf (s, format,);

char *s;
const char *format;
... ;

Description

The sprintf function is supported as specified in ANSI C 7.9.6.5.

Returns

The sprintf function returns the number of characters printed.

The vprintf function

vprintf

Synopsis

#include <stdio.h>

int vprintf (const, format, va_list, arg);

52

Chapter 9. Input/output <stdio.h>

const;
char *format;
va_list;
arg;

Description

The vprintf function is supported as specified in ANSI C 7.9.6.8.

Returns

The vprintf function returns the number of characters printed.

Implementation Notes

The vprintf function uses an internal buffer of 256 characters. This
limits the length of the text printed by one call to vprintf to 255
characters.

The vsprintf function

vsprintf

Synopsis

#include <stdio.h>

int vsprintf (s, const, format, arg);

char *s;
const;
char *format;
va_list arg;

Description

The vsprintf function is supported as specified in ANSI C 7.9.6.9.

Returns

The vsprintf function returns the number of characters printed.

53

9.2. Character Input/Output Functions

The fgetc function

fgetc

Synopsis

#include <stdio.h>

int fgetc (stream);

FILE *stream ;

Description

The fgetc function obtains the next character (if present) as an
unsigned char converted to an int, from the input stream pointed
to by stream, and advances the associated file position indicator
for the stream (if defined).

Returns

The fgetc function returns the next character from the input stream
pointed to by stream. If the stream is at end-of-file, the end-of-file
indicator for the stream is set and fgetc returns EOF. If a read error
occurs, the error indicator for the stream is set and fgetc returns
EOF.

Implementation Notes

The value of stream must be stdin.

The fgets function

fgets

Synopsis

#include <stdio.h>

int fgets (s, n, stream);

char *s;

54

Chapter 9. Input/output <stdio.h>

int n;
FILE *stream;

Description

The fgets function reads at most one less than the number of
characters specified by n from the stream pointed to by stream into
the array pointed to by s. No additional characters are read after a
new-line character (which is retained) or after end-of-file. A null
character is written immediately after the last character read into
the array.

Returns

The fgets function returns s if successful. If end-of-file is
encountered and no characters have been read into the array, the
contents of the array remain unchanged and a null pointer is
returned. If a read error occurs during the operation, the array
contents are indeterminate and a null pointer is returned.

Implementation Notes

The value of stream must be stdin.

The fputc function

fputc

Synopsis

#include <stdio.h>

int fputc (c, stream);

int c ;
FILE *stream ;

Description

The fputc function is supported as specified in ANSI C 7.9.7.3.

Returns

The fputc function returns the character written. If a write error
occurs the error indicator is set and fputc returns EOF.

55

Implementation Notes

The value of stream must be stdout or stderr.

The fputs function

fputs

Synopsis

#include <stdio.h>

int fputs (s, stream);

const char *s;
FILE *stream;

Description

The fputs function writes the string pointed to by s to the stream
pointed to by stream. The terminating null character is not written.

Returns

The fputs function returns EOF if a write error occurs: otherwise
it returns a non-negative value.

Implementation Notes

The value of stream must be stdout or stderr.

The getc function

getc

Synopsis

#include <stdio.h>

int getc (stream);

FILE *stream ;

56

Chapter 9. Input/output <stdio.h>

Description

The getc function is equivalent to fgetc, except that if it is
implemented as a macro, it may evaluate stream more than once,
so the argument should never be an expression with side effects.

Returns

The getc function returns the next character from the input stream
pointed to by stream. If the stream is at end-of-file, the end-of-file
indicator for the stream is set and fgetc returns EOF. If a read error
occurs, the error indicator for the stream is set and getc returns
EOF.

Implementation Notes

The getc function

The getchar function

getchar

Synopsis

#include <stdio.h>

int getchar ();

void ;

Description

The getchar function is equivalent to getc with the argument stdin.

Returns

The getchar function returns the next character from the input
stream pointed to by stdin. If the stream is at end-of-file, the
end-of-file indicator for the stream is set and getchar returns EOF.
If a read error occurs, the error indicator for the stream is set and
getchar returns EOF.

Implementation Notes

The getchar function

57

The gets function

gets

Synopsis

#include <stdio.h>

int gets (s);

char *s ;

Description

The gets function reads character from the input stream pointed to
by stdin, into the array pointed to by s, until an end-of-file is
encountered or a new-line character is read. any new-line character
is discarded and a null character is written immediately after the
last character read into the array.

Returns

The gets function returns s if successful. If end-of-file is
encountered and no characters have been read into the array, the
contents of the array remain unchanged and a null pointer is
returned. If a read error occurs during the operation, the array
contents are indeterminate and a null pointer is returned.

Implementation Notes

The gets function

The putc function

putc

Synopsis

#include <stdio.h>

int putc (c, stream);

int c ;
FILE *stream ;

58

Chapter 9. Input/output <stdio.h>

Description

The putc function is supported as specified in ANSI C 7.9.7.8.

Returns

The putc function returns the character written. If a write error
occurs, the error indicator for the stream is set and putc returns
EOF.

Implementation Notes

The value of stream must be stdout or stderr.

The putchar function

putchar

Synopsis

#include <stdio.h>

int putchar (c);

int c ;

Description

The putchar function is supported as specified in ANSI C 7.9.7.9.

Returns

The putchar function returns the character written. If a write error
occurs, the error indicator for the stream is set and putchar returns
EOF.

The puts function

puts

Synopsis

#include <stdio.h>

int puts (s);

59

const char *s ;

Description

The puts function writes the string pointed to by s to the stream
pointed to by stdout and appends a new-line character to the output.
The terminating null character is not written.

Returns

The puts function returns EOF if a write error occurs: otherwise it
returns a non-negative value.

60

Chapter 9. Input/output <stdio.h>

General Utilities
<stdlib.h>

Chapter 10

The header <stdlib.h> declares four types and several functions
of general utility, and defines several macros.

The types declared are size_t and wchar_t (both described in the
ANSI specification refsection 7.1.6),

div_t

which is a structure type that is the type of the value returned by
the div function, and

ldiv_t

which is a structure type that is the type of the value returned by
the ldiv function.

The macros defined are NULL (described in in the ANSI specification
refsection 7.1.6),

EXIT_FAILURE

and

61

EXIT_SUCCESS, which expand to integral expressions that may be
used as the argument to the exit function to return unsuccessful or
successful termination status respectively, to the host environment,

RAND_MAX which expands to an integral constant expression, the
value of which is the maximum value returned by the rand function,
and

MB_CUR_MAX which expands to a positive integer expression whose
value is the maximum number of bytes in a multi-byte character
for the extended character set specified by the current locale
(category LC_TYPE), and whose value is never greater than
MB_LEN_MAX

10.1. String Conversion Functions

The atof function

atof

Synopsis

#include <stdlib.h>

double atof (iptr);

const char *iptr;

Description

The atof function converts the initial portion of the string pointed
to by iptr to double. Except for the behavior on error, it is
equivalent to

strtod (nptr, (char **)NULL)

Returns

The atof function returns the converted value as a double length
floating point number.

62

Chapter 10. General Utilities <stdlib.h>

See Also

The strtod function [64]

The atoi function

atoi

Synopsis

#include <stdlib.h>

int atoi (nptr);

const char *nptr;

Description

The atoi function converts the initial portion of the string pointed
to by nptr to int representation. Except for the behavior in error,
it is equivalent to

(int)strtol (nptr, (char **)NULL, 10)

Returns

The atoi function returns the converted value.

See Also

The strtol function [65]

The atol function

atol

Synopsis

#include <stdlib.h>

long atol (nptr);

const char *nptr;

63

Description

The atol function converts the initial portion of the string pointed
to by nptr to long int representation. Except for the behavior in
error, it is equivalent to

strtol (nptr, (char **)NULL, 10)

Returns

The atol function returns the converted value.

See Also

The strtol function [65]

The strtod function

strtod

Synopsis

#include <stdlib.h>

double strtod (nptr, endptr);

const char *nptr;
char **endptr;

Description

The strtod function converts the initial portion of the string pointed
to by nptr to double representation. First it decomposes the string
into three parts: an initial, possibly empty, sequence of white space
characters (as specified by the isspace function), a subject sequence
resembling a floating point constant: and a final string of one or
more unrecognized characters, including the terminating null
character of the input string. Then it attempts to convert the subject
sequence to a floating point number, and return the result.

The expected form of the subject sequence is an optional plus or
minus sign, then a non-empty sequence of digits optionally
containing a decimal-point character, then an optional exponent
part as defined in the ANSI specification refsection 6.1.3.1, but no

64

Chapter 10. General Utilities <stdlib.h>

floating suffix. The subject sequence is defined as the longest initial
subsequence of the input string, starting with the first
non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is empty or
consists of entirely white space, or if the first non-white space
character is other than a sign, a digit or a decimal point.

Returns

The strtod function returns the converted value, if any. If no
conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, plus of minus
HUGE_VAL is returned (according to the sign of the value), and the
value of the macros ERANGE is stored in errno. If the correct value
would cause underflow, zero is returned and the value of the macro
ERANGE is store in errno.

