The XGC Libraries

C/C++ Librariesfor Real-TimeApplications

WWW.Xgc.com

The XGC Libraries

C/C++ Librariesfor Real-TimeApplications

Order Number: XGC-LG-011022

XGC Technology

London
UK
Web: <www. xgc. coms

The XGC Libraries: C/C++ Librariesfor Real-TimeApplications
by Chris Nettleton

Publication date October 2001
© 1999, 2001, 2010 XGC Technology
© 1988 Free Software Foundation, Inc.

Abstract
This document includes information for users of the X GC software devel opment systems.

Acknowledgements
Thetext of thismanual isbased on therelevant ANSI C and real-time POSI X standards, and is customized to conform to the libraries as supplied.

The XGC libraries were developed under European Space Agency contract 11935/NL/JG and are maintained by X GC Technology.

Contents

Chapter 1

Chapter 2

Chapter 3

Preface xi

About ThisManual xi
Audience xi

Reader's Comments xii
Conventions Xii

A WNPF

Introduction 1

11 Program Startup 2

1.2 Program Termination 3

1.3 Standard Headers 3

1.4 Errors<errno.h> 4

1.5 Limits<float.h> and <limits.h> 4
1.6 Common definitions <stddef.h> 6

Diagnostics <assert.h> 9
2.1 Program Diagnostics 9

Character Handling <ctype.n> 11

3.1 Implementation Notes 11
3.2 Character Testing Functions 12

The XGC Libraries

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

3.3

Character Case Mapping Functions 16

Localization <localeh> 19

Mathematics <math.h> 21

5.1
5.2
5.3
5.4
55
5.6
5.7

Treatment of Error Conditions 21

Notes 22

Trigonometric Functions 22

Hyperbolic Functions 27

Exponential and Logarithmic Functions 28
Power Functions 32

Nearest Integer, Absolute Value and Remainder

Functions 33

Nonlocal Jumps <setjmp.h> 37

6.1
6.2

Save Calling Environment 37
Restore Calling Environment 38

Sgnal Handling <signal.h> 41

7.1
7.2

Specify Signal Handling 43
Send Signal 44

Variable Arguments <stdarg.n> 47

8.1

Variable Argument List Access Macros 48

Input/output <stdio.h> 51

9.1
9.2

Formatted Input/Output Functions 51
Character Input/Output Functions 54

General Utilities<stdlib.n> 61

101
10.2

String Conversion Functions 62
Pseudo-Random Sequence Generation

Functions 67

10.3
104
10.5
10.6
10.7
10.8

Memory Management Functions 69
Communication with the Environment 72
Searching and Sorting Utilities 75
Integer Arithmetic Functions 76
Multi-byte Character Functions 80
Multi-byte String Functions 83

The XGC Libraries

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Sring Handling <string.h> 87

111
11.2
11.3
11.4
115
11.6

String Function Conventions 87
Copying Functions 87
Concatenation Functions 90
Comparison Functions 92
Search Functions 96
Miscellaneous Functions 101

Dateand Time<timeh> 105

121
12.2

Time Manipulation Functions 106
Time Conversion Functions 109

Test Output <report.h> 115

131

Test Support Functions 116

POS X Threads 119

14.1
14.2
14.3
14.4
145
14.6
14.7
14.8

Index 149

Initialization Functions 120
Create and Destroy Functions 121
Scheduling Functions 124
Timing Functions 128

Pthread Attribute Functions 130
Pthread Cond Functions 137
Pthread Mutex Functions 140
Miscellaneous Functions 144

Vi

Tables

1.1 Vauesinfloat.h 4
1.2 Vauesinlimitsh 5

Vii

viii

Examples

1.1 Functionmain 2

1.2 Function main with arguments 3

13.1 Test Program 116

13.2 Output from Test Program 116

13.3 Output from Failed Test Program 116

Preface

The XGC Libraries provide a collection of functions that conform
tothe ANSI C and real-time POSI X standards. They offer both the
minimal functionality required to start and run a program on the
target computer, as well as functions to support input-output,
multi-tasking, interrupts, dynamic memory, string operations, math
and diagnostics.

1. About This Manual

This manual is based on the text of the relevant ANSI and POSI X
standards.

2. Audience

This manual iswritten for the experienced programmer who is
aready familiar with the C programming language and with
embedded systems programming in general. We assume some
knowledge of thetarget computer architecturesand their limitations.

Xi

Preface

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC manuals.

You can send your comments in the following ways.
e Email: readers-comments@xgc.com

Please include the following information aong with your
comments:

» Thefull title of the manual and the order number. (The order
number is printed on the title page of this book.)

» The section numbers and page numbers of the information on
which you are commenting.

» Theversion of the software that you are using.

Technical support enquiries should be directed to the XGC web
site, http://www.xgc.com/.

4. Conventions
This document uses the following typographic conventions:

% $
A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

A number sign represents the superuser prompt.

bash$ vi hello.c
Boldface type in interactive examples indicates typed user
input.

file
Italic (danted) type indicates variable values, place-holders,
and function argument names.

Xii

http://www.xgc.com/

Conventions

[, {1

In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

In syntax definitions, ahorizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat(1)
A cross-reference to areference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mbl/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, thiskey combinationisprinted in bold (for example,
Ctrl+C).

Xiii

Xiv

Chapter 1

| ntroduction

XGC isaconforming free standing implementation of ANSI C as
specified in Section 4 of the ANSI C Standard. This means there
is no host environment and the means for starting a program, the
effect of program termination and the library facilities are
implementation defined.

The standard header files<fl oat. h>, <linits. h>, <stdarg. h>and
<st ddef . h> are supported as defined by ANSI C.

The remaining standard header files<assert. h>, <ctype. h>,
<errno. h>,<local e. h>, <math. h>, <setj np. h>, <si gnal . h>,
<stdio. h>,<stdlib.h>,<string. h>and<tine. h>areaso
supported, but only to the extent that makes sense for a program
running on an embedded target computer. In particular, the
functions from <st di 0. h> that work with files other than the
standard files, are not supported.

The XGC run-time system and libraries comprise the following
components:

« The ANSI C header files.

» Thestart filecrt0, whichisalso called art0.

Chapter 1. Introduction

The ANSI Clibrary 1 i bc. a.

The ANSI C math library | i bm a.

The POSIX Threads library i bpt hr ead. a.

» Several implementation-defined header files and library
functions.

Thelibrary iswritten in C, using assembly language where
appropriate. Programs written in other languages, such asAda 95
may also usethelibraries by including the appropriate declarations
or bindings.

1.1. Program Sartup

The entry point isin the run-time system module crt0, which
initializes the processor and the high level language environment
before executing any static constructorsand calling the application
program main function.

The function main can be defined with no parameters, as follows:

Example 1.1. Function main

int
main (voi d)
{

1* .0 %

return 0O;

}

Note that the return statement may be omitted, in which case the
compiler assumes a return value of zero.

The main function may also be defined with two parameters
referred to here asar gc and ar gv, though any names may be used,
asthey arelocal to the function in which they are declared.

Program Termination

Example 1.2. Function main with arguments

i nt
{
}

I* ...

main (int argc, char *argv [])

*/

The main function is always called with argc = 0. The value of
argv is undefined and will not necessarily be avalid address.

1.2. Program Termination

A return from the main program does not call the exit function, but
simply returnsto the start filecrt 0. In the standard version of crt 0
areturn from main is followed by code to execute any static
destructors and a jump to the program entry point, where the
program will restart.

Note that crtO may be customized to offer more appropriate
behavior for the application.

1.3. Sandard Headers

Each library function is declared in a header whose contents are
made available by the #i ncl ude directive. The header declaresa
set of related functions plus any necessary types and macros
required. All the header files are compatible with C++.

The ANSI C standard headers are:

<assert.h> <limts.h> <signal . h> <stdlib. h>
<ctype. h> <l ocal e. h> <stdarg. h> <string. h>
<errno. h> <mat h. h> <st ddef . h> <tine. h>
<float.h> <setjnp. h> <stdio. h>

The real-time POSIX header is <pt hread. h>.
XGC also supports the following implementation-defined header.

<report.h>

Chapter 1. Introduction

1.4. Errors<errno.h>

The header <errno. h> defines several macros all relating to the
reporting of error conditions.

The macros required by ANSI C are:

EDOM
ERANGE

which expand into integral constant expressions with distinct
non-zero values, suitable for usein #i f pre-processing directives.
XGC aso includes the following error definition macros:

ENOSYS
EIO
EBADF
El NVAL
ENCDEV
ENOVEM
EBUSY

Thevariableerrno isdeclaredinthelibrary I i bc. a and may be set
and tested at any time.

Note The POSIX Threads library ensures each thread has a
private copy of errno.

Note Signal handlers and interrupt handlers do not have a
private copy of errno.

1.5. Limits <float.h> and <limits.h>

Theheaders<fl oat. h>and <l i ni ts. h> define severa macros that
expand to various limits and parameters.

Thevaluesin <f| oat. h> are as follows;

Table1.1. Valuesin float.h

Macro Name M 1750 For mat |EEE Format
FLT RADIX 2 2
FLT _ROUNDS 0 0

Limits <float.h> and <limits.h>

Macro Name M 1750 Format | EEE Format
FLT DIG 6 6
FLT_EPSILON 2.38418595e-7 1.19209290e-07
FLT_MANT_DIG 23 24
FLT_MAX 1.7014116e38 3.40282347e+38
FLT_MAX_10_EXP 38 38
FLT _MAX_EXP 126 128
FLT_MIN 1.46936794e-39 1.17549435e-38
FLT_MIN_10 EXP -39 -37
FLT_MIN_EXP -129 -125
DBL_DIG 11 15
DBL_EPSILON 3.637978307092e-12 2220/8Y P R131e16
DBL_MANT_DIG 39 53
DBL_MAX 1.701411834602638 1RBRIIBRI5EIB
DBL_MAX_10_EXP 38 308
DBL_MAX_EXP 126 1024

DBL_MIN 14693679385280-39 22H0T3FEA14EIB
DBL_MIN_10 EXP -39 -307
DBL_MIN_EXP -129 -1021

Thevaluesin<lints. h>areasfollows:

Table 1.2. Valuesin limits.h

Macro Name 16-Bit Targets 32-Bit Targets
CHAR_BIT 16 8
CHAR_MAX 32767 127
CHAR_MIN -32768 -128
INT_MAX 32767 2147483647
INT_MIN -32768 -2147483648
LONG_MAX 2147483647 2147483647
LONG_MIN -2147483648 -2147483648
MB_LEN_MAX 1 1
SCHAR_MAX 32767 127
SCHAR_MIN -32768 -128

Chapter 1. Introduction

Macro Name 16-Bit Targets 32-Bit Targets
SHRT_MAX 32767 32767
SHRT_MIN -32768 -32768
UCHAR_MAX 65535 255
UINT_MAX 65535 4294967295
ULONG_MAX 4294967295 4294967295
USHRT_MAX 65535 65535

See the source files for more information.