Implementation Notes

In GCC-1750, the accuracy of the result is generally better than 10
digits. In most cases, 13 decimal digits is sufficient to represent
any of the 2**48 values of the M1750 extended precision floating
point format. Powers of 10 within the range of the M1750 extended
precision format (roughly 1.0e-38 to 1.0e+38) are converted exactly.

The strtol function

strtol

Synopsis

#include <stdlib.h>

long strtol (nptr, endptr, base);

const char *nptr;
char **endptr;
int base;

Description

The strtol function converts the initial portion of the string pointed
to by nptr to long int representation. First it decomposes the input
string into three parts: an initial, possibly empty, sequence of white
space characters (as specified by the The isspace function The

65

isspace function [15]), a subject sequence resembling an integer
represented in some radix determined by the value of base, and a
final string of one or more unrecognized characters, including the
terminating null character of the input string. Then it attempts to
convert the subject sequence to an integer, and returns the result.

Returns

The strtol function returns the converted value, if any. If no
conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, LONG_MAX or
LONG_MIN is returned (according to the sign of the value), and the
value of the macro ERANGE is is stored in errno.

The strtoul function

strtoul

Synopsis

#include <stdlib.h>

unsigned long strtoul (nptr, endptr, base);

const char *nptr;
char **endptr;
int base;

Description

The strtoul function converts the initial portion of the string pointed
to by nptr to unsigned long int representation. First it decomposes
the input string into three parts: an initial, possibly empty, sequence
of white space characters (as specified by the The isspace
function [15], a subject sequence resembling an unsigned integer
represented in some radix determined by the value of base, and a
final string of one or more unrecognized characters, including the
terminating null character of the input string. Then it attempts to
convert the subject sequence to an unsigned integer, and returns
the result.

Returns

The strtoul function returns the converted value, if any. If no
conversion could be performed, zero is returned. If the correct

66

Chapter 10. General Utilities <stdlib.h>

value is outside the range of representable values, ULONG_MAX is
returned, and the value of the macro ERANGE is is stored in errno.

10.2. Pseudo-Random Sequence Generation Functions

The rand function

rand

Synopsis

#include <stdlib.h>

int rand ();

Description

The rand function computes a sequence of pseudo-random integers
in the range 0 to RAND_MAX.

The implementation shall behave as if no library function calls the
rand function.

Returns

The rand function returns a pseudo random integer.

See Also

The srand function [67]

Implementation Notes

The value of RAND_MAX is 0x7fff.

The srand function

srand

Synopsis

#include <stdlib.h>

void srand (seed);

67

Pseudo-Random Sequence Generation Functions

unsigned int seed;

Description

The srand function uses the argument as a seed for a new sequence
of pseudo-random numbers to be returned by subsequent calls to
rand. If srand is then called with the same seed value, the sequence
of pseudo random numbers shall be repeated. If rand is called
before any calls to srand have been made, the same sequence shall
be generated as when srand is first called with a seed value of 1.

The implementation shall behave as if no library function calls the
srand function.

Returns

The srand function returns no value.

Example

The following functions define a portable implementation of rand
and srand.

unsigned long next = 1;
int rand (void)
{
 next = next * 1103515245L + 12345L;
 return (unsigned int)((next > 16) & 0x7fff;
}

void
srand (unsigned int seed)
{
 next = seed;
}

See Also

The rand function [67]

Implementation Notes

16-bit targets use the algorithm in the example above, and the value
of RAND_MAX is 32767.

68

Chapter 10. General Utilities <stdlib.h>

10.3. Memory Management Functions

The order and contiguity of storage allocated by calloc, malloc,
and realloc functions is not specified.

The calloc function

calloc

Synopsis

#include <stdlib.h>

void *calloc (nmemb, size);

size_t nmemb;
size_t size;

Description

The calloc function allocates space for an array of nmemb objects,
each of whose size is size. The space is initialized to all bits zero.

Returns

The calloc function returns either a null pointer or a pointer to the
allocated space.

See Also

The free function [69]
The malloc function [70]
The realloc function [71]

Implementation Notes

The pointer returned is always 8-byte aligned so that objects of
type double may be assigned.

The free function

free

69

Memory Management Functions

Synopsis

#include <stdlib.h>

void free (ptr);

void *ptr;

Description

The free function causes the space pointed to by ptr to be
deallocated that is, made available for further allocation.

Returns

The free function returns no value.

See Also

The calloc function [69]
The malloc function [70]
The realloc function [71]

Implementation Notes

None

The malloc function

malloc

Synopsis

#include <stdlib.h>

void *malloc (size);

size_t size;

Description

The malloc function allocates space for an object whose size is
specified by size and whose value is indeterminate

70

Chapter 10. General Utilities <stdlib.h>

Returns

The malloc function returns either a null pointer o a pointer to the
allocated space.

See Also

The calloc function [69]
The free function [69]
The realloc function [71]

Implementation Notes

The pointer returned is always 8-byte aligned so that objects of
type double may be assigned.

The realloc function

realloc

Synopsis

#include <stdlib.h>

void *realloc (ptr, size);

void *ptr;
size_t size;

Description

The realloc function allocates space for an object whose size is
specified by size and whose value is indeterminate

Returns

The realloc function returns either a null pointer or a pointer to the
allocated space.

See Also

The calloc function [69]
The free function [69]
The malloc function [70]

71

Implementation Notes

The pointer returned is always 8-byte aligned so that objects of
type double may be assigned.

10.4. Communication with the Environment

The abort function

abort

Synopsis

#include <stdlib.h>

void abort (void);

void;

Description

The abort function causes abnormal termination to occur unless
the signal SIGABRT is being caught and the signal handler does not
return. Whether open output streams are flushed or open streams
are closed or temporary files removed is implementation-defined.
An implementation-defined form of the status unsuccessful
termination is returned to the host environment by means of the
function call raise(SIGABRT).

Returns

The abort function cannot return to its caller.

Implementation Notes

The abort function calls raise(SIGABRT) and does not return.

See Also

The raise function [44]

72

Chapter 10. General Utilities <stdlib.h>

The atexit function

atexit

Synopsis

#include <stdlib.h>

void atexit ();

void (*func)(void) ;

Description

The atexit function registers the function pointed to by func, to be
called without arguments at normal program termination.

Implementation Limits

The implementation shall support the registration of at least 32
functions.

Returns

The atexit function returns zero if the registration succeeds, nonzero
if it fails.

Implementation Notes

The XGC library supports 32 registrations.

The exit function

exit

Synopsis

#include <stdlib.h>

void exit (status);

int status;

73

Description

The exit function causes normal program termination to occur. If
more than one call to the exit function is executed by a program,
the behavior is undefined.

First, all functions registered by the atexit function are called, in
the reverse order of their registration.

Next, all open streams with unwritten buffered data are flushed,
all open streams are closed, and all files created by the tmpfile
function are removed.

Finally, control is returned to the host environment. If the value of
status is zero or EXIT_SUCCESS, an implementation-defined form
of the status successful termination is returned. If the value of status
is EXIT_FAILURE, and implementation-defined form of the status
unsuccessful termination is returned. Otherwise the status returned
is implementation-defined.

Returns

The exit function cannot return to its caller.

Implementation Notes

The host environment consists of the file crt0, which initializes the
stack then calls the main program. On return from the main
program, the environment restarts and runs the main program again.
The XGC library does not support buffered streams or temporary
files.

The system function

system

Synopsis

#include <stdlib.h>

int system (string);

const char *string;

74

Chapter 10. General Utilities <stdlib.h>

Description

The system function passes the string pointed to by string to the
host environment to be executed by a command processor in an
implementation-defined manner. A null pointer may be used for
string to inquire whether a command processor exists.

Returns

If the argument is a null pointer, the system function returns nonzero
only if a command processor is available. If the argument is not a
null pointer, the system function returns an implementation-defined
value.

Implementation Notes

There is no command processor.
If the argument is a null pointer, then zero is returned to indicate
that a command processor is not available.
If the argument is not a null pointer, the system function returns
-1, and errno is set to ENOSYS.

10.5. Searching and Sorting Utilities

The bsearch function

bsearch

Synopsis

#include <stdlib.h>

void *bsearch (key, base, nmemb, size,
(*compar) (const void *, const void *));

const void *key;
const void *base;
size_t nmemb;
size_t size;
int (*compar) (const void *, const void *) ;

75

Description

The bsearch function searches an array of nmemb objects, the initial
element of which is pointed to by base, for an element than matches
the object pointed to by key. The size of each element in the array
is specified by size.

The comparison function pointed to by compar is called with two
arguments that point to the key object and an array element in that
order. The function shall return an integer less than, equal to, or
greater than zero if the key object is considered respectively to be
less than, equal to or greater than the array element. The array shall
consist of: all the objects that compare less than, all the elements
that compare equal to, and all the elements that compare greater
than the key object, in that order.

Returns

The bsearch function returns a pointer to a matching element of
the array, or a null pointer if no match is found. If two elements
compare as equal, which element is matched is unspecified.