1.6. Common definitions < stddef.h>

Thefollowing types and macros are defined in the standard header
<st ddef . h>. Some are a so defined in other headers, as noted in
their respective sub clauses.

Thetypes are:
ptrdiff _t

which isthe signed integral type of the result of subtracting two
pointers,

size t

which isthe unsigned integral type of the result of the si zeof
operator: and

wchar _t

which isan integral type whose range of values can represent
distinct codesfor all members of the largest extended character set
specified among the supported locales: the null character shall have
the value zero and each member of the basic character set defined
inANSI C 5.2.1 shall have a code value equal equal to itsvalue
when used as alone character in an integer character constant.

The macros are;

NULL

Common definitions <stddef.h>

which expands to an implementation-defined null pointer constant:
and

of fset _of (type, menber-designator)

which expandsto an integral constant expression that has type

si ze_t, the value of which isthe offset in bytes, to the structure
member (designated by member-designator), from the beginning
of its structure (designated by type). The member-designator shall
be such that given st ati c typet ; then the expression

&(t . member-designator) evaluates to an address constant. (If the
specified member is abit field, the behavior is undefined.)

Chapter 2 Diagnostics <assert.h>

The header <assert . h> definesthe assert macro and refersto
another macro.

NDEBUG

which isnot defined by <assert . h>. If NDEBUGis defined asamacro
name at the point in the source file where <assert . h> isincluded,
the assert macro is defined simply as

#define assert(ignore) ((void)0)

Theassert macro isimplemented as a macro, not as an actual
function. If the macro definition is suppressed in order to access
an actual function, the behavior is undefined.

2.1. Program Diagnostics

Theassert macro

assert

Chapter 2. Diagnostics <assert.h>

Synopsis
#include <assert.h>
voi d assert (expression);
i nt expression;

Description

Theassert macro puts diagnostics into programs. When it is
executed, if expressi on isfalse(that is, it compares equal to zero),
theassert macro writes information about the particular call that
failed (including the text of the argument, the name of the source
file, and the source line number-the | atter are respectively the
values of the preprocessingmacros__FILE_and __LINE_) onthe
standard error file in an implementation-defined format. It then
calls the abort function.

Returns

Theassert macro returns no value.
SeeAlso

The abort function [72]
| mplementation Notes

Theassert macro callsthelibrary function _assert.

10

Chapter 3 Character Handling
<ctype.h>

The header <ct ype. h> declares several functions useful for testing
and mapping characters. In all casesthe argumentisanint, the
value of which shall be representable asan unsi gned char or shall
be equal to the value of the macro ECF. If the argument has any
other value, the behavior is undefined.

The behavior of these functions is effected by the current local el
Those functions that have implementati on-defined aspects only
when not in the "C" locale are noted below.

Theterm printing character refers to amember of an
implementation-defined set of characters, each of which occupies
one printing position on adisplay device: theterm control character
refersto amember of an implementation-defined set of characters
that are not printing characters.

3.1. Implementation Notes

All the character testing functions are defined as macros that test
one or more bitsin aconstant array indexed by the given character,
which must be in the range -1 to 255.

The current locale is awaysthe Clocale.

11

Chapter 3. Character Handling <ctype.h>

3.2. Character Testing Functions

Theisalnum function
isalnum
Synopsis
#include <ctype.h>
int isalnum(c);
int ¢ ;
Description

The isalnum function tests for any character for which i sal pha or
i sdigit istrue.

Theisalpha function
isalpha
Synopsis
#include <ctype.h>
int isalpha (c);
int c ;
Description

The isalpha function tests for any character for whichi supper or
i sl ower istrue, or any character that is one of an
implementation-defined set of charactersfor whichnonof i sentrl,
i sdigit,ispunct,orisspaceistrue. Inthe"C" locale, i sal pha
returns true for only the characters for whichi supper or i sl ower
istrue.

Theiscntrl function

iscntrl

12

Synopsis
#include <ctype.h>
int iscntrl (c);
int c;
Description

Theiscntrl function tests for any control character.

Theisdigit function
isdigit
Synopsis
#include <ctype.h>
int isdigit (c);
int c;
Description

Theisdigit function testsfor any decimal-digit character (asdefined
in ANSI C refsection 5.2.1).

Theisgraph function
isgraph
Synopsis
#include <ctype.h>
int isgraph (c);
int c;
Description

The isgraph function tests for any printing character except space
¢ ")

13

Chapter 3. Character Handling <ctype.h>

Theislower function
islower
Synopsis
#include <ctype.h>
int islower (c);
int c;
Description

The islower function tests for any character that is an lowercase
letter or is one of an implementation-defined set of characters for
which noneofiscntrl,isdigit,ispunct orisspace istrue. Inthe
"C" locale, i sl ower returnstrue only for the characters defined as
lower case letters (as defined in ANSI C refsection 5.2.1).

Theisprint function
isprint
Synopsis
#include <ctype.h>
int isprint (c);
int c;
Description

Theisprint function testsfor any of the printing charactersincluding
space (').

Theispunct function
ispunct
Synopsis

#include <ctype.h>

14

int ispunct (c);
int c;
Description

Theispunct function tests for any printing character that is neither
aspace (' ') nor acharacter for which i sal numistrue.

The isspace function
isspace
Synopsis
#include <ctype.h>
int isspace (c);
int c;
Description

Theisspace function testsfor any character that isastandard white
gpace character or is one of an implementation-defined set of
characters for whichi sal numis false. The standard white space
charactersarethefollowing: space (' '), formfeed (' \f'), new_line
("\'n"), carriagereturn (" \r'), horizontal tab (" \t'), and vertical
tab ('\v'). Inthe"C" locale, i sspace returnstrue only for standard
white space characters.

Theisupper function
isupper

Synopsis
#include <ctype.h>
int isupper (c);

int c;

15

Chapter 3. Character Handling <ctype.h>

Description

The isupper function tests for any character that is an uppercase
letter or is one of an implementation-defined set of characters for
whichnoneof i scntrl,isdigit,ispunctorisspace istrue. Inthe
"C" locale, i supper returnstrue only for the characters defined as
upper case letters (as defined in ANSI C refsection 5.2.1).

Theisxdigit function
isxdigit
Synopsis
#include <ctype.h>
int isxdigit (c);
int c;
Description

Theisxdigit functionstestsfor any hexadecimal-digit character (as
defined in ANSI C refsection 6.1.3.2).

3.3. Character Case Mapping Functions

Thetolower function
tolower

Synopsis
#include <ctype.h>
int tolower (c);
int c;

Description

Thetolower function converts an upper case letter to the
corresponding lower case |etter.

16

Returns

If the argument is a character for which i supper istrue and there
isacorresponding character for whichi sl ower istrue, the tolower
function returns the corresponding character; otherwise, the
argument is returned unchanged.

Thetoupper function
toupper
Synopsis
#include <ctype.h>
i nt toupper (c);
int c;
Description

The toupper function converts an lower case letter to the
corresponding upper case letter.

Returns

If the argument is a character for whichii sl ower istrue and there
isacorresponding character for whichi supper istrue, the toupper
function returns the corresponding character; otherwise, the
argument is returned unchanged.

17

18

Chapter 4 | ocalization <locale.h>

Theheader <l ocal e. h> declarestwo functions, onetype and severa
macros.

Thetypeis
struct |conv

which contains members related to the formatting of numeric
values. The structure shall contain at |east the following members,
in any order. The semantics of the members and their normal ranges
isexplained in the ANSI C specification refsection 7.4.2.1. In the
“C” locale, the members shall have values specified in the
comments.

struct

{
char
char
char
char
char
char
char

[conv

deci mal _poi nt; ["]
t housands_sep; ["]
groupi ng; [o
int_curr_synbol ; [" ox
currency_synbol ; [o
mon_deci mal _poi nt; [" ox
mon_t housands_sep; [" ox

19

Chapter 4. Localization <locale.h>

char *mon_groupi ng; [* o ox
char *positive_sign; [* o ox
char *negative_sign; [* o ox
char int_frac_digits; /* CHAR_MAX */
char frac_digits; /* CHAR_MAX */
char p_cs_precedes; /* CHAR_MAX */
char p_sep_by_space; [* CHAR_MAX */
char n_cs_precedes; /* CHAR_MAX */
char n_sep_by_space; /* CHAR_MAX */
char p_sign_posn; [* CHAR_MAX */
char n_sign_posn; /* CHAR_MAX */
b
The macros defined are NULL and the following:
LC ALL
LC COLLATE
LC CTYPE
LC_MONETARY
LC_NUMERI C
LC TIME

Thefunctionsset | ocal e and | ocal econv are not supported in this
version of the library.

20

Chapter 5 Mathematics < math.h>

The header <nat h. h> declares several mathematical functions and
defines one macro. Thefunctionstake doubl e argumentsand return
doubl e values.

The macro is defined as
HUGE_VAL

which expands to a positive doubl e expression, not necessarily
representable as afl oat .

5.1. Treatment of Error Conditions

The behavior of each of these functionsis defined for al
representable values of itsinput arguments. Each function shall
execute asif it were a single operation, without generating any
externally visible exceptions.

For all functions adomain error occursif the input argument is

outside the domain over which the mathematical functionis defined.
The description of each function lists any required domain errors:
an implementation may define additional domain errors, provided
that such errors are consistent with the mathematical definition of

21

Chapter 5. Mathematics <math.h>

the function. On adomain error the function returns an
implementation-defined value: the value of the macros EDOMis
stored in errno.

Similarly arange error occursif the result of the function cannot
be represented as a doubl e value. If the result overflows (the
magnitude of the result is so large that it cannot be represented in
an object of the specified type), the function returns the value of
the macro HUGE_VAL with the same sign (except for thet an function)
as the correct value of the function: the value of the macro ERANGE
isstored inerrno. If the result underflows (the magnitude of the
result is so small that it cannot be represented in an object of the
specified type), the function returns zero: whether the integer
expression er rno acquires the value of the macro ERANGE is
implementation-defined.

5.2. Notes

HUGE_VAL isdefined asDBL_MAX.

XGC supportsall themath functionsdefined in theANSI standard.
XGC does not support math functions for long double arguments.
However because long double is defined to use the same machine
representation asdouble, the ANS| standard functions may be used.
Functions generally do not raise exceptions for domain errors.
Instead they return avalue asif the argument was at the nearest
limit of the domain. For example, asin (1.5) will return pi/2. Thus
by ignoring the value of errno, and by masking the interrupts for
arithmetic overflow, we get a saturated arithmetic behavior.
Where applicable, the maximum and RMS error values are given.

5.3. Trigonometric Functions

The acos

Synopsis

function

acos

#include <math.h>

doubl e acos (x);

22

doubl e x ;
Description

The acos function computes the principal value of the arc cosine
of x. A domain error occursfor arguments not intherange|[-1, +1].

Returns
Theacosfunction returnsthe arc cosinein therange[0, pi] radians.
| mplementation Notes

For arguments < -1.0, acos returns zero and sets EDOM.
For arguments > +1.0, acos returns zero and sets EDOM.