Implementation Notes

For the M175- target, the bsearch function cannot be used with
expanded memory since it is not possible to pass the address of the
compare function using the 1750's 16-bit address format.
A custom binary search function is likely to be smaller and faster
than the library function. See Sedgewick, R., Algorithms in C, ISBN
0-201-51425-7, pp 198

10.6. Integer Arithmetic Functions

The abs function

abs

Synopsis

#include <stdlib.h>

int abs (j);

int j;

76

Chapter 10. General Utilities <stdlib.h>

Description

The abs function computes the absolute value of an integer j. If
the result cannot be represented, the behavior is undefined.

Returns

The abs function returns the absolute value.

Implementation Notes

The abs function is both built-in and supplied as a library function.
Usually the built-in function is used, and the appropriate
instructions will be generated. If the address of the abs function is
taken, then the address is the address of the library function.
On the M1750, in the special case where j is -32768, fixed point
overflow will be detected by the 1750 and if the corresponding
interrupt is enabled the signal SIGFIXED_OVERFLOW will be raised.
The standard behavior may be modified in the run-time system file
crt0.s.

The div function

div

Synopsis

#include <stdlib.h>

div_t div (numer, denom);

int numer;
int denom;

Description

The div function computes the quotient and remainder of the
division of the numerator numer by the denominator denom. If the
division is inexact, the resulting quotient is the integer of lesser
magnitude that is nearest to the algebraic quotient. If the result
cannot be represented, the behavior is undefined: otherwise quot
* denom + rem shall equal numer.

77

Returns

The div function returns a structure of type div_t comprising both
the quotient and the remainder. The structure shall contain the
following members, in either order:

int quot; /* quotient */
int rem; /* remainder */

Implementation Notes

If denom is zero, or if numer is INT_MIN and denom is -1, then fixed
point overflow is detected. If the corresponding interrupt is enabled,
then SIGFIXED_OVERFLOW is raised.

The labs function

labs

Synopsis

#include <stdlib.h>

long labs (long);

long;

Description

The labs function computes the absolute value of an integer j. If
the result cannot be represented, the behavior is undefined.

Returns

The labs function returns the absolute value.

Implementation Notes

The labs function is both built-in and supplied as a library function.
Usually the built-in function is used, and in this case the 1750
instruction DABS will be generated. If the address of the abs
function is taken, then the address is the address of the library
function.

78

Chapter 10. General Utilities <stdlib.h>

In the special case where j is LONG_MIN, fixed point overflow will
occur. If the corresponding interrupt is enabled the signal
SIGFIXED_OVERFLOW will be raised.
The standard behavior may be modified in the run-time system file
crt0.s.

The ldiv function

ldiv

Synopsis

#include <stdlib.h>

ldiv_t ldiv (numer, denom);

long numer;
long denom;

Description

The ldiv function computes the quotient and remainder of the
division of the numerator numer by the denominator denom. If the
division is inexact, the resulting quotient is the integer of lesser
magnitude that is nearest to the algebraic quotient. If the result
cannot be represented, the behavior is undefined: otherwise quot
* denom + rem shall equal numer.

Returns

The ldiv function returns a structure of type ldiv_t comprising
both the quotient and the remainder. The structure shall contain
the following members, in either order:

long int quot; /* quotient */
long int rem; /* remainder */

Implementation Notes

If denom is zero, or if numer is LONG_MIN and denom is -1, then fixed
point overflow is detected. If the corresponding interrupt is enabled,
then SIGFIXED_OVERFLOW is raised.

79

10.7. Multi-byte Character Functions

The mblen function

mblen

Synopsis

#include <stdlib.h>

int mblen (s, n);

const char *s;
size_t n;

Description

If s is not a null pointer, the mblen function determines the number
of bytes contained in the multi-byte character pointed to by s.
Except that the shift state of the mbtowc function is not affected, it
is equivalent to

mbtowc((wchar_t *)0, s, n);

The implementation shall behave as if no library function calls the
mblen function.

Returns

If s is a null pointer, the mblen function returns a non-zero or zero
value, if multi-byte encodings, respectively, do or do not have
state-dependent encodings. If s is not a null pointer, the mblen
function either returns 0 (if s points to the null character) or returns
the number of bytes that are contained in the multi-byte character
(if the next n or fewer bytes form a multi-byte character), or returns
-1 (if they do not form a valid multi-byte character).

See Also

The mbtowc function [81]

80

Chapter 10. General Utilities <stdlib.h>

Implementation Notes

In GCC-1750 all characters occupy one byte (which is 16 bits) and
state-dependent encodings are not supported.
If s is a null pointer or if s points to the null character then mblen
will return zero. Otherwise if s points to a valid multi-byte character
(n >= 1), then mblen will return 1. Otherwise mblen will return -1.

The mbtowc function

mbtowc

Synopsis

#include <stdlib.h>

int mbtowc (pwc, s, n);

wchar_t *pwc;
const char *s;
size_t n;

Description

If s is not a null pointer, the mbtowc function determines the number
of bytes in the multi-byte character pointer to by s. It then
determines the code for the value of type wchar_t that corresponds
to the multi-byte character. I the multi-byte character is valid and
pwc is not a null pointer then mbtowc stores the code in the object
pointer to by pwc. At most n bytes of the array pointed to by s will
be examined.

The implementation shall behave as if no library function calls th
mbtowc function.

Returns

If s is a null pointer, mbtowc returns a non-zero or zero value, if
multi-byte character encodings respectively do or do no have state
dependent encodings. If s is not a null pointer the mbtowc function
either returns zero (if s points to the null character), or returns the
number of bytes that are contained in the converted multi-byte
character (if the next n or fewer bytes for a valid multi-byte
character), or returns -1 (if they do not form a valid multi-byte
character).

81

In no case will the value returned be greater than n or the value of
the MB_CUR_MAX macro.

See Also

The wctomb function [82]

Implementation Notes

None

The wctomb function

wctomb

Synopsis

#include <stdlib.h>

int wctomb (s, wchar);

char *s;
wchar_t wchar;

Description

The wctomb function determines the number of bytes needed to
represent the multi-byte character corresponding to the code whose
value is wchar (including any change in shift state). It store the
multi-byte character representation in the array pointed to by s (if
s is not a null pointer). At most MB_CUR_MAX characters are
stored. If the value of wchar is zero, th wctomb function is left in
the initial shift state.

The implementation shall behave as if no library function calls th
wctomb function.

Returns

If s is a null pointer, wctomb returns a non-zero or zero value, if
multi-byte character encodings respectively do or do no have state
dependent encodings. If s is not a null pointer the wctomb function
either returns zero (if s points to the null character), or returns the
number of bytes that are contained in the converted multi-byte
character (if the next n or fewer bytes for a valid multi-byte

82

Chapter 10. General Utilities <stdlib.h>

character), or returns -1 (if the do not form a valid multi-byte
character).

In no case will the value returned be greater than n or the value of
the MB_CUR_MAX macro.

See Also

The mbtowc function [81]

Implementation Notes

None

10.8. Multi-byte String Functions

The mbstowcs function

mbstowcs

Synopsis

#include <stdlib.h>

size_t mbstowcs (pwcs, s, n);

wchar_t *pwcs;
const char *s;
size_t n;

Description

The mbstowcs function converts a sequence of multi-byte characters
that begin the initial shift state from the array pointed to by s into
a sequence of corresponding codes and stores not more than n codes
into the array pointed to by pwcs. No multi-byte characters that
follow a null character (which is converted into a code with value
zero) will be examined or converted. Each multi-byte character is
converted as if by a call to the mbtowc function, except the shift
state of the mbtowc function is not affected.

No more n elements will be modified in the array pointed to by
pwcs. If copying takes place between objects that overlap, the
behavior is undefined.

83

Returns

If an invalid multi-byte character is encountered, the mbstowcs
function returns (size_t) -1. Otherwise the mbstowcs function
returns the number of array elements modified, not including a
terminating zero code, if any.

See Also

The mbtowc function [81].

Implementation Notes

The mbstowcs function behaves like strncpy.

The wcstombs function

wcstombs

Synopsis

#include <stdlib.h>

size_t wcstombs (s, pwcs, n);

char *s;
const wchar_t *pwcs;
size_t n;

Description

The wcstombs function converts a sequence of codes that
correspond to multi-byte characters from the array pointed to by
pwcs into a sequence of multi-byte characters that begins in the
initial shift state and stores these multi-byte characters into the
array pointed to by s, stopping if a multi-byte character would
exceed the limit of n total bytes or if a null character is stored. Each
code is converted as if by a call to the wctomb function, except the
shift state of the wctomb function is not affected.

No more n bytes will be modified in the array pointed to by s. If
copying takes place between objects that overlap, the behavior is
undefined.

84

Chapter 10. General Utilities <stdlib.h>

Returns

If a code is encountered that does not correspond to a valid
multi-byte character, the wcstombs function returns (size_t) -1.
Otherwise the wcstombs function returns the number of bytes
modified, not including a terminating null character, if any.

See Also

The mbstowcs function [83]

Implementation Notes

The wcstombs function behaves like strncpy.

85

86

String Handling
<string.h>

Chapter 11

11.1. String Function Conventions

The header <string.h> declares one type and several functions,
and defines one macro useful for manipulating arrays of character
type and other objects treated as arrays of character type. The type
is size_t and the macro is NULL (both described in ANSI C 7.1.6).
Various methods are used for determining the lengths of the arrays,
but in all cases a char * or void * argument points to the initial
(lowest addressed) character of the array. If an array is accessed
beyond the end of an object, the behavior is undefined.

11.2. Copying Functions

The memcpy function

memcpy

Synopsis

#include <string.h>

87

void *memcpy (s1, s2, n);

void *s1;
void *s2;
size_t n;

Description

The memcpy function copies n characters from the object pointed
to by s2 into the object pointed to by s1. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

The memcpy function returns the value of s1.

See Also

The memmove function [88]

Implementation Notes

The memcpy function is implemented in line using the MOV
instruction.

The memmove function

memmove

Synopsis

#include <string.h>

void *memmove (s1, s2, n);

void *s1;
void *s2;
size_t n;

Description

The memmove function copies n characters from the object pointed
to by s2 into the object pointed to by s1. Copying takes place as if
the n characters from the object pointed to by s2 are first copied
into a temporary array of n characters that does not overlap the

88

Chapter 11. String Handling <string.h>

objects pointed to by s1 and s2, and then the n characters from the
temporary array are copied into the object pointed to by s1.

Returns

The memmove function returns the value of s1.

See Also

The memcpy function [87]

Implementation Notes

None

The strcpy function

strcpy

Synopsis

#include <string.h>

void *strcpy (s1, s2);

char *s1;
char *s2;

Description

The strcpy function copies the string pointed to by s2 (including
the terminating null character) into the array pointed to by s1. If
copying takes place between objects that overlap then the behavior
is undefined.

Returns

The strcpy function returns the value of s1.

Implementation Notes

None

89

The strncpy function

strncpy

Synopsis

#include <string.h>

void *strncpy (s1, s2, n);

char *s1;
char *s2;
size_t n;

Description

The strncpy function copies not more than n characters (characters
that follow a null character are not copied) from the array pointed
to by s2 to the array pointed to by s1. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

The strncpy function returns the value of s1.

Implementation Notes

None

11.3. Concatenation Functions

The strcat function

strcat

Synopsis

#include <string.h>

void *strcat (s1, s2);

void *s1;
const char *s2;

90

Chapter 11. String Handling <string.h>

Description

The strcat function appends a copy of the string pointed to by s2
(including the terminating null character) to the end of the string
pointed to by s1. The initial character of s2 overwrites the null
character at the end of s1. If copying takes place between objects
that overlap, the behavior is undefined.

Returns

The strcat function returns the value of s1.

Implementation Notes

None

The strncat function

strncat

Synopsis

#include <string.h>

void *strncat (s2, s2, n);

void *s2;
const char *s2;
size_t n;

Description

The strncat function appends not more than n characters (a null
character and characters that follow it are not appended) from the
array pointed to by s2 to the end of the string pointed to by s1. The
initial character of s2 overwrites the null character at the end of
s1. A terminating null character is always appended to the result.
If copying takes place between objects that overlap, the behavior
is undefined.

Returns

The strncat function returns the value of s1.

91

Implementation Notes

None

11.4. Comparison Functions

The memcmp function

memcmp

Synopsis

#include <string.h>

void *memcmp (s1, s2, n);

void *s1;
void *s2;
size_t n;

Description

The memcmp function compares the first n characters of the object
pointed to by s1 to the first n characters of the object pointed to by
s2.

Returns

The memcmp function returns an integer greater than, equal to, or
less than zero, accordingly as the object pointed to by s1 is greater
than, equal to, or less than the object pointed to by s2.

See Also

The strcmp function [93]
The strncmp function [93]

Implementation Notes

None

92

Chapter 11. String Handling <string.h>

The strcmp function

strcmp

Synopsis

#include <string.h>

void *strcmp (s1, s2);

char *s1;
char *s2;

Description

The strcmp function compares the string pointed to by s1 to the
string pointed to by s2.

Returns

The strcmp function returns an integer greater than, equal to, or
less than zero, accordingly as the string pointed to by s1 is greater
than, equal to, or less than the string pointed to by s2.

See Also

The strncmp function [93]
The memcmp function [92]

The strncmp function

strncmp

Synopsis

#include <string.h>

void *strncmp (s1, s2, n);

char *s1;
char *s2;
size_t n;

93

Description

The strncmp function compares not more than n characters
(characters that follow a null character are not compared) from the
array pointed to by s1 to the array pointed to by s2.

Returns

The strncmp function returns an integer greater than, equal to, or
less than zero, accordingly as the possibly null-terminated array
pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

See Also

The strcmp function [93]

Implementation Notes

None

The strcoll function

strcoll

Synopsis

#include <string.h>

void *strcoll (s1, s2);

char *s1;
char *s2;

Description

The strcoll function compares the string pointed to by s1 to the
string pointed to by s2, both interpreted as appropriate to the
LC_COLLATE category of the current locale.

Returns

The strcoll function returns an integer greater than, equal to, or
less than zero, accordingly as the string pointed to by s1 is greater

94

Chapter 11. String Handling <string.h>

than, equal to, or less than the string pointed to by s2, when they
are both interpreted as appropriate to the current locale.

See Also

The strcmp function [93]

Implementation Notes

The XGC library supports the "C" locale only.

The strxfrm function

strxfrm

Synopsis

#include <string.h>

size_t strxfrm (s1, s2, n);

char *s1;
char *s2;
size_t n;

Description

The strxfrm function transforms the string pointed to by s2 and
places the resulting string into the array pointed to by s1. The
transformation is such that if the strcmpfunction is applied to two
transformed strings, it returns a value greater than, equal to, or less
than zero, corresponding to the result of the strcoll function applied
to the same two original strings. No more than n characters are
placed into the resulting array pointed to by s1, including the
terminating null character. If n is zero, s1 is permitted to be a null
pointer. If copying takes place between objects that overlap, the
behavior is undefined.

Returns

The strxfrm function returns the length of the transformed string
(not including the terminating null character). If the value returned
is n or more, then the contents of the array pointed to be s1 are
indeterminate.

95

Implementation Notes

In the XGC library, the strxfrm function copies the characters with
no transformation.

11.5. Search Functions

The memchr function

memchr

Synopsis

#include <string.h>

void *memchr (s, c, n);

const void *s;
int c;
size_t n;

Description

The memchr function locates the first occurrence of c (converted
to an unsigned char) in the initial n characters (each interpreted
as an unsigned char) of the object pointed to by s.

Returns

The memchr function returns a pointer to the located character, or
a null pointer if the character does not occur in the object.

Implementation Notes

None

The strchr function

strchr

Synopsis

#include <string.h>

96

Chapter 11. String Handling <string.h>

char *strchr (s, c);

char *s;
int c;

Description

The strchr function locates the first occurrence of c (converted to
a char) in the string pointed to by s. The terminating null character
is considered to be part of the string.

Returns

The strchr function returns a pointer to the located character, or a
null pointer if the character does not occur in the string.

Implementation Notes

None

The strcspn function

strcspn

Synopsis

#include <string.h>

size_t strcspn (s1, s2);

char *s1;
char *s2;

Description

The strcspn function computes the length of the maximum initial
segment of the string pointed to by s1 which consists entirely of
characters not from the string pointed to by s2.

Returns

The strcspn function returns the length of the segment.

See Also

The strspn function [99]

97

Implementation Notes

None

The strpbrk function

strpbrk

Synopsis

#include <string.h>

size_t strpbrk (s1, s2);

char *s1;
char *s2;

Description

The strpbrk function locates the first occurrence in the string
pointed to by s1 of any character from the string pointed to by s2.

Returns

The strpbrk function returns a pointer to the character, or a null
pointer if no character from s2 occurs in s1.

Implementation Notes

None

The strrchr function

strrchr

Synopsis

#include <string.h>

char *strrchr (s, c);

char *s;
int c;

98

Chapter 11. String Handling <string.h>

Description

The strrchr function locates the last occurrence of c (converted to
char) in the string pointed to by s. The terminating null character
is considered to be part of the string.

Returns

The strrchr function returns a pointer to the located character, or
a null pointer if the character does not occur in the string.

Implementation Notes

None

The strspn function

strspn

Synopsis

#include <string.h>

size_t strspn (s1, s2);

const char *s1;
const char *s2;

Description

The strspn function computes the length of the maximum initial
segment of the string pointed to by s1 which consists entirely of
characters from the string pointed to by s2.

Returns

The strspn function returns the length of the segment.

See Also

The strcspn function [97]

Implementation Notes

None

99

The strstr function

strstr

Synopsis

#include <string.h>

char *strstr (s1, s2);

char *s1;
const char *s2;

Description

The strstr function locates the first occurrence in the string pointed
to by s1 of the sequence of characters (excluding the terminating
null character) in the string pointed to by s2.

Returns

The strstr function returns a pointer to the located string, or a null
pointer if the string is not found. If s2 points to a string with zero
length, the function returns s1.

Implementation Notes

None

The strtok function

strtok

Synopsis

#include <string.h>

char *strtok (s1, s2);

char *s1;
const char *s2;

100

Chapter 11. String Handling <string.h>

Description

A sequence of calls to the strtok function breaks the string pointed
to by s1 into a sequence of tokens, each of which is delimited by
a character from the string pointed to by s2. The first call in the
sequence has s1 as its first argument, and is followed by calls with
a null pointer as their first argument. The separator string pointed
to by s2 may be different from call to call.