Theasin function
asin
Synopsis
#include <math.h>
doubl e asin (x);
doubl e x ;
Description

The asin function computes the principal value of the arc sine of
X. A domain error occurs for arguments not in the range [-1, +1].

Returns

The asin function returns the arc sine in the range [-pi/2, +pi/2]
radians.

I mplementation Notes

For arguments < -1.0, asin returns -pi/2 and sets EDOM.
For arguments > +1.0, asin returns +pi/2 and sets EDOM.

23

Chapter 5. Mathematics <math.h>

Theatan function
atan
Synopsis
#include <math.h>
doubl e atan (x);
doubl e x ;
Description

The atan function computes the principal value of the arc tangent
of x.

Returns

The atan function returnsthe arc tangent in the range [-pi/2, +pi/2]
radians.

SeeAlso

The atan2 function [24]

Theatan2 function
atan2
Synopsis
#include <math.h>
doubl e atan2 (y, Xx);

doubl e v;
doubl e x;

Description

The atan2 function computes the principal value of the arc tangent
of y/ x, using the signs of both argumentsto determinethe quadrant
of the return value. A domain error may occur if both arguments
are zero.

24

Returns

The atan2 function returnsthe arc tangent of y/ x, in the range[-pi,
+pi] radians.

SeeAlso
The atan function [24]
I mplementation Notes

None

Thecosfunction

cos
Synopsis

#include <math.h>

doubl e cos (X);

doubl e x ;
Description

The cos function computes the cosine of x (measured in radians).
Returns

The cos function returns the cosine value.
| mplementation Notes

The absolute error over the range -2* pi to +2*pi islessthan 2 *
DBL_EPSILON.

The sin function
sin
Synopsis

#include <math.h>

25

Chapter 5. Mathematics <math.h>

doubl e sin (x);

doubl e x ;
Description

The sin function computes the sine of x (measured in radians).
Returns

The sin function returns the sine value.
| mplementation Notes

The absolute error over the range -2* pi to +2* pi is less than
2*DBL_EPSILON.

Thetan function

tan
Synopsis
#include <math.h>
doubl e tan (x);
doubl e x ;
Description
The tan function returns the tangent of x (measured in radians).
Returns
The tan function returns the tangent value.
| mplementation Notes

Over the range -pi/4 to +pi/4, the absolute error islessthan 2 *
DBL_EPSILON. The absolute error increases considerably as the
argument approaches pi/2, or -pi/2.

Wherethe argument is close to any other odd multiple of pi/2, then
floating point overflow may be detected and HUGE_VAL or - HUGE_VAL
will be returned. If the corresponding interrupt is unmasked then
the signal SI G-PE will be raised.

26

Hyperbolic Functions

5.4. Hyperbolic Functions

The cosh function
cosh
Synopsis
#include <math.h>
doubl e cosh (x);
doubl e x ;
Description

The cosh function computes the hyperbolic cosine of x. A range
error occurs if the magnitude of x istoo large.

Returns

The cosh function returns the hyperbolic cosine value.

Thesinh function
sinh
Synopsis
#include <math.h>
doubl e sinh (x);
doubl e x ;
Description

The sinh function computesthe hyperbolic sine of x. A range error
occurs if the magnitude of x istoo large.

Returns

The sinh function returns the hyperbolic sine value.

27

Chapter 5. Mathematics <math.h>

I mplementation Notes

None

Thetanh function
tanh

Synopsis
#include <math.h>
doubl e tanh (x);
doubl e x ;

Description

The tanh function computes the hyperbolic tangent of x.

Returns

The tanh function returns the hyperbolic tangent value.

| mplementation Notes

None

5.5. Exponential and Logarithmic Functions

The exp function
exp

Synopsis
#include <math.h>
doubl e exp (X);

doubl e x ;

28

Description

The exp function computes the exponential function of x. A range
error occursif the magnitude of x istoo large.

Returns

The exp function returns the exponential value.

Thefrexp function
frexp
Synopsis
#include <math.h>
doubl e frexp (val ue, exp);

doubl e val ue;
int *exp;

Description

Thefrexp function breaks afl oating-point number into anormalized
fraction and an integral power of 2. It storesthe integer in theint
object pointed to by exp.

Returns

The frexp function returns the value x, such that x is a double with
magnitude in the interval [1/2,1] or zero, and value equals x times
2 raised to the power *exp. If valueis zero, both parts of the result
are zero.

SeeAlso

The Idexp function [29]

Theldexp function

Idexp

29

Chapter 5. Mathematics <math.h>

Synopsis
#include <math.h>

doubl e | dexp (x, exp);

doubl e Xx;
i nt exp;
Description

Theldexp function multiplies afloating point number by anintegral
power of 2. A range error may Occur.

Returns

Theldexp function returnsthe value of x times 2 raised to the power
exp.

SeeAlso
The frexp function [29]
I mplementation Notes

None

Thelog function
log
Synopsis
#include <math.h>
doubl e log (Xx);
doubl e x ;
Description

The log function computes the natural logarithm of x. A domain
error occurs is the argument is negative. A range error may occur
if the argument is zero.

30

Returns
The log function returns the natural logarithm.
I mplementation Notes

If the argument is zero, then er rno is set to ERANGE, and - HUGE_VAL
is returned.

If the argument < zero, then errno is set to EDOM, and - HUGE_VAL is
returned.

Thelogl0 function
log10
Synopsis
#include <math.h>
doubl e 1 0g10 (x);
doubl e x ;
Description

Thelog10 function computes the base-ten logarithm of x. A domain
error occursif the argument is negative. A range error may occur
if the argument is zero.

Returns
The logl10 function returns the base-ten logarithm.
I mplementation Notes

The log10 function is computed by 10g10 (e) * log ().

If the argument is zero, then er rno is set to ERANGE, and - HUGE_VAL
is returned.

If the argument < zero, then errno is set to EDOM, and - HUGE_VAL is
returned.

The modf function

modf

31

Chapter 5. Mathematics <math.h>

Synopsis
#include <math.h>
doubl e nodf (value, iptr);

doubl e val ue;
doubl e *iptr;

Description

The modf function breaks the argument val ue into integral and
fraction parts, each of which has the same sign as the argument. It
storestheintegral part asadoublein the object pointed to by i ptr.

Returns

The modf function returns the signed fraction part of val ue.
I mplementation Notes

None

5.6. Power Functions

The pow function
pow
Synopsis
#include <math.h>
doubl e pow (X, VY);

doubl e Xx;
doubl e vy;

Description

The pow function computesx raised to the power y. A domain error
occursif x isnegative and y is not an integral value. A domain
error occursif the result cannot be represented when x is zero and
y islessthan or equal to zero. A range error may occur.

32

Returns
The pow function returns the value of x raised to the power y.
I mplementation Notes

None

Thesgrt function
sqrt
Synopsis
#include <math.h>
doubl e sqrt (x);
doubl e x ;
Description

The sgrt function computes the non-negative square root of x. A
domain error occursif the argument is negative.

Returns
The sgrt function returns the value of the square root.
I mplementation Notes

The sgrt function returns 0.0 for arguments <= 0.0.

5.7. Nearest Integer, Absolute Value and Remainder Functions

The ceil function
ceil
Synopsis
#include <math.h>

doubl e ceil (x);

33

Chapter 5. Mathematics <math.h>

doubl e x ;
Description

The ceil function computesthe smallest integral value not lessthan
X.

Returns

The ceil function returns the smallest integral value not less than
X, expressed as adoubl e.

SeeAlso
The floor function [35]
| mplementation Notes

None

Thefabsfunction
fabs
Synopsis
#include <math.h>
doubl e fabs (x);
doubl e x ;
Description

The fabs function computes the absolute value of a floating-point
number x.

Returns
The fabs function returns the absolute value of x.
I mplementation Notes

The fabs function is built in, and the instructions to compute the
absolute value will be generated in line. Also the library contains
an fabsfunction for use where the address of the function is needed.

Thefloor function
floor
Synopsis
#include <math.h>
doubl e floor (Xx);
doubl e x ;
Description

The floor function computes the largest integral value not greater
than x.

Returns

Thefloor function returnsthe largest integral value not greater than
X, expressed as a double.

SeeAlso
The ceil function [33]
I mplementation Notes

None

Thefmod function
fmod

Synopsis
#include <math.h>
double fnod (x, y);

doubl e Xx;
doubl e v;

Description

The fmod function computes the floating point remainder of x/y.

35

Chapter 5. Mathematics <math.h>

Returns

The fmod function returnsthe value x- i *y for someinteger i such
that, if y is nonzero, the result has the same sign asx and a
magnitude | ess than the magnitude of y. If y is zero, whether a
domain error occurs or the fmod function returns zero is
implementation-defined.

I mplementation Notes

If y iszero, then the floating point exception SI GFPE will be raised.
EDOM isnot set.

36

Chapter 6 Nonlocal Jumps
<setjmp.h>

The header <set j np. h> definesthe macro setjmp, and declaresone
function and one type, for bypassing the normal function call and
return discipline.

Thetype declared is

i np_buf

whichisan array type suitable for holding the information needed
to restore a calling environment.

6.1. Save Calling Environment

The setjmp macro
setjmp
Synopsis
#include <setjmp.h>

int setjnp (env);

37

Chapter 6. Nonlocal Jumps <setjmp.h>

j mp_buf env;

Description

Theset j np macro savesits calling environment in itsj np_buf
argument for later use by the | ongj np function.

Returns

If the return is from a direct invocation, the set j np macro returns
the value zero. If thereturnisfrom acall to | ongj np function, the
set j np macro returns a nonzero value.

Environmental Constraint

Aninvocation of the set j np macro shall appear in one of the
following contexts:

the entire controlling expression of a selection or iteration
statement:

one operand of arelational or equality operator with the other
operand an integral constant expression, with the resulting
expression being the entire controlling expression of aselection
or iteration statement:

the operand of aunary ! operator with the resulting expression
being the entire controlling expression of aselection or iteration
statement: or

the entire expression of an expression statement (possibly cast
tovoi d).

| mplementation Notes

If the program is running with expanded memory, then the address
state is also saved in the jmp_buf argument.

6.2. Restore Calling Environment

Thelongjmp function

longjmp

38

Synopsis
#include <setjmp.h>
int longjnmp (env, val);

j mp_buf env;
int val;

Description

The longjmp function restores the calling environment saved by
the most recent invocation of the set j np macro in the same
invocation of the program, with the corresponding jmpbuf
argument. If there has been no such invocation or if the function
containing the invocation of the set j np macro has terminated
execution than the the behavior is undefined.

Returns

After | ongj np is completed, program execution continues asif the
corresponding invocation of the set j np macro had just returned
the value specified by val. Thel ongj np function cannot cause the
set j np macro to return the value O: if val is 0O, the set j mp macro
returns the value 1.

I mplementation Notes

In GCC-1750, if | ongj np is used with expanded memory then the
calling environment includes the address state.

39

40

Chapter 7 Sgnal Handling
<signal.h>

The header <si gnal . h> declares a type and two functions and
defines several macros for handling various signals (conditions
that may be reported during program execution).