Returns

The strtok function returns a pointer to the first character of a token,
or a null pointer if there is no token.

Implementation Notes

None

11.6. Miscellaneous Functions

The memset function

memset

Synopsis

#include <string.h>

void *memset (s, c, n);

void *s;
int c;
size_t n;

Description

The memset function copies the value of c (converted to an unsigned
char) into each of the first n characters of the object pointed to by
s.

Returns

The memset function returns the value of s.

101

Implementation Notes

None

The strerror function

strerror

Synopsis

#include <string.h>

char *strerror (errnum);

int errnum;

Description

The strerror function maps the error number in errnum to an error
message string.

The implementation shall behave as if no library function calls the
strerror function.

Returns

The strerror function returns a pointer to the string, the contents
of which are implementation defined.

Implementation Notes

None

The strlen function

strlen

Synopsis

#include <string.h>

size_t strlen (s);

char *s;

102

Chapter 11. String Handling <string.h>

Description

The strlen function computes the length of the string pointed to by
s.

Returns

The strlen function returns the number of characters that precede
the terminating null character.

103

104

Date and Time <time.h>Chapter 12

The header <time.h> defines two macros, declares four types and
several functions for manipulating time. Many functions deal with
a calendar time that represents the current date (according to the
Gregorian calendar) and time. Some functions deal with local time,
which is the calendar time expressed for some specific time zone,
and with Daylight Saving Time, which is a temporary change to
the algorithm for determining local time. The local time zone and
Daylight Saving Time are implementation-defined.

The macros defined are NULL (described in ANSI C 7.1.6); and
CLOCKS_PER_SEC which is the number per second of the value
returned by the clock function.

The types declared are size_t (described in ANSI C 7.1.6), clock_t
and time_t, which are arithmetic types capable of representing
times, and struct tm which holds components of a calendar time,
called the broken-down time.

The structure struct tm is defined as follows:

struct tm
 {

105

 int tm_sec; /* seconds after the minute [0,61] */
 int tm_min; /* minutes after the hour [0,59] */
 int tm_hour; /* hour of the day [0,23] */
 int tm_mday; /* day of the month [1,31] */
 int tm_mon; /* month of the year [0,11] */
 int tm_year; /* years since 1900 */
 int tm_wday; /* days since Sunday [0,6] */
 int tm_yday; /* day of the year [0,365] */
 int tm_isdst; /* Daylight Saving Time flag */
 };

The member tm_isdst is:

positive if Daylight Saving Time is in effect
zero if Daylight Saving Time is not in effect
negative if the information is not available

12.1. Time Manipulation Functions

The clock function

clock

Synopsis

#include <time.h>

clock_t clock (void);

void;

Description

The clock function determines the processor time used.

Returns

The clock function returns the implementation's best approximation
to the processor time used by the program since the beginning of
an implementation-defined era related only to the program
invocation. To determine the time in seconds, the value returned
by the clock function should be divided by the value of the macro
CLOCKS_PER_SEC. If the processor time used is not available or its

106

Chapter 12. Date and Time <time.h>

value cannot be represented, then the function returns the value
(clock_t)-1.

Implementation Notes

The value of CLOCKS_PER_SEC is 100 by default.
The value of the function clock is zero immediately after the
run-time system is started or restarted.
The processor time to wall time ratio is 1:1 while the processor is
running.

The difftime function

difftime

Synopsis

#include <time.h>

double difftime (time1, time0);

time_t time1;
time_t time0;

Description

The difftime function computes the difference between two calendar
times: time1 - time0.

Returns

The difftime function returns the difference expressed in seconds
as a double.

The mktime function

mktime

Synopsis

#include <time.h>

time_t mktime (timeptr);

struct tm *timeptr;

107

Description

The mktime function converts the broken-down time, expressed as
local time, in the structure pointed to by timeptr into a calendar
time with the same encoding as that of the values returned by the
time function. The original values of the tm_wday and tm_yday
components of the structure are ignored, and the original values of
other components are not restricted to the ranges indicated above.
On successful completion, the values of the tm_wday and tm_yday
components of the structure are set appropriately, and the other
components are set to represent the specified calendar time, but
with their values forced to the ranges indicated above; the final
value of tm_day is not set until tm_mon and tm_year are determined.

Returns

The mktime function returns the specified calendar time encoded
as a value of the type time_t. If the calendar time cannot be
represented, the function returns the value (time_t)-1.

The time function

time

Synopsis

#include <time.h>

time_t time (timer);

time_t *timer;

Description

The time function determines the current calendar time. The
encoding of the value is unspecified.

Returns

The time function returns the implementation's best approximation
to the current calendar time. The value (time_t)-1 is returned if
the calendar time is not available. If timer is not a null pointer,
then the return value is also assigned to the object it points to.

108

Chapter 12. Date and Time <time.h>

Implementation Notes

The current calendar time is held in the run-time system with a
resolution of 1 second and a range of 2**32 seconds, or 136 years.
Calendar time is reset to zero each time the run-time system is
restarted, where time zero is 00:00:00 on Thursday January 1, 1970.

12.2. Time Conversion Functions

The asctime function

asctime

Synopsis

#include <time.h>

char *asctime (timeptr);

const struct tm *timeptr;

Description

The asctime function converts the broken-down time in the structure
pointed to by timeptr into a string in the form:

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

char *asctime(const struct tm *timeptr)
{
 static const char wday_name[7][3] = {
 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
 };
 static const char mon_name[12][3] = {
 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
 };
 static char result [26];
 sprintf(result, "%.3s %.3s %.2d %.2d:%.2d:%.2d %d\n",
 wday_name[timeptr->tm_wday],
 mon_name[timeptr->tm_mon],

109

 timeptr->tm_mday, timeptr->tm_hour,
 timeptr->tm_min, timeptr->tm_sec,
 1900 + timeptr->tm_year);
 return result;
}

Returns

The asctime function returns a pointer to the string.

The ctime function

ctime

Synopsis

#include <time.h>

struct tm *ctime (timer);

const time *timer;

Description

The ctime function converts the calendar time pointed to by timer
into a broken-down time expressed as local time.

Returns

The ctime function returns the pointer returned by the asctime
function with that broken-down time as argument.

See Also

The localtime function [111]

The gmtime function

gmtime

Synopsis

#include <time.h>

110

Chapter 12. Date and Time <time.h>

struct tm *gmtime (timer);

const time *timer;

Description

The gmtime function converts the calendar time pointed to by timer
into a broken-down time expressed as Coordinated Universal Time
(UTC).

Returns

The gmtime function returns a pointer to that object, or a null
pointer if UTC is not available.

The localtime function

localtime

Synopsis

#include <time.h>

struct tm *localtime (timer);

const time *timer;

Description

The localtime function converts the calendar time pointed to by
timer into a broken-down time expressed as local time.

Returns

The localtime function returns a pointer to that object.

The strftime function

strftime

Synopsis

#include <time.h>

111

size_t strftime (s, maxsize, format,
timeptr);

char *s;
size_t maxsize;
const char *format;
const struct tm *timeptr;

Description

The strftime function places characters into the array pointed to by
s as controlled by the string pointed to by format. The format shall
be a multi-byte character sequence, beginning and ending in its
initial shift state. The format string consists of zero or more
conversion specifiers and ordinary multi-byte characters. A
conversion specifier consists of a % character followed by a
character that determines the behavior of the conversion specifier.
All ordinary multi-byte characters (including the terminating null
character) are copied unchanged into the array. If copying takes
place between objects that overlap, the behavior is undefined. No
more than maxsize characters are placed into the array. Each
conversion specifier is replaced by appropriate characters as
described in the following list. The appropriate characters are
determined by the LC_TYPE category of the current locale and by
the values contained in the structure pointed to by timeptr.

is replaced by the locale's abbreviated weekday name
(Sun)

%a

is replaced by the locale's full weekday name (Sunday)%A

is replaced by the locale's abbreviated month name (Dec)%b

is replaced by the locale's full month name (December)%B

is replaced by the locale's date and time (Dec 2 06:55:15
1979)

%c

is replaced by the day of the month (02)%d

is replaced by the hour of the 24-hour day (06)%H

is replaced by the hour of the 12-hour day (06)%I

is replaced by the day of the year, from 001 (335)%j

is replaced by the month of the year, from 01 (12)%m

is replaced by the minutes after the hour (55)%M

is replaced by the locale's AM/PM indicator (AM)%p

112

Chapter 12. Date and Time <time.h>

is replaced by the seconds after the minute (15)%S

is replaced by the Sunday week of the year, from 00 (48)%U

is replaced by the day of the week, from 0 for Sunday
(6)

%w

is replaced by the Monday week of the year, from 00
(47)

%W

is replaced by the locale's date (Dec 2 1979)%x

is replaced by the locale's time (06:55:15)%X

is replaced by the year of the century, from 00 (79)%y

is replaced by the year (1979)%Y

is replaced by the time zone name, if any (EST)%Z

is replaced by the percent character %%%

If a conversion specifier is not one of the above, the behavior is
undefined.

Returns

If the total number of resulting characters including the terminating
null character is not more than maxsize, the strftime function
returns the number of characters placed into the array pointed to
by s not including the terminating null character. Otherwise, zero
is returned and the contents of the array are indeterminate.

113

114

Test Output <report.h>Chapter 13

The header <report.h> defines several functions that are useful in
test programs. These are based on similar functions in the Ada
Validation suite (the ACVC Tests) in the package Report.

Briefly, a test program begins by calling the function test. The
first parameter gives the name of the test, the second parameter
gives a brief description of the test. A test ends with a call to result.
This will print the result of the the test in a standard (and machine
readable) format, and will typically report PASSED or FAILED.

Between the calls of test and result, are the tests. Any test that
fails should call failed with a parameter giving the reason for the
failure. Comments may be output using the function comment. Both
failed and comment take a format string parameter optionally
followed by a number of values to print, and are compatible with
printf.

115

Example 13.1. Test Program

#include <report.h>
int
main ()
{
 int ans = 1 + 2;
 test ("t1", "Example test program");
 if (ans != 3)
 failed ("error in arithmetic, got %d, expected 3", ans);
 result ();
}

If the test passes, then the output will be as follows:

Example 13.2. Output from Test Program

,.,. t1 GTS Version 0.1
---- t1 Example test program.
==== t1 PASSED ============================.

If the test fails (by changing “1 + 2” to “2 + 2” for example), then
we get the following output:

Example 13.3. Output from Failed Test Program

,.,. t1 XTS Version 0.2
---- t1 Example test program.
 * t1 error in arithmetic, got 4, expected 3.
**** t1 FAILED ****************************.

13.1. Test Support Functions

The test function

test

Synopsis

#include <report.h>

116

Chapter 13. Test Output <report.h>

void test (name, description);

const char *name;
const char *description;

Description

The test function is called to initialize the test. The arguments name
and description are copied into static memory, and used in the
reports written by the other functions.

The comment function

comment

Synopsis

#include <report.h>

void comment (s,);

const char *s;
... ;

Description

The comment function is use to write comments to the test output
log. Comments have a distinctive prefix.

The failed function

failed

Synopsis

#include <report.h>

void failed (reason,);

const char *reason;
... ;

117

Description

The failed function is called to indicate that a test has failed, and
gives the reason for the failure.

The result function

result

Synopsis

#include <report.h>

void result ();

;

Description

The result function is called at the end of a test program to print
the test result.

118

Chapter 13. Test Output <report.h>

POSIX ThreadsChapter 14

The XGC library supports a subset of POSIX Threads as defined
in IEEE 1003.1c-1995. It provides the majority of the POSIX
functions for threads, mutexes, and condition variables, as well as
pthread_once, thread-specific data, and cleanup handlers. There is
an additional function to make a thread wait for an interrupt.

The relevant Pthread attribute functions are provided, but there are
no useful Mutex attributes or Condition Variable attributes and
hence no associated functions; the attr parameter to
pthread_mutex_init or to pthread_cond_init must be null.

There is currently no pthread_key_delete function, nor is the
asynchronous pthread_cancel or the associated functions provided.

Programs using Pthreads must call pthread_init before calling
any other Pthread function. Termination of the main program will
cause the termination of all threads, unless exit is made via
pthread_exit. (But there is no need for other threads to finish with
pthread_exit).

Scheduling is always FIFO within priority.

The POSIX functions sleep, nanosleep, and clock_gettime are
provided, with a resolution of 0.01 seconds. The timeout parameter

119

of pthread_cond_timedwait requires an absolute time that is based
on clock_gettime.

The implementation of signals is the ANSI C one, with just signal
and raise, not the POSIX one with thread-specific masks.
Synchronous interrupts, such as overflow, are mapped onto the
appropriate ANSI C signal, and raised in the context of the current
thread, which is the one that contains the fault.

Asynchronous interrupts can be handled by user supplied interrupt
functions, connected by the handler function, and will run outside
the context of any thread. User's handlers must save and restore
the global errno if there is any risk of them altering it.

Alternatively, a thread can wait for one or more interrupts by using
the intwait function, which takes a mask saying which interrupts
it is waiting for, and returns a code saying which one was received.
At most one thread can wait for each interrupt at any one time.

14.1. Initialization Functions

The pthread_init function

pthread_init

Synopsis

#include <pthread.h>

void pthread_init (void);

void;

Description

The pthread_init function must be called before any other function
in the POSIX Threads library.

Implementation Notes

None

120

Chapter 14. POSIX Threads

14.2. Create and Destroy Functions

The pthread_create function

pthread_create

Synopsis

#include <pthread.h>

int pthread_create (thread, attr, , arg);

pthread_t *thread;
const pthread_attr_t *attr;
void * (*start_routine)(void *) ;
void *arg;

Description

The pthread_create function creates a thread with the attributes
specified in attr. If attr is NULL then the default attributes are used.
The new thread starts execution in start_routine, which is passed
the single specified argument.

Returns

If the pthread_create function succeeds it returns 0 and puts the
new thread id into thread, otherwise it returns -1 and sets an error
number as follows:

EAGAIN if there is insufficient memory to create another thread
ENOMEM if there is insufficient memory for the thread's stack
EINVAL if a value specified by attr is invalid

Implementation Notes

The function pthread_create calls calloc to allocate memory for
the thread's data, and calls malloc to allocates the thread's stack.

See Also

The pthread_exit function [123]
The pthread_join function [123]

121

Create and Destroy Functions

The pthread_detach function

pthread_detach

Synopsis

#include <pthread.h>

int pthread_detach (thread_ptr);

pthread_t *thread_ptr;

Description

The pthread_detach function marks the threads's internal data
structure for deletion.

Returns

The pthread_detach function returns zero if the call is successful,
otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_equal function

pthread_equal

Synopsis

#include <pthread.h>

int pthread_equal (t1, t2);

pthread_t t1;
pthread_t t2;

Description

The pthread_equal function compares the two threads t1 and t2.

122

Chapter 14. POSIX Threads

Returns

The pthread_equal function returns one if the two threads are the
same thread, and zero otherwise.

Implementation Notes

None

The pthread_exit function

pthread_exit

Synopsis

#include <pthread.h>

void pthread_exit (status);

any_t status;

Description

The pthread_exit function terminates the calling thread returning
the value given by status to any thread that has called pthread_join
for the calling thread.

Returns

The pthread_exit function returns no value.

Implementation Notes

None

The pthread_join function

pthread_join

Synopsis

#include <pthread.h>

int pthread_join (thread, status);

123

pthread_t thread;
any_t *status;

Description

The pthread_join function causes the calling thread to wait for the
given thread's termination. If the parameter status is not null then
it receives the return value of the terminating thread.

Returns

The pthread_join function returns zero if the call is successful,
otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

14.3. Scheduling Functions

The pthread_getschedparam function

pthread_getschedparam

Synopsis

#include <pthread.h>

int pthread_getschedparam (thread, policy,
param);

pthread_t thread;
int *policy;
struct sched_param *param;

Description

The pthread_setschedparam and pthread_getschedparam functions
allow the scheduling policy and scheduling priority parameters to
be set and retrieved for individual threads.

The pthread_getschedparam function retrieves the scheduling policy
and scheduling priority parameters for the thread ID given by

124

Chapter 14. POSIX Threads

thread, and then stores the values in the policy and sched_priority
member of param, respectively.

Returns

The pthread_getschedparam function returns -1 and sets errno if
there is an error.

Implementation Notes

The value for policy must be SCHED_FIFO.

See Also

The pthread_setschedparam function [125]

The pthread_setschedparam function

pthread_setschedparam

Synopsis

#include <pthread.h>

int pthread_setschedparam (thread, policy,
param);

pthread_t thread;
int policy;
struct sched_param *param;

Description

The pthread_setschedparam and pthread_getschedparam functions
allow the scheduling policy and scheduling priority parameters to
be set and retrieved for individual threads.

The pthread_setschedparam function sets the scheduling policy
and related scheduling priority for the thread ID given by thread
to the policy and associated priority provided in policy, and the
sched_priority member of param, respectively.

Returns

The pthread_setschedparam function returns 1 and sets errno in
th event of an error.

125

Implementation Notes

The value for policy must be SCHED_FIFO.

See Also

The pthread_getschedparam function [124]

The sched_get_priority_max function

sched_get_priority_max

Synopsis

#include <pthread.h>

int sched_get_priority_max (policy);

int policy;

Description

The sched_get_priority_max function returns the first value in the
range of priorities for the given policy.

Returns

The sched_get_priority_max function returns the priority.

Implementation Notes

The range of priority is 0 .. 100. The lowest priority is 0. The
highest priority is 100.
The value for policy must be SCHED_FIFO.

The sched_get_priority_min function

sched_get_priority_min

Synopsis

#include <pthread.h>

int sched_get_priority_min (policy);

126

Chapter 14. POSIX Threads

int policy;

Description

The sched_get_priority_min function returns the first value in the
range of priorities for the given policy.

Returns

The sched_get_priority_min function returns the priority.

Implementation Notes

The range of priority is 0 .. 100. The lowest priority is 0. The
highest priority is 100.
The value for policy must be SCHED_FIFO.

The sched_yield function

sched_yield

Synopsis

#include <pthread.h>

int sched_yield ();

;

Description

The sched_yield function yields the processor to another thread.