Thetype defined is
sig_atomc_t

whichistheintegral type of an object that can be access asan
atomic entity, even in the presence of asynchronous interrupts.

The macros defined are:
SI G DFL
S G ERR
SIGIGN

which expand to constant expressions with distinct values that are
type compatible with the second argument to and the return value
of the signal function, and whose value compares unequal to the
address of any declarable function; and the following, each of
which expandsto apositiveintegral constant expression that isthe
signal number corresponding to the specified condition.

41

Chapter 7. Signal Handling <signal.h>

SI GHUP
Hangup (POSI X).

SIG NT
Interrupt (ANSI).

SIGQUI T
Quiit (POSIX).

SIGLL
Illegal instruction (ANSI).

SI GABRT
Abort (ANSI).

S| GTRAP
Trace trap (POSI X).

SIlaar
IOT trap (4.2 BSD).

SI GEMT
EMT trap (4.2 BSD).

SI GFPE
Floating-point exception (ANSI).

SI&KILL
Kill, unblock-able (POSI X).

Sl GBUS
Bus error (4.2 BSD).

Sl GSEGV
Segmentation violation (ANSI).

SI GSYS
Bad argument to system call (4.2 BSD)

SI GPI PE
Broken pipe (POSIX).

S| GALRM
Alarm clock (POSIX).

SI GTerm
Termination (ANSI).

42

Specify Signal Handling

Sl GUSR1
User-defined signal 1 (POSIX).

SI GUSR2
User-defined signal 2 (POSIX).

SI GCHLD
Child status has changed (POSIX).

SIGCLD
Same as SIGCHLD (System V).

SI GPWR
Power failure restart (System V).

7.1. Specify Sgnal Handling

The signal function
signal
Synopsis
#include <signal.h>

(*signal (int sig, void (*func)(int))) signal
(int);

i nt;
Description

The signal function chooses one of three ways in which receipt of
the signal number si g isto subsequently handled. If the value of
func isSI G_DFL, default handling for that signal will occur. If the
valueof func isSI G_| G\, thesignal will beignored. Otherwisef unc
shall point to afunction to be called when the signal occurs. Such
afunction is called asignal handler.

When a signal occurs, if f unc pointsto afunction, first the
equivalent of si gnal (SI G SI G DFL); isexecuted or an
implementation-defined blocking of the signal is performed. (If
the value of the signal is SI G KI LL, whether the reset to SI G DFL
occurs isimplementation defined.) Next the equivalent of

43

Chapter 7. Signal Handling <signal.h>

Returns

SeeAlso

(*func) (sig); isexecuted. The function f unc may terminate by
executing ar et ur n statement of by calling the abort , exit or

I ongj nmp function. If f unc executesar et ur n statement, and the
value of si g was S| G-PE or any other implementation-defined value
corresponding to a computational exception, the behavior is
undefined. Otherwise, the program will resume execution at the
point it was interrupted.

If the signal occurs other than as the result of calling the abort or
rai se function, the behavior isundefined if the signal handler calls
any function in the standard library other than the si gnal function
itself (with afirst argument of the signal number corresponding to
the signal that cause the invocation of the handler) or refersto any
object with status storage duration other than by assigning to a
static storage duration variable of typevol atile sig_atomic_t.
Furthermore, if such acall tothesignal functionresultsinasl G ERR
return, the value of errno isindeterminate.

At program startup, the equivalent of si gnal (sig, SIGIGN); is
executed for some signal selected in an implementati on-defined
manner, the equivalent of si gnal (sig, SI G DFL); isexecuted for
al other signals defined by the implementation.

Theimplementation shall behave asif no library function callsthe
signal function.

If the request can be honored, the signal function returns the value
of func for the most recent call to si gnal for the specified signal
si g. Otherwise avalue of SI G_ERRisreturned and a positive value
isstoredinerrno.

The abort function [72]
The exit function [73]

7.2. Send Sgnal

Theraisefunction

raise

Synopsis
#include <signal.h>
int raise (sig);
int sig;
Description

The raise function sends the signal si g to the executing program
or partition.

Returns

The raise function returns zero if successful, nonzero if
unsuccessful .

45

46

Chapter 8 Variable Arguments
<stdarg.h>

The header <st dar g. h> declares a type and defines three macros,
for advancing through alist of argumentswhose number and types
and not known to the called function when it is compiled.

A function may be called with a variable number of arguments of
varying types. Asdescribed inthe ANSI C Standard Section 6.7.1,
its parameter list contains one or more parameters. The rightmost
parameter plays a special role in the access mechanism, and will
be designated paramN in this description.

Thetype declared is:
va_list

which isatype suitable for holding information needed by the
macrosva_start, va_arg, and va_end. If accessto the varying
argumentsis desired, the called function shall declare an object
(referred to asap in thisrefsection) having typeva_l i st . The object
ap may be passed as an argument to another function: if that
function invokes the va_ar g macro with parameter ap the value of
ap in the calling function is indeterminate and shall be passed to
theva_end macro prior to any further referenceto ap.

47

Chapter 8. Variable Arguments <stdarg.h>

8.1. Variable Argument List Access Macros

Theva start macro
va_start
Synopsis
#include <stdarg.h>
void va_start (ap, paramN);

va_list ap;
par am\;

Description

Theva_start macro shall be invoked before any access to the
unnamed arguments.

Theva_start macro initializesap for subsequent use by va_arg
andva_end.

The parameter paramN istheidentifier of the rightmost parameter
inthevariable parameter list in the function definition (the one just
beforethe, ...).If the parameter paramN is declared with the
regi st er storage class, with afunction or array type, or with atype
that is not compatible with the type that results after application of
the default argument promotions, the behavior is undefined.

Returns
Theva_start macro returns no value.
SeeAlso

Theva_arg macro [48]
The va_end macro [49]

Theva_arg macro

va arg

48

Synopsis

#include <stdarg.h>

type va_arg (ap, type);

va_list ap;
type;

Description

Returns

SeeAlso

Theva_ar g macro expands to an expression that has the type and
value of the next argument in the call. The parameter ap shall be
thesameastheva_l i st apinitialized by va_start . Eachinvocation
of va_arg modifies ap so that the values of successive arguments
arereturned in turn. The parameter type is a type name specified
such that the type of a pointer to an object that has the specified
type can be obtained by simply postfixing a* to type. If thereis
no actual next argument (as promoted according to the default
argument promotions), the behavior is undefined.

Thefirst invocation of theva_ar g macro after that of theva_start
macro returns the value of the argument after that specified by
paramN. Successive invocations return values of the remaining
argumentsin succession.

The va_start macro [48]
The va_end macro [49]

Theva_end macro

Synopsis

va end

#include <stdarg.h>
void va_end (ap);

va_|list ap;

49

Chapter 8. Variable Arguments <stdarg.h>

Description

Returns

SeeAlso

Theva_end macro facilitates a normal return from the function
whose variable argument list was referred to by the expansion of
va_start that initialized theva_l i st ap. Theva_end macro may
modify ap so that it is no longer usable (without intervening
invocation of va_start). If thereis no corresponding invocation of
theva_start macro, or if theva_end macro isnot invoked bore the
return, the behavior is undefined.

Theva_end macro returns no value.

The va_start macro [48]
The va_arg macro [48]

50

Chapter o | nput/output <stdio.h>

Support for <stdio.h> islimited to those function that are useful

in the embedded environment. In particular, theonly filesavailable
are the three standard files, stdin, stdout and stderr. Other files are
not available, and functions that operate on such files are omitted.

9.1. Formatted Input/Output Functions

The printf function
printf
Synopsis
#include <stdio.h>
int printf (format,);

const char *format ;

51

Chapter 9. Input/output <stdio.h>

Description

The printf function is supported as specified in ANSI C 7.9.6.3.
Returns

The printf function returns the number characters printed.
I mplementation Notes

The printf function uses an internal buffer of 256 characters. This
limits the length of the text printed by one call to printf to 255
characters.

The sprintf function
sprintf
Synopsis
#include <stdio.h>
int sprintf (s, format,);

char *s;
const char *format;

Description
The sprintf function is supported as specified in ANSI C 7.9.6.5.
Returns

The sprintf function returns the number of characters printed.

The vprintf function
vprintf

Synopsis
#include <stdio.h>

int vprintf (const, format, va_list, arg);

52

const ;

char *format;

va_list;

arg;
Description

The vprintf function is supported as specified in ANSI C 7.9.6.8.
Returns

The vprintf function returns the number of characters printed.

| mplementation Notes

The vprintf function uses an internal buffer of 256 characters. This
limits the length of the text printed by one call tovprintf to 255
characters.

The vsprintf function
vsprintf
Synopsis
#include <stdio.h>
int vsprintf (s, const, format, arg);
char *s;
const ;

char *format;
va_list arg;

Description
The vsprintf function is supported as specified in ANSI C 7.9.6.9.
Returns

The vsprintf function returns the number of characters printed.

53

Chapter 9. Input/output <stdio.h>

9.2. Character Input/Output Functions

Thefgetc function
fgetc
Synopsis
#include <stdio.h>
int fgetc (stream;
FILE *stream ;
Description

The fgetc function obtains the next character (if present) as an
unsigned char converted to an int, from the input stream pointed
to by stream, and advances the associated file position indicator
for the stream (if defined).

Returns

Thefgetc function returns the next character from the input stream
pointed to by stream. If the stream is at end-of-file, the end-of-file
indicator for the stream is set and fgetc returns EOF. If aread error
occurs, the error indicator for the stream is set and fgetc returns
EOF.

| mplementation Notes

The value of stream must be stdin.

Thefgetsfunction
foets
Synopsis
#include <stdio.h>
int fgets (s, n, stream;

char *s;

int n;
FI LE *stream

Description

The fgets function reads at most one less than the number of
characters specified by n from the stream pointed to by streaminto
the array pointed to by s. No additional characters are read after a
new-line character (which is retained) or after end-of-file. A null
character is written immediately after the last character read into
the array.

Returns

The fgets function returns sif successful. If end-of-fileis
encountered and no characters have been read into the array, the
contents of the array remain unchanged and anull pointer is
returned. If aread error occurs during the operation, the array
contents are indeterminate and a null pointer is returned.

| mplementation Notes

The value of stream must be stdin.

Thefputc function
fputc
Synopsis
#include <stdio.h>
int fputc (c, strean);

int ¢ ;
FI LE *stream ;

Description
The fputc function is supported as specified in ANSI C 7.9.7.3.
Returns

The fputc function returns the character written. If awrite error
occurs the error indicator is set and fputc returns EOF.

55

Chapter 9. Input/output <stdio.h>

I mplementation Notes

The value of stream must be stdout or stderr.

The fputsfunction
fputs
Synopsis
#include <stdio.h>
int fputs (s, strean);

const char *s;
FI LE *stream

Description

The fputs function writes the string pointed to by sto the stream
pointed to by stream. The terminating null character is not written.

Returns

The fputs function returns EOF if awrite error occurs: otherwise
it returns a non-negative value.

| mplementation Notes

The value of stream must be stdout or stderr.