Returns

The sched_yield function returns 0.

Implementation Notes

None

127

14.4. Timing Functions

The sleep function

sleep

Synopsis

#include <pthread.h>

int sleep (seconds);

unsigned int seconds;

Description

The sleep function delays the execution of the calling thread by
at least the given number of seconds.

Returns

The sleep function returns zero if successful, or -1 in the event of
an error.

Implementation Notes

On 16-bit targets the maximum sleep time is 32767 seconds, or
approximately 9 hours.
32-bit targets use a 31-bit signed value for sleep time.

See Also

The nanosleep function [129]

The clock_gettime function

clock_gettime

Synopsis

#include <pthread.h>

int clock_gettime (clock_id, tp);

128

Chapter 14. POSIX Threads

int clock_id;
struct timespec *tp;

Description

The clock_gettime function gets the time from the given clock.

Returns

The clock_gettime function returns zero if successful and -1
otherwise.

Implementation Notes

The value of clock_id must be CLOCK_REALTIME.

The nanosleep function

nanosleep

Synopsis

#include <pthread.h>

int nanosleep (rqtp, rmtp);

const struct timespec *rqtp;
struct timespec *rmtp;

Description

The nanosleep function delays the execution of the calling thread
until either the time interval given by rtqp has elapsed or a signal
is handled by the thread.

Returns

The nanosleep function returns zero to indicate the given time
interval has elapsed. Otherwise it returns -1 to indicate that the
delay has been interrupted, and sets rmtp to the time interval
remaining.

Implementation Notes

The resolution of nanosleep is determined by the interrupt period
of the real time clock. This is set to 10 mSec in the file crt0.

129

The maximum time interval is 2147483647.999 seconds, or
approximately 68 years.

See Also

The sleep function [128]

14.5. Pthread Attribute Functions

The pthread_attr_destroy function

pthread_attr_destroy

Synopsis

#include <pthread.h>

int pthread_attr_destroy (attr);

pthread_attr_t *attr;

Description

The pthread_attr_destroy function destroys the given thread
attribute object.

Returns

The pthread_attr_destroy function returns 0.

Implementation Notes

None

The pthread_attr_getdetachstate function

pthread_attr_getdetachstate

Synopsis

#include <pthread.h>

int pthread_attr_getdetachstate (attr,
detachstate);

130

Chapter 14. POSIX Threads

pthread_attr_t *attr;
int *detachstate;

Description

The pthread_attr_getdetachstate function gets the value of the
detachstate attribute from attr object.

Returns

The pthread_attr_getdetachstate function returns zero if
successful and -1 otherwise.

Implementation Notes

None

The pthread_attr_getinheritsched function

pthread_attr_getinheritsched

Synopsis

#include <pthread.h>

int pthread_attr_getinheritsched (attr,
inherit);

pthread_attr_t *attr;
int *inherit;

Description

The pthread_attr_getinheritsched function gets the value of the
inheritsched attribute.

Returns

The pthread_attr_getinheritsched function returns zero if
successful and -1 otherwise.

Implementation Notes

None

131

The pthread_attr_getschedparam function

pthread_attr_getschedparam

Synopsis

#include <pthread.h>

int pthread_attr_getschedparam (attr, param);

pthread_attr_t *attr;
struct sched_param *param;

Description

The pthread_attr_getschedparam function gets the value of the
scheduling parameter attribute.

Returns

The pthread_attr_getschedparam function returns zero if successful
and -1 otherwise.

Implementation Notes

The scheduling parameter attribute consists of the thread priority.

The pthread_attr_getschedpolicy function

pthread_attr_getschedpolicy

Synopsis

#include <pthread.h>

int pthread_attr_getschedpolicy (attr,
policy);

pthread_attr_t *attr;
int *policy;

Description

The pthread_attr_getschedpolicy function gets the policy for the
given attribute.

132

Chapter 14. POSIX Threads

Returns

The pthread_attr_getschedpolicy function returns zero if the
given attribute is valid and -1 otherwise.

Implementation Notes

None

The pthread_attr_init function

pthread_attr_init

Synopsis

#include <pthread.h>

int pthread_attr_init (attr);

pthread_attr_t *attr;

Description

The pthread_attr_init function initializes a thread attribute object
with default values.

Returns

The pthread_attr_init function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

The default priority is 0.
The default stack size is 8192 bytes on 32-bit targetrs, and 1024
words (2048 bytes) on 16-bit targets.

The pthread_attr_setdetachstate function

pthread_attr_setdetachstate

Synopsis

#include <pthread.h>

133

int pthread_attr_setdetachstate (attr,
detachstate);

pthread_attr_t *attr;
int detachstate;

Description

The pthread_attr_setdetachstate function sets the detachstate
attribute in referenced attr object.

Returns

The pthread_attr_setdetachstate function returns zero if the call
is successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_attr_setinheritsched function

pthread_attr_setinheritsched

Synopsis

#include <pthread.h>

int pthread_attr_setinheritsched (attr,
inherit);

pthread_attr_t *attr;
int inherit;

Description

The pthread_attr_setinheritsched function sets the inheritsched
attribute in the referenced attr object.

Returns

The pthread_attr_setinheritsched function returns zero if the
call is successful, otherwise it sets errno to EINVAL and returns -1.

134

Chapter 14. POSIX Threads

Implementation Notes

None

The pthread_attr_setschedparam function

pthread_attr_setschedparam

Synopsis

#include <pthread.h>

int pthread_attr_setschedparam (attr, param);

pthread_attr_t *attr;
struct sched_param *param;

Description

The pthread_attr_setschedparam function sets the priority in the
referenced attr object.

Returns

The pthread_attr_setschedparam function returns zero if the call
is successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_attr_setschedpolicy function

pthread_attr_setschedpolicy

Synopsis

#include <pthread.h>

int pthread_attr_setschedpolicy (attr,
policy);

pthread_attr_t *attr;
int policy;

135

Description

The pthread_attr_setschedpolicy function sets the scheduling
policy.

Returns

The pthread_attr_setschedpolicy function returns zero if the call
is successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

The value for policy must be SCHED_FIFO.

The pthread_attr_setstacksize function

pthread_attr_setstacksize

Synopsis

#include <pthread.h>

int pthread_attr_setstacksize (attr,
stacksize);

pthread_attr_t *attr ;
size_t stacksize ;

Description

The pthread_attr_setstacksize function sets the stack size value
on the given attribute.

Returns

The pthread_attr_setstacksize function returns zero if the call
is successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

136

Chapter 14. POSIX Threads

14.6. Pthread Cond Functions

The pthread_cond_broadcast function

pthread_cond_broadcast

Synopsis

#include <pthread.h>

int pthread_cond_broadcast (cond);

pthread_cond_t *cond ;

Description

The pthread_cond_broadcast function unblocks all threads that
are waiting on the given condition variable.

Returns

The pthread_cond_broadcast function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_cond_destroy function

pthread_cond_destroy

Synopsis

#include <pthread.h>

int pthread_cond_destroy (cond);

pthread_cond_t *cond ;

137

Pthread Cond Functions

Description

The pthread_cond_destroy function destroys the given condition
variable. If the variable has one or more waiting threads then errno
is set to EBUSY.

Returns

The pthread_cond_destroy function returns zero if the call is
successful, otherwise it sets errno and returns -1.

Implementation Notes

None

The pthread_cond_init function

pthread_cond_init

Synopsis

#include <pthread.h>

int pthread_cond_init (cond, attr);

pthread_cond_t *cond ;
pthread_condattr_t *attr ;

Description

The pthread_cond_init function initializes the given condition
variable.

Returns

The pthread_cond_init function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

The value of attr must be null.

The pthread_cond_signal function

pthread_cond_signal

138

Chapter 14. POSIX Threads

Synopsis

#include <pthread.h>

int pthread_cond_signal (cond);

pthread_cond_t *cond ;

Description

The pthread_cond_signal function unblocks at least one thread
waiting on a condition variable. The scheduling priority determines
which thread is runs next.

Returns

The pthread_cond_signal function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_cond_timedwait function

pthread_cond_timedwait

Synopsis

#include <pthread.h>

int pthread_cond_timedwait (cond, mutex,
timeout);

pthread_cond_t *cond ;
pthread_mutex_t *mutex ;
struct timespec *timeout ;

Description

The pthread_cond_timedwait function unlocks the given mutex
and places the calling thread into blocked state. When the specified
condition variable is signaled or broadcast, or the system time is
greater than i or equal to timeout, this function re-locks the mutex
and returns to the caller.

139

Returns

The pthread_cond_timedwait function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_cond_wait function

pthread_cond_wait

Synopsis

#include <pthread.h>

int pthread_cond_wait (cond, mutex);

pthread_cond_t *cond ;
pthread_mutex_t *mutex ;

Description

The pthread_cond_wait function unlocks the given mutex and
places the calling thread into a blocked state. When the specified
condition variable is signaled or broadcast, this function re-locks
the mutex and returns to the caller.