The getc function
getc
Synopsis
#include <stdio.h>
int getc (stream;

FI LE *stream ;

56

Description

The getc function is equivalent to fgetc, except that if itis
implemented as a macro, it may evaluate stream more than once,
so the argument should never be an expression with side effects.

Returns

The getc function returns the next character from the input stream
pointed to by stream. If the stream is at end-of-file, the end-of-file
indicator for the stream is set and fgetc returns EOF. If aread error
occurs, the error indicator for the stream is set and getc returns
EOF.

I mplementation Notes

The getc function

The getchar function
getchar
Synopsis
#include <stdio.h>
int getchar ();
void ;
Description
The getchar function is equivalent to getc with the argument stdin.
Returns

The getchar function returns the next character from the input
stream pointed to by stdin. If the stream is at end-of-file, the
end-of-fileindicator for the stream is set and getchar returns EOF.
If aread error occurs, the error indicator for the stream is set and
getchar returns EOF.

| mplementation Notes

The getchar function

57

Chapter 9. Input/output <stdio.h>

The getsfunction
gets
Synopsis

#include <stdio.h>

int gets (s);
char *s ;
Description

The gets function reads character from the input stream pointed to
by stdin, into the array pointed to by s, until an end-of-fileis
encountered or anew-line character isread. any new-line character
isdiscarded and a null character iswritten immediately after the
last character read into the array.

Returns

The gets function returns sif successful. If end-of-fileis
encountered and no characters have been read into the array, the
contents of the array remain unchanged and anull pointer is
returned. If aread error occurs during the operation, the array
contents are indeterminate and a null pointer is returned.

| mplementation Notes

The gets function

The putc function
putc
Synopsis
#include <stdio.h>
int putc (c, stream;

int ¢ ;
FI LE *stream ;

58

Description
The putc function is supported as specified in ANSI C 7.9.7.8.
Returns

The putc function returns the character written. If awrite error
occurs, the error indicator for the stream is set and putc returns
EOF.

I mplementation Notes

The value of stream must be stdout or stderr.

The putchar function
putchar
Synopsis
#include <stdio.h>
int putchar (c);
int ¢ ;
Description
The putchar function is supported as specified in ANSI C 7.9.7.9.
Returns

The putchar function returns the character written. If awrite error
occurs, the error indicator for the stream is set and putchar returns
EOF.

The putsfunction
puts
Synopsis
#include <stdio.h>

int puts (s);

59

Chapter 9. Input/output <stdio.h>

const char *s ;
Description

The puts function writes the string pointed to by sto the stream
pointed to by stdout and appends a new-line character to the output.
The terminating null character is not written.

Returns

The puts function returns EOF if awrite error occurs. otherwise it
returns a non-negative value.

60

Chapter 10 General Ut' I |t| es
<stdlib.h>

The header <st dl i b. h> declares four types and several functions
of general utility, and defines several macros.

The types declared are si ze_t and wchar _t (both described in the
ANSI specification refsection 7.1.6),

div_t

which is astructure type that is the type of the value returned by
the div function, and

Idiv_t

which isastructure type that is the type of the value returned by
the Idiv function.

Themacros defined are NULL (described ininthe ANSI specification
refsection 7.1.6),

EXI T_FAI LURE

and

61

Chapter 10. General Utilities <stdlib.h>

EXI T_SUCCESS, which expand to integral expressions that may be
used as the argument to the exit function to return unsuccessful or
successful termination status respectively, to the host environment,

RAND_MAX which expands to an integral constant expression, the
value of which isthe maximum value returned by ther and function,
and

MB_CUR_MAX which expands to a positive integer expression whose
value is the maximum number of bytes in a multi-byte character
for the extended character set specified by the current locale
(category LC TYPE), and whose value is never greater than

MB_LEN MAX

10.1. String Conversion Functions

The atof function

Synopsis

atof

#include <stdlib.h>
doubl e atof (iptr);

const char *iptr;

Description

The atof function convertstheinitial portion of the string pointed
toby i ptr to double. Except for the behavior on error, itis
equivalent to

strtod (nptr, (char **)NULL)

Returns

The atof function returns the converted value as a double length
floating point number.

62

SeeAlso

The strtod function [64]

Theatoi function
atoi
Synopsis
#include <stdlib.h>
int atoi (nptr);
const char *nptr;

Description

The atoi function convertstheinitial portion of the string pointed
toby nptr toint representation. Except for the behavior in error,

itisequivalent to

(int)strtol (nptr, (char **)NULL, 10)

Returns
The atoi function returns the converted value.
SeeAlso

The strtol function [65]

Theatol function
atol

Synopsis
#include <stdlib.n>
long atol (nptr);

const char *nptr;

63

Chapter 10. General Utilities <stdlib.h>

Description

The atol function convertstheinitial portion of the string pointed
to by nptr tolong int representation. Except for the behavior in
error, it isequivalent to

strtol (nptr, (char **)NULL, 10)

Returns
The atol function returns the converted value.
SeeAlso

The strtol function [65]

The strtod function

strtod

Synopsis
#include <stdlib.n>
doubl e strtod (nptr, endptr);

const char *nptr;
char **endptr;

Description

Thestrtod function convertstheinitial portion of the string pointed
to by nptr to doubl e representation. First it decomposes the string
into three parts: aninitial, possibly empty, sequence of white space
characters (as specified by thei sspace function), asubject sequence
resembling afloating point constant: and afinal string of one or
more unrecognized characters, including the terminating null
character of theinput string. Then it attemptsto convert the subject
sequence to afloating point number, and return the result.

The expected form of the subject sequence is an optional plus or
minus sign, then a non-empty sequence of digits optionally
containing a decimal-point character, then an optional exponent
part as defined in the ANSI specification refsection 6.1.3.1, but no

Returns

floating suffix. The subject sequenceisdefined asthe longest initial
subsequence of the input string, starting with the first
non-white-space character, that is of the expected form. The subject
sequence contains no charactersif the input string is empty or
consists of entirely white space, or if the first non-white space
character is other than asign, adigit or adecimal paint.

The strtod function returns the converted value, if any. If no
conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, plus of minus
HUGE_VAL isreturned (according to the sign of the value), and the
value of the macros ERANGE is stored in er r no. If the correct value
would cause underflow, zero isreturned and the value of the macro
ERANGE is storein errno.

I mplementation Notes

In GCC-1750, the accuracy of theresult is generally better than 10
digits. In most cases, 13 decimal digitsis sufficient to represent

any of the 2**48 values of the M 1750 extended precision floating
point format. Powers of 10 within the range of the M 1750 extended
precision format (roughly 1.0e-38 to 1.0e+38) are converted exactly.

The strtol function

Synopsis

strtol

#include <stdlib.n>
long strtol (nptr, endptr, base);

const char *nptr;
char **endptr;
i nt base;

Description

The strtol function convertstheinitial portion of the string pointed
to by npt r tolong int representation. First it decomposes the input
string into three parts: an initial, possibly empty, sequence of white
space characters (as specified by the The isspace function The

65

Chapter 10. General Utilities <stdlib.h>

Returns

isspace function [15]), a subject sequence resembling an integer
represented in some radix determined by the value of base, and a
final string of one or more unrecognized characters, including the
terminating null character of the input string. Then it attempts to
convert the subject sequence to an integer, and returns the result.

The strtol function returns the converted value, if any. If no
conversion could be performed, zero is returned. If the correct
value is outside the range of representable values, LONG_MAX or
LONG_M Nisreturned (according to the sign of the value), and the
value of the macro ERANGE isis stored in err no.

The strtoul function

Synopsis

strtoul

#include <stdlib.n>
unsigned long strtoul (nptr, endptr, base);

const char *nptr;
char **endptr;
i nt base;

Description

Returns

The strtoul function convertstheinitia portion of the string pointed
to by npt r to unsigned long int representation. First it decomposes
theinput string into three parts: aninitial, possibly empty, sequence
of white space characters (as specified by the The isspace
function [15], a subject sequence resembling an unsigned integer
represented in some radix determined by the value of base, and a
final string of one or more unrecognized characters, including the
terminating null character of the input string. Then it attemptsto
convert the subject sequence to an unsigned integer, and returns
the result.

The strtoul function returns the converted value, if any. If no
conversion could be performed, zero is returned. If the correct

66

Pseudo-Random Sequence Generation Functions

value is outside the range of representable values, ULONG MAX is
returned, and the value of the macro ERANGE isis stored in err no.

10.2. Pseudo-Random Sequence Generation Functions

Therand function
rand
Synopsis
#include <stdlib.h>
int rand ();
Description

The rand function computes a sequence of pseudo-random integers
in the range 0 to RAND_MAX.

The implementation shall behave asif no library function callsthe
rand function.

Returns

The rand function returns a pseudo random integer.
SeeAlso

The srand function [67]
I mplementation Notes

The value of RAND MAX iSOx7fff.

The srand function
srand
Synopsis
#include <stdlib.h>

voi d srand (seed);

67

Chapter 10. General Utilities <stdlib.h>

unsi gned int seed;
Description

The srand function usesthe argument as a seed for anew sequence
of pseudo-random numbersto be returned by subsequent callsto
rand. If srand isthen called with the same seed val ue, the sequence
of pseudo random numbers shall be repeated. If rand is called
before any callsto sr and have been made, the same sequence shall
be generated aswhen srand isfirst called with a seed value of 1.

Theimplementation shall behave asif no library function callsthe
srand function.

Returns
The srand function returns no value.
Example

The following functions define a portable implementation of r and
and srand.

unsi gned long next = 1,
int rand (void)
{
next = next * 1103515245L + 12345L;
return (unsigned int)((next > 16) & Ox7fff;

}

voi d

srand (unsigned int seed)
{

next = seed;

}

SeeAlso

The rand function [67]
| mplementation Notes

16-hit targets use the algorithm in the example above, and the value
of RAND_MAX is 32767.

68

Memory Management Functions

10.3. Memory Management Functions

The order and contiguity of storage allocated by cal | oc, mal | oc,
and real | oc functionsis not specified.

Thecalloc function
caloc
Synopsis
#include <stdlib.n>
void *calloc (nnenb, size);

size t nnenb;
size t size;

Description

The calloc function allocates space for an array of nnenb objects,
each of whose sizeissi ze. The spaceisinitialized to al bits zero.

Returns

The calloc function returns either anull pointer or a pointer to the
alocated space.

SeeAlso

The free function [69]
The malloc function [70]
Therealloc function [71]

I mplementation Notes

The pointer returned is always 8-byte aligned so that objects of
type doubl e may be assigned.

Thefreefunction

free

69

Chapter 10. General Utilities <stdlib.h>

Synopsis
#include <stdlib.h>
void free (ptr);
void *ptr;
Description

The free function causes the space pointed to by ptr to be
deallocated that is, made available for further allocation.

Returns
The free function returns no value.
SeeAlso

The calloc function [69]
The malloc function [70]
Therealloc function [71]

I mplementation Notes

None

The malloc function
malloc
Synopsis
#include <stdlib.h>
void *mal |l oc (size);
size_t size;
Description

The malloc function allocates space for an object whose sizeis
specified by si ze and whose value is indeterminate

70

Returns

The malloc function returns either a null pointer o apointer to the
allocated space.

SeeAlso

The calloc function [69]
The free function [69]
Therealloc function [71]

I mplementation Notes

The pointer returned is always 8-byte aligned so that objects of
type doubl e may be assigned.

Therealloc function

realloc
Synopsis
#include <stdlib.h>
void *realloc (ptr, size);

void *ptr;
size_t size;

Description

The realloc function allocates space for an object whose sizeis
specified by si ze and whose value is indeterminate

Returns

Therealloc function returns either anull pointer or apointer to the
allocated space.

SeeAlso

The calloc function [69]
The free function [69]
The malloc function [70]

71

Chapter 10. General Utilities <stdlib.h>

I mplementation Notes

The pointer returned is always 8-byte aligned so that objects of
type doubl e may be assigned.

10.4. Communication with the Environment

Theabort function
abort

Synopsis
#include <stdlib.h>
voi d abort (void);
voi d;

Description

The abort function causes abnormal termination to occur unless
the signal Sl GABRT is being caught and the signal handler does not
return. Whether open output streams are flushed or open streams
are closed or temporary files removed is implementation-defined.
An implementation-defined form of the status unsuccessful
termination is returned to the host environment by means of the
function call r ai se(Sl GABRT)..

Returns

The abort function cannot return to its caller.
I mplementation Notes

The abort function callsrai se(Sl GABRT) and does not return.
SeeAlso

The raise function [44]

72

Theatexit function

atexit
Synopsis

#include <stdlib.n>

void atexit ();

void (*func)(void) ;
Description

The atexit function registers the function pointed to by f unc, to be
called without arguments at normal program termination.

I mplementation Limits

The implementation shall support the registration of at least 32
functions.

Returns

Theatexit function returnszero if the registration succeeds, nonzero
if it fails.

I mplementation Notes

The XGC library supports 32 registrations.

Theexit function
exit
Synopsis
#include <stdlib.n>
void exit (status);

i nt status;

73

Chapter 10. General Utilities <stdlib.h>

Description

Returns

The exit function causes normal program termination to occur. If
more than one call to the exit function is executed by a program,
the behavior is undefined.

First, all functions registered by the atexit function are called, in
the reverse order of their registration.

Next, al open streams with unwritten buffered data are flushed,
all open streams are closed, and all files created by the tmpfile
function are removed.

Finally, control is returned to the host environment. If the value of
stat us iszero or EXI T_SUCCESS, an implementation-defined form
of the status successful terminationisreturned. If the value of status
iSEXI T_FAI LURE, and implementation-defined form of the status
unsuccessful termination isreturned. Otherwise the statusreturned
is implementation-defined.

The exit function cannot return to its caller.

| mplementation Notes

The host environment consists of thefile crtO, which initializesthe
stack then calls the main program. On return from the main
program, the environment restarts and runsthe main program again.
The XGC library does not support buffered streams or temporary
files.

The system function

Synopsis

system

#include <stdlib.h>
int system (string);

const char *string;

74

Description

The system function passes the string pointed to by stri ng to the
host environment to be executed by a command processor in an
implementati on-defined manner. A null pointer may be used for
string to inquire whether a command processor exists.

Returns

If theargument isanull pointer, the systemfunction returns nonzero
only if acommand processor is available. If the argument is not a
null pointer, the system function returns an i mplementati on-defined
value.

I mplementation Notes

There is no command processor.

If the argument is anull pointer, then zero is returned to indicate
that a command processor is not available.

If the argument is not a null pointer, the syst emfunction returns
-1, and errno is set to ENOSYS.

10.5. Searching and Sorting Utilities

The bsearch function

bsearch

Synopsis
#include <stdlib.h>

voi d *bsearch (key, base, nnmenb, size,
(*conpar) (const void *, const void *));

const void *key;

const void *base;

size_t nmenb;

size_t size;

int (*conpar) (const void *, const void *)

75

Chapter 10. General Utilities <stdlib.h>

Description

Returns

The bsearch function searches an array of nnenb objects, theinitial
element of which ispointed to by base, for an el ement than matches
the object pointed to by key. The size of each element in the array
is specified by si ze.

The comparison function pointed to by conpar is called with two
arguments that point to the key object and an array element in that
order. The function shall return an integer less than, equal to, or
greater than zero if the key object is considered respectively to be
lessthan, equal to or greater than the array element. The array shall
consist of: al the objects that compare less than, all the elements
that compare equal to, and al the elements that compare greater
than the key object, in that order.

The bsearch function returns a pointer to a matching element of
the array, or anull pointer if no match isfound. If two elements
compare as equal, which element is matched is unspecified.

| mplementation Notes

For the M175- target, the bsearch function cannot be used with
expanded memory sinceit isnot possibleto passthe address of the
compare function using the 1750's 16-bit address format.

A custom binary search function islikely to be smaller and faster
than thelibrary function. See Sedgewick, R., Algorithmsin C, ISBN
0-201-51425-7, pp 198

10.6. Integer Arithmetic Functions

The abs function

Synopsis

abs

#include <stdlib.h>
int abs (j);

int j;

76

Description

The abs function computes the absolute value of an integer j . If
the result cannot be represented, the behavior is undefined.

Returns

The abs function returns the absol ute value.

I mplementation Notes

The absfunction isboth built-in and supplied asalibrary function.
Usually the built-in function is used, and the appropriate
instructions will be generated. If the address of the abs functionis
taken, then the address is the address of the library function.

On the M1750, in the special case wherej is- 32768, fixed point
overflow will be detected by the 1750 and if the corresponding
interrupt is enabled the signal SI GFI XED_OVERFLOWwWill be raised.
The standard behavior may be modified in therun-time systemfile
crt0.s.

Thediv function
div
Synopsis
#include <stdlib.h>
div_t div (numer, denom;

i nt nuner;
i nt denom

Description

The div function computes the quotient and remainder of the
division of the numerator nuner by the denominator denom If the
division isinexact, the resulting quotient is the integer of lesser
magnitude that is nearest to the algebraic quotient. If the result
cannot be represented, the behavior is undefined: otherwise quot
* denom + remshall equal nuner.

7

Chapter 10. General Utilities <stdlib.h>

Returns

The div function returns a structure of typedi v_t comprising both
the quotient and the remainder. The structure shall contain the
following members, in either order:

int quot; /* quotient */
int rem /* remninder */

I mplementation Notes

If denomis zero, or if numer is| NT_M Nand denomis -1, then fixed
point overflow is detected. If the corresponding interrupt is enabled,
then S| GFI XED_OVERFLOWis raised.

Thelabsfunction
labs

Synopsis
#include <stdlib.h>
I ong labs (long);
| ong;

Description

The labs function computes the absolute value of an integer j . If
the result cannot be represented, the behavior is undefined.

Returns
The labs function returns the absol ute value.
I mplementation Notes

Thelabsfunctionisboth built-in and supplied asalibrary function.
Usually the built-in function is used, and in this case the 1750
instruction DABS will be generated. If the address of the abs
function istaken, then the address is the address of the library
function.

78

In the special case wherej iSLONG M N, fixed point overflow will
occur. If the corresponding interrupt is enabled the signal

SI GFI XED_OVERFLOWWill be raised.

The standard behavior may be modified in therun-time systemfile
crt0.s.

Theldiv function
Idiv
Synopsis
#include <stdlib.n>
Idiv_t Idiv (numer, denom;

| ong nurmer;
| ong denom

Description

The Idiv function computes the quotient and remainder of the
division of the numerator numer by the denominator denom If the
division isinexact, the resulting quotient is the integer of lesser
magnitude that is nearest to the algebraic quotient. If the result
cannot be represented, the behavior is undefined: otherwise quot
* denom+ remshall equal nuner .

Returns

The Idiv function returns a structure of type! di v_t comprising
both the quotient and the remainder. The structure shall contain
the following members, in either order:

long int quot; /* quotient */
long int rem /* remainder */

I mplementation Notes

If denomis zero, or if nuner iSLONG M Nand denomis -1, then fixed
point overflow isdetected. If the corresponding interrupt is enabled,
then S| GFI XED_OVERFLOWis raised.

79

Chapter 10. General Utilities <stdlib.h>

10.7. Multi-byte Character Functions

The mblen function

Synopsis

mblen

#include <stdlib.h>
int nblen (s, n);

const char *s;
size t n;

Description

If s isnot anull pointer, the mblen function determines the number
of bytes contained in the multi-byte character pointed to by s.
Except that the shift state of the nbt owc function is not affected, it
is equivalent to

nbt owc((wchar _t *)0, s, n);

Returns

SeeAlso

The implementation shall behave asif no library function callsthe
nbl en function.

If s isanull pointer, the mblen function returns a non-zero or zero
value, if multi-byte encodings, respectively, do or do not have
state-dependent encodings. If s is not anull pointer, the mblen
function either returnsO (if s pointsto the null character) or returns
the number of bytes that are contained in the multi-byte character
(if the next n or fewer bytesform amulti-byte character), or returns
-1 (if they do not form avalid multi-byte character).

The mbtowc function [81]

80

I mplementation Notes

In GCC-1750 all characters occupy one byte (whichis 16 bits) and
state-dependent encodings are not supported.

If s isanull pointer or if s pointsto the null character then nbl en
will return zero. Otherwiseif s pointsto avalid multi-byte character
(n>= 1), then nbl en will return 1. Otherwise nbl en will return -1.

The mbtowc function

Synopsis

mbtowc

#include <stdlib.h>
int nbtowe (pwc, s, n);
wchar _t *pwc;

const char *s;
size_t n;

Description

Returns

If s isnot anull pointer, the nbt owc function determinesthe number
of bytesin the multi-byte character pointer to by s. It then
determines the code for the value of typewchar _t that corresponds
to the multi-byte character. | the multi-byte character is valid and
pwe is not anull pointer then nbt owc stores the code in the object
pointer to by pwc. At most n bytes of the array pointed to by s will
be examined.

The implementation shall behave asif no library function callsth
nbt owe function.

If sisanull pointer, nbt owc returns anon-zero or zero value, if
multi-byte character encodings respectively do or do no have state
dependent encodings. If s isnot anull pointer the mbtowc function
either returns zero (if s pointsto the null character), or returns the
number of bytes that are contained in the converted multi-byte
character (if the next n or fewer bytes for avalid multi-byte
character), or returns -1 (if they do not form avalid multi-byte
character).

81

Chapter 10. General Utilities <stdlib.h>

In no case will the value returned be greater than n or the value of
the MB_CUR_MAX macro.

SeeAlso
The wctomb function [82]
I mplementation Notes

None

Thewctomb function

wctomb

Synopsis
#include <stdlib.h>
int wetonb (s, wchar);

char *s;
wchar _t wchar;

Description

The wetomb function determines the number of bytes needed to
represent the multi-byte character corresponding to the code whose
valueiswchar (including any changein shift state). It store the
multi-byte character representation in the array pointed to by s (if
s isnot anull pointer). At most MB_CUR_MAX characters are
stored. If the value of wchar is zero, th wet onb function isleft in
theinitial shift state.