Returns

The pthread_cond_wait function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

14.7. Pthread Mutex Functions

The pthread_mutex_init function

pthread_mutex_init

140

Chapter 14. POSIX Threads

Synopsis

#include <pthread.h>

int pthread_mutex_init (mutex, attr);

pthread_mutex_t *mutex ;
pthread_mutexattr_t *attr;

Description

The pthread_mutex_init function initializes the given mutex with
the given attributes. If attr is null, then the default attributes are
used.

Returns

The pthread_mutex_init function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

The argument attr must be null. The default attributes are always
used.

The pthread_mutex_destroy function

pthread_mutex_destroy

Synopsis

#include <pthread.h>

int pthread_mutex_destroy (mutex);

pthread_mutex_t *mutex;

Description

The pthread_mutex_destroy function destroys the given mutex. If
the mutex is already destroyed, then errno is set to EINVAL. If
the mutex is locked, then errno is set to EBUSY.

141

Returns

The pthread_mutex_destroy function returns zero if the call is
successful, otherwise it sets errno and returns -1.

Implementation Notes

None

The pthread_mutex_lock function

pthread_mutex_lock

Synopsis

#include <pthread.h>

int pthread_mutex_lock (mutex);

pthread_mutex_t *mutex;

Description

The pthread_mutex_lock function locks the given mutex. If the
mutex is already locked, then the calling thread blocks until the
thread that currently holds the mutex unlocks it.

Returns

The pthread_mutex_lock function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_mutex_trylock function

pthread_mutex_trylock

Synopsis

#include <pthread.h>

int pthread_mutex_trylock (mutex);

142

Chapter 14. POSIX Threads

pthread_mutex_t *mutex;

Description

The pthread_mutex_trylock function tries to lock the given mutex.
If the mutex is already locked, the function returns without waiting
for the mutex to be unlocked.

Returns

The pthread_mutex_trylock function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_mutex_unlock function

pthread_mutex_unlock

Synopsis

#include <pthread.h>

int pthread_mutex_unlock (mutex);

pthread_mutex_t *mutex;

Description

The pthread_mutex_unlock function unlocks the given mutex.

Returns

The pthread_mutex_unlock function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

143

14.8. Miscellaneous Functions

The pthread_once function

pthread_once

Synopsis

#include <pthread.h>

int pthread_once (once_control,);

pthread_once_t *once_control ;
void (*init_routine) (void) ;

Description

The pthread_once function ensure the function init_routine runs
only once regardless of how many threads call it. The thread that
makes the first call to pthread_once succeeds in the call. Subsequent
calls from other threads fail.

Returns

The pthread_once function returns zero.

Implementation Notes

None

The pthread_self function

pthread_self

Synopsis

#include <pthread.h>

pthread_t pthread_self ();

;

144

Chapter 14. POSIX Threads

Description

The pthread_self function returns a pointer to the calling thread.

Returns

The pthread_self function returns the pointer.

Implementation Notes

None

The pthread_key_create function

pthread_key_create

Synopsis

#include <pthread.h>

int pthread_key_create (key,);

pthread_key_t *key;
void (*destructor) ();

Description

The pthread_key_create function create a new key that is visible
to all threads. This key can be used with pthread_setspecific and
pthread_getspecific to save and retrieve data associated with the
a thread. If the function destructor is not NULL, then when a
thread terminates, the destructor function will be called with the
value associated with the key as the argument.

Returns

The pthread_key_create function returns 0 if successful. Otherwise
it will return -1 and set errno to ENOMEM.

Implementation Notes

The value of POSIX_DATA KEYS_MAX is 8.

See Also

The pthread_getspecific function [146]

145

The pthread_setspecific function [146]

The pthread_getspecific function

pthread_getspecific

Synopsis

#include <pthread.h>

any_t pthread_getspecific (key);

pthread_key_t key;

Description

The pthread_getspecific function retrieves the value of a data
key for the current thread. If key is not a valid key, then errno is
set to EINVAL.

Returns

The pthread_getspecific function returns the value associated
with key, or returns NULL if key is invalid.

Implementation Notes

None

The pthread_setspecific function

pthread_setspecific

Synopsis

#include <pthread.h>

int pthread_setspecific (key, value);

pthread_key_t key;
any_t value;

146

Chapter 14. POSIX Threads

Description

The pthread_setspecific function associates a value with a data
key for the calling thread.

Returns

The pthread_setspecific function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_cleanup_push function

pthread_cleanup_push

Synopsis

#include <pthread.h>

int pthread_cleanup_push (new);

void (*fun) (), any_t arg, cleanup_t new;

Description

The pthread_cleanup_push function places the given function on
the top of the thread's cleanup stack.

Returns

The pthread_cleanup_push function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

The pthread_cleanup_pop function

pthread_cleanup_pop

147

Synopsis

#include <pthread.h>

int pthread_cleanup_pop (execute);

int execute;

Description

The pthread_cleanup_pop function pops a function off current
thread's cleanup stack and if execute is non-zero, executes the
function with the argument given in the corresponding call to
pthread_cleanup_push.

Returns

The pthread_cleanup_pop function returns zero if the call is
successful, otherwise it sets errno to EINVAL and returns -1.

Implementation Notes

None

148

Chapter 14. POSIX Threads

A
abort, 72
abs, 76
acos, 22
asctime, 109
asin, 23
assert, 9
atan, 24
atan2, 24
atexit, 73
atof, 62
atoi, 63
atol, 63

B
bsearch, 75

C
calloc, 69
ceil, 33
CHAR_BIT, 5
CHAR_MAX, 5
CHAR_MIN, 5
clock, 106

clock_gettime, 119, 128
comment, 117
cos, 25
cosh, 27
ctime, 110

D
difftime, 107
div, 77

E
exit, 73
exp, 28

F
fabs, 34
failed, 117
fgetc, 54
fgets, 54
floor, 35
fmod, 35
fputc, 55
fputs, 56
free, 69

Index

149

frexp, 29

G
getc, 56
getchar, 57
gets, 58
gmtime, 110

I
INT_MAX, 5
INT_MIN, 5
isalnum, 12
isalpha, 12
iscntrl, 12
isdigit, 13
isgraph, 13
islower, 14
isprint, 14
ispunct, 14
isspace, 15
isupper, 15
isxdigit, 16

L
labs, 78
ldexp, 29
ldiv, 79
limits.h, 5
localtime, 111
log, 30
log10, 31
LONG_MAX, 5
LONG_MIN, 5
longjmp, 38

M
malloc, 70
MB_LEN_MAX, 5
mblen, 80
mbstowcs, 83
mbtowc, 81
memchr, 96
memcmp, 92
memcpy, 87

memmove, 88
memset, 101
mktime, 107
modf, 31

N
nanosleep, 119, 129

P
POSIX

Threads, 119
pow, 32
printf, 51
pthread_attr_destroy, 130
pthread_attr_getdetachstate, 130
pthread_attr_getinheritsched, 131
pthread_attr_getschedparam, 132
pthread_attr_getschedpolicy, 132
pthread_attr_init, 133
pthread_attr_setdetachstate, 133
pthread_attr_setinheritsched, 134
pthread_attr_setschedparam, 135
pthread_attr_setschedpolicy, 135
pthread_attr_setstacksize, 136
pthread_cancel, 119
pthread_cleanup_pop, 147
pthread_cleanup_push, 147
pthread_cond_broadcast, 137
pthread_cond_destroy, 137
pthread_cond_init, 138
pthread_cond_signal, 138
pthread_cond_timedwait, 139
pthread_cond_wait, 140
pthread_create, 121
pthread_detach, 122
pthread_equal, 122
pthread_exit, 119, 123
pthread_getschedparam, 124
pthread_getspecific, 146
pthread_init, 119, 120
pthread_join, 123
pthread_key_create, 145
pthread_key_delete, 119
pthread_mutex_destroy, 141

150

Index

pthread_mutex_init, 140
pthread_mutex_lock, 142
pthread_mutex_trylock, 142
pthread_mutex_unlock, 143
pthread_once, 144
pthread_self, 144
pthread_setschedparam, 125
pthread_setspecific, 146
ptrdiff_t, 6
putc, 58
putchar, 59
puts, 59

R
raise, 44
rand, 67
realloc, 71
result, 118

S
SCHAR_MAX, 5
SCHAR_MIN, 5
sched_get_priority_min, 126
sched_yield, 127
setjmp, 37
SHRT_MAX, 5
SHRT_MIN, 5
signal, 43
sin, 25
sinh, 27
size_t, 6
sleep, 119, 128
sprintf, 52
sqrt, 33
srand, 67
strcat, 90
strchr, 96
strcmp, 93
strcoll, 94
strcpy, 89
strcspn, 97
strerror, 102
strftime, 111
strlen, 102

strncat, 91
strncmp, 93
strncpy, 90
strpbrk, 98
strrchr, 98
strspn, 99
strstr, 100
strtod, 64
strtok, 100
strtol, 65
strtoul, 66
strxfrm, 95
system, 74

T
tan, 26
tanh, 28
test, 116
Threads

POSIX, 119
time, 108
tolower, 16
toupper, 17

U
UCHAR_MAX, 5
UINT_MAX, 5
ULONG_MAX, 5
USHRT_MAX, 5

V
va_arg, 48
va_end, 49
va_start, 48
vprintf, 52
vsprintf, 53

W
wchar_t, 6
wcstombs, 84
wctomb, 82

151