The implementation shall behave asif no library function calls th
wet onb function.

Returns

If sisanull pointer, wct onb returns a non-zero or zero value, if
multi-byte character encodings respectively do or do no have state
dependent encodings. If s isnot anull pointer the wetomb function
either returns zero (if s pointsto the null character), or returns the
number of bytes that are contained in the converted multi-byte
character (if the next n or fewer bytes for avalid multi-byte

82

character), or returns -1 (if the do not form avalid multi-byte
character).

In no case will the value returned be greater than n or the value of
the MB_CUR_MAX macro.

SeeAlso
The mbtowc function [81]
I mplementation Notes

None

10.8. Multi-byte Sring Functions

The mbstowcs function

mbstowcs
Synopsis
#include <stdlib.h>
size_t nbstowcs (pwcs, s, h);

wchar _t *pwcs;
const char *s;
size_t n;

Description

The mbstowcs function converts asequence of multi-byte characters
that begin the initial shift state from the array pointed to by s into
asequence of corresponding codes and stores not morethan n codes
into the array pointed to by pwcs. No multi-byte characters that
follow anull character (which is converted into a code with value
zero) will be examined or converted. Each multi-byte character is
converted as if by acall to the nbt owc function, except the shift
state of the mbtowc function is not affected.

No more n elements will be modified in the array pointed to by
pwecs. If copying takes place between objects that overlap, the
behavior is undefined.

83

Chapter 10. General Utilities <stdlib.h>

Returns

SeeAlso

If an invalid multi-byte character is encountered, the nbst owcs
function returns (si ze_t) - 1. Otherwise the nbst owcs function
returns the number of array elements modified, not including a
terminating zero code, if any.

The mbtowc function [81].

I mplementation Notes

The mbstowcs function behaves like strncpy.

Thewcstombs function

Synopsis

wcestombs

#include <stdlib.n>
size_t westonbs (s, pwes, h);
char *s;

const wchar _t *pwcs;
size_t n;

Description

The westombs function converts a sequence of codes that
correspond to multi-byte characters from the array pointed to by
pucs into a sequence of multi-byte characters that beginsin the
initial shift state and stores these multi-byte characters into the
array pointed to by s, stopping if a multi-byte character would
exceed thelimit of n total bytesor if anull character isstored. Each
codeisconverted asif by acall to the wctomb function, except the
shift state of the wctomb function is not affected.

No more n bytes will be modified in the array pointed to by s. If
copying takes place between objects that overlap, the behavior is
undefined.

Returns

If acodeisencountered that does not correspond to avalid

multi-byte character, the westombs function returns (size_t) -1.

Otherwise the westombs function returns the number of bytes
modified, not including aterminating null character, if any.

SeeAlso
The mbstowcs function [83]

I mplementation Notes

The westombs function behaves like strncpy.

85

86

Chapter 11 Sring Handling
<string.h>

11.1. String Function Conventions

The header <st ri ng. h> declares one type and several functions,
and defines one macro useful for manipulating arrays of character
type and other objectstreated as arrays of character type. Thetype
issize_t and the macro isNULL (both described in ANSI C 7.1.6).
Various methods are used for determining the lengths of the arrays,
but inall casesachar * orvoid * argument points to theinitial
(lowest addressed) character of the array. If an array is accessed
beyond the end of an object, the behavior is undefined.

11.2. Copying Functions

The memcpy function
memcpy
Synopsis

#include <string.h>

87

Chapter 11. String Handling <string.h>

void *mencpy (sl, s2, n);
void *sl;
void *s2;
size t n;

Description

The memcpy function copiesn characters from the object pointed
to by s2 into the object pointed to by s1. If copying takes place
between objects that overlap, the behavior is undefined.

Returns

The memcpy function returns the value of s1.
SeeAlso

The memmove function [88]
I mplementation Notes

The memcpy function isimplemented in line using the MOV
instruction.

The memmove function
memmove
Synopsis
#include <string.h>
void *memove (sl1, s2, n);
void *sl;
voi d *s2;
size_ t n;
Description

The memmove function copiesn charactersfrom the object pointed
to by s2 into the object pointed to by s1. Copying takes place as if
the n characters from the object pointed to by s2 are first copied
into atemporary array of n characters that does not overlap the

88

objects pointed to by s1 and s2, and then the n characters from the
temporary array are copied into the object pointed to by s1.

Returns

The memmove function returns the value of s1.
SeeAlso

The memcpy function [87]
| mplementation Notes

None

The strcpy function
strcpy
Synopsis
#include <string.h>
void *strcpy (sl, s2);

char *si;
char *s2;

Description

The strcpy function copies the string pointed to by s2 (including
the terminating null character) into the array pointed to by s1. If
copying takes place between objects that overlap then the behavior
is undefined.

Returns
The strcpy function returns the value of s1.

| mplementation Notes

None

89

Chapter 11. String Handling <string.h>

The strncpy function
strncpy
Synopsis
#include <string.h>
void *strncpy (sl1, s2, n);
char *s1,;
char *s2;
size t n;
Description

The strnepy function copies not morethan n characters (characters
that follow a null character are not copied) from the array pointed
to by s2 to the array pointed to by s1. If copying takes place
between objects that overlap, the behavior is undefined.

Returns
The strncpy function returns the value of s1.
I mplementation Notes

None

11.3. Concatenation Functions

Thestrcat function
strcat
Synopsis
#include <string.h>
void *strcat (sl, s2);

void *s1;
const char *s2;

90

Description

Returns

The strcat function appends a copy of the string pointed to by s2
(including the terminating null character) to the end of the string
pointed to by s1. Theinitial character of s2 overwrites the null
character at the end of s1. If copying takes place between objects
that overlap, the behavior is undefined.

The strcat function returns the value of s1.

I mplementation Notes

None

The strncat function

Synopsis

strncat

#include <string.h>
void *strncat (s2, s2, n);
void *s2;

const char *s2;
size_t n;

Description

Returns

The strncat function appends not more than n characters (a null
character and characters that follow it are not appended) from the
array pointed to by s2 to the end of the string pointed to by s1. The
initial character of s2 overwrites the null character at the end of
s1. A terminating null character is always appended to the result.
If copying takes place between objects that overlap, the behavior
is undefined.

The strncat function returns the value of s1.

91

Chapter 11. String Handling <string.h>

I mplementation Notes

None

11.4. Comparison Functions

The memcmp function
memcmp
Synopsis
#include <string.h>
void *mencnp (sl, s2, n);
void *sl;
void *s2;
size t n;

Description

The memcmp function comparesthefirst n characters of the object
pointed to by s1 to thefirst n characters of the object pointed to by
s2.

Returns

The memcmp function returns an integer greater than, equal to, or
lessthan zero, accordingly asthe object pointed to by s1 isgreater
than, equal to, or less than the abject pointed to by s2.

SeeAlso

The strcmp function [93]
The strncmp function [93]

I mplementation Notes

None

92

The strcmp function
stremp
Synopsis
#include <string.h>
void *strcnp (sl, s2);

char *si;
char *s2;

Description

The stremp function compares the string pointed to by s1 to the
string pointed to by s2.

Returns

The stremp function returns an integer greater than, equal to, or
lessthan zero, accordingly asthe string pointed to by s1 is greater
than, equal to, or less than the string pointed to by s2.

SeeAlso

The strncmp function [93]
The memcmp function [92]

The strncmp function
strncmp
Synopsis
#include <string.h>
void *strncnp (s1, s2, n);

char *s1i;
char *s2;
size t n;

93

Chapter 11. String Handling <string.h>

Description

The strncmp function compares not more than n characters
(charactersthat follow anull character are not compared) from the
array pointed to by s1 to the array pointed to by s2.

Returns

The strncmp function returns an integer greater than, equal to, or
less than zero, accordingly as the possibly null-terminated array
pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

SeeAlso
The strcmp function [93]
| mplementation Notes

None

Thestrcoll function
strcoll
Synopsis
#include <string.h>
void *strcoll (s1, s2);

char *si;
char *s2;

Description

The strcoll function compares the string pointed to by s1 to the
string pointed to by s2, both interpreted as appropriate to the
LC_COLLATE category of the current locale.

Returns

The strcoll function returns an integer greater than, equal to, or
lessthan zero, accordingly asthe string pointed to by s1 is greater

94

SeeAlso

than, equal to, or less than the string pointed to by s2, when they
are both interpreted as appropriate to the current locale.

The stremp function [93]

I mplementation Notes

The XGC library supportsthe "C" locale only.

The strxfrm function

Synopsis

strxfrm

#include <string.h>
size t strxfrm(sl, s2, n);

char *s1i;
char *s2;
size_t n;

Description

Returns

The strxfrm function transforms the string pointed to by s2 and
places the resulting string into the array pointed to by s1. The
transformation is such that if the st r cnpfunction is applied to two
transformed strings, it returns avalue greater than, equal to, or less
than zero, corresponding to the result of the strcoll function applied
to the same two origina strings. No more than n characters are
placed into the resulting array pointed to by s1, including the
terminating null character. If n iszero, s1 is permitted to be anull
pointer. If copying takes place between objects that overlap, the
behavior is undefined.

The strxfrm function returns the length of the transformed string
(not including the terminating null character). If the valuereturned
isn or more, then the contents of the array pointed to be s1 are
indeterminate.

95

Chapter 11. String Handling <string.h>

I mplementation Notes

Inthe XGC library, the strxfrm function copies the characters with
no transformation.

11.5. Search Functions

The memchr function
memchr
Synopsis
#include <string.h>
void *menchr (s, ¢, n);
const void *s;
int c;
size t n;

Description

The memchr function locates the first occurrence of ¢ (converted
to anunsi gned char) intheinitia n characters (each interpreted
asanunsi gned char) of the object pointed to by s.

Returns

The memchr function returns a pointer to the located character, or
anull pointer if the character does not occur in the object.

| mplementation Notes

None

The strchr function
strchr
Synopsis

#include <string.h>

96

char *strchr (s, c);

char *s;
int c;

Description

The strchr function locates the first occurrence of ¢ (converted to
achar) inthe string pointed to by s. The terminating null character
is considered to be part of the string.

Returns

The strchr function returns a pointer to the located character, or a
null pointer if the character does not occur in the string.

| mplementation Notes

None

The strcspn function
strcspn
Synopsis
#include <string.h>
size_t strcspn (sl1, s2);

char *si;
char *s2;

Description

The strcspn function computes the length of the maximum initial
segment of the string pointed to by s1 which consists entirely of
characters not from the string pointed to by s2.

Returns
The strcspn function returns the length of the segment.
SeeAlso

The strspn function [99]

97

Chapter 11. String Handling <string.h>

I mplementation Notes

None

The strpbrk function
strpbrk
Synopsis
#include <string.h>
size_t strpbrk (s1, s2);

char *si;
char *s2;

Description

The strpbrk function locates the first occurrence in the string
pointed to by s1 of any character from the string pointed to by s2.

Returns

The strpbrk function returns a pointer to the character, or anull
pointer if no character froms2 occursinsi.

| mplementation Notes

None

Thestrrchr function

strrchr
Synopsis
#include <string.h>
char *strrchr (s, c);

char *s;
int c;

98

Description

The strrchr function locates the last occurrence of ¢ (converted to
char) in the string pointed to by s. The terminating null character
is considered to be part of the string.

Returns

The strrchr function returns a pointer to the located character, or
anull pointer if the character does not occur in the string.

I mplementation Notes

None

The strspn function
strspn
Synopsis
#include <string.h>
size_t strspn (sl, s2);

const char *si;
const char *s2;

Description

The strspn function computes the length of the maximum initial
segment of the string pointed to by s1 which consists entirely of
characters from the string pointed to by s2.

Returns

The strspn function returns the length of the segment.
SeeAlso

The strcspn function [97]
| mplementation Notes

None

99

Chapter 11. String Handling <string.h>

Thestrstr function
strstr
Synopsis
#include <string.h>
char *strstr (sl1, s2);

char *s1i;
const char *s2;

Description

Thestrstr function locates thefirst occurrence in the string pointed
to by s1 of the sequence of characters (excluding the terminating
null character) in the string pointed to by s2.

Returns
The strstr function returns a pointer to the located string, or anull
pointer if the string is not found. If s2 points to a string with zero
length, the function returnss1.

I mplementation Notes

None

The strtok function
strtok
Synopsis
#include <string.h>
char *strtok (sl1, s2);

char *si;
const char *s2;

100

Description

A sequence of callsto the strtok function breaks the string pointed
to by s1 into a sequence of tokens, each of which is delimited by
a character from the string pointed to by s2. Thefirst call in the
sequence hass1 asitsfirst argument, and is followed by callswith
anull pointer astheir first argument. The separator string pointed
to by s2 may be different from call to call.

Returns

The strtok function returns a pointer to the first character of atoken,
or anull pointer if thereis no token.

I mplementation Notes

None

11.6. Miscellaneous Functions

The memset function

memset
Synopsis
#include <string.h>
void *nmenmset (s, ¢, n);
void *s;
int c;
size_t n;
Description
The memset function copiesthe value of ¢ (converted to an unsigned
char) into each of thefirst n characters of the object pointed to by
S.

Returns

The memset function returns the value of s.

101

Chapter 11. String Handling <string.h>

I mplementation Notes

None

Thestrerror function
strerror
Synopsis
#include <string.h>
char *strerror (errnum;
int errnum
Description

The strerror function maps the error number in err numto an error
message string.

The implementation shall behave asif no library function callsthe
strerror function.

Returns

The strerror function returns a pointer to the string, the contents
of which are implementation defined.

I mplementation Notes

None

Thestrlen function
strlen

Synopsis
#include <string.h>
size_t strlen (s);

char *s;

102

Description

The strlen function computes the length of the string pointed to by
S.

Returns

The strlen function returns the number of characters that precede
the terminating null character.

103

104

Chapter 12 Date and Time <time.h>

The header <t i ne. h> defines two macros, declares four types and
severa functionsfor manipulating time. Many functions deal with
acalendar time that represents the current date (according to the
Gregorian calendar) and time. Some functionsdeal with local time,
which isthe calendar time expressed for some specific time zone,
and with Daylight Saving Time, which is atemporary change to
the algorithm for determining local time. The local time zone and
Daylight Saving Time are implementation-defined.

The macros defined are NULL (described in ANSI C 7.1.6); and
CLOCKS_PER_SEC which isthe number per second of the value
returned by the cl ock function.

Thetypesdeclared aresi ze_t (describedin ANSI C7.1.6), cl ock_t
andtine_t, which are arithmetic types capable of representing
times, and st ruct t mwhich holds components of acalendar time,
called the broken-down time.

The structure st ruct t mis defined as follows;

struct tm

{

105

Chapter 12. Date and Time <time.h>

int tmsec; /* seconds after the mnute [0, 61] */
int tmnin; [* mnutes after the hour [0,59] */
int tmhour; /* hour of the day [0, 23] */
int tmmday; /* day of the month [1,31] */
int tmnon; /* nmonth of the year [0, 11] */
int tmyear; /* years since 1900 */
int tmwday; /* days since Sunday [0, 6] */
int tmyday; /* day of the year [0, 365] */
int tmisdst; /* Daylight Saving Tinme flag */
b

The member t m i sdst is:

positiveif Daylight Saving Timeis in effect
zero if Daylight Saving Time is not in effect
negative if the information is not available

12.1. Time Manipulation Functions

Theclock function

clock
Synopsis

#include <time.h>

clock_t clock (void);

voi d;
Description

The clock function determines the processor time used.
Returns

The clock function returnsthe implementation's best approximation
to the processor time used by the program since the beginning of
an implementation-defined erarelated only to the program
invocation. To determine the time in seconds, the value returned
by thecl ock function should be divided by the value of the macro
CLOCKS_PER_SEC. If the processor time used is not available or its

106

value cannot be represented, then the function returns the value
(clock_t)-1.

I mplementation Notes

The value of CLOCKS_PER SEC is 100 by default.

The value of the function cl ock is zero immediately after the
run-time system is started or restarted.

The processor time to wall timeratio is 1:1 while the processor is
running.

Thedifftime function
difftime
Synopsis
#include <time.h>
double difftinme (timel, tinme0);

time_t tinel;
time_t tineo0;

Description

Thedifftime function computes the difference between two calendar
times: tinmel - tineo.

Returns

The difftime function returns the difference expressed in seconds
asadoubl e.

Themktime function
mktime
Synopsis
#include <time.h>
time_t nktinme (tinmeptr);

struct tm*tineptr;

107

Chapter 12. Date and Time <time.h>

Description

Returns

The mktime function converts the broken-down time, expressed as
local time, in the structure pointed to by ti nept r into a calendar
time with the same encoding as that of the values returned by the
time function. The original values of thet m wday and t m yday
components of the structure are ignored, and the original val ues of
other components are not restricted to the ranges indicated above.
On successful completion, the values of thet m wday and t m yday
components of the structure are set appropriately, and the other
components are set to represent the specified calendar time, but
with their values forced to the ranges indicated above; the final
valueof t m day isnot set until t m non andt m year are determined.

The mktime function returns the specified calendar time encoded
asavalue of thetypetime_t. If the calendar time cannot be
represented, the function returnsthe value (time_t)- 1.

The time function

Synopsis

time

#include <time.h>
time_t tinme (timer);

time_t *tinmer;

Description

Returns

The time function determines the current calendar time. The
encoding of the value is unspecified.

Thetime function returnstheimplementation's best approximation
to the current calendar time. Thevalue (tine_t)- 1 isreturned if
the calendar time is not available. If ti ner isnot anull pointer,
then the return value is al so assigned to the object it points to.

108

I mplementation Notes

The current calendar timeis held in the run-time system with a
resolution of 1 second and arange of 2** 32 seconds, or 136 years.
Calendar timeis reset to zero each time the run-time system is
restarted, where time zero is 00:00:00 on Thursday January 1, 1970.

12.2. Time Conversion Functions

The asctime function
asctime
Synopsis
#include <time.h>
char *asctinme (tinmeptr);
const struct tm*tineptr;
Description

The asctime function converts the broken-down timein the structure
pointed to by ti mept r into a string in the form:

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

char *asctinme(const struct tm*timeptr)
{
static const char wday name[7][3] = {
“Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
b
static const char mon_name[12][3] = {
"Jan", "Feb", "Mar", "Apr", "My", "Jun",
“Jul", "Aug", "Sep", "Cct", "Nov", "Dec"
b
static char result [26];
sprintf(result, "%3s %3s %2d % 2d: % 2d: % 2d %\ n",
wday_name[ti meptr->t mwday],
nmon_name[ti meptr->tmmon],

109

Chapter 12. Date and Time <time.h>

timeptr->tmnday, timeptr->tmhour,
timeptr->tmnin, tineptr->tm sec,
1900 + timeptr->tmyear);

return result;

}

Returns

The asctime function returns a pointer to the string.

The ctime function
ctime
Synopsis
#include <time.h>
struct tm*ctine (tinmer);
const tinme *tiner,;
Description

The ctime function converts the calendar time pointed to by ti ner
into a broken-down time expressed as local time.

Returns

The ctime function returns the pointer returned by the asct i ne
function with that broken-down time as argument.

SeeAlso

The localtime function [111]

The gmtime function
gmtime
Synopsis

#include <time.h>

110

struct tm*gntinme (tinmer);
const tinme *tinmer;
Description

The gmtime function convertsthe calendar time pointedto by t i mer
into abroken-down time expressed as Coordinated Universal Time
(UTC).

Returns

The gmtime function returns a pointer to that object, or anull
pointer if UTC is not available.

The localtime function
localtime
Synopsis
#include <time.h>
struct tm*localtinme (tiner);
const tine *tiner;
Description

The localtime function converts the calendar time pointed to by
timer into abroken-down time expressed as local time.

Returns

The localtime function returns a pointer to that object.

The strftime function
strftime
Synopsis

#include <time.h>

111

Chapter 12. Date and Time <time.h>

size t strftime (s, nmaxsize, format,
timeptr);

char *s;

size t maxsi ze;

const char *format;

const struct tm*tineptr;

Description

The strftime function places charactersinto the array pointed to by
s ascontrolled by the string pointed to by f or mat . The format shall
be a multi-byte character sequence, beginning and ending in its
initial shift state. Thefor mat string consists of zero or more
conversion specifiers and ordinary multi-byte characters. A
conversion specifier consists of a%character followed by a
character that determines the behavior of the conversion specifier.
All ordinary multi-byte characters (including the terminating null
character) are copied unchanged into the array. If copying takes
place between objects that overlap, the behavior is undefined. No
more than naxsi ze characters are placed into the array. Each
conversion specifier is replaced by appropriate characters as
described in the following list. The appropriate characters are
determined by the LC_TYPE category of the current locale and by
the values contained in the structure pointed to by ti meptr.

% is replaced by the local€'s abbreviated weekday name
(Sun)

%A is replaced by the local€'s full weekday name (Sunday)

% isreplaced by thelocal €'s abbreviated month name (Dec)

"B isreplaced by the local€'s full month name (December)

% isreplaced by thelocal€'s date and time (Dec 2 06:55:15
1979)

%l is replaced by the day of the month (02)

% is replaced by the hour of the 24-hour day (06)

% is replaced by the hour of the 12-hour day (06)

% is replaced by the day of the year, from 001 (335)

%m is replaced by the month of the year, from 01 (12)

oM is replaced by the minutes after the hour (55)

% isreplaced by the locales AM/PM indicator (AM)

112

Returns

%5

is replaced by the seconds after the minute (15)

W isreplaced by the Sunday week of the year, from 00 (48)

% isreplaced by the day of the week, from O for Sunday
(6)

oA isreplaced by the Monday week of the year, from 00
(47)

7 is replaced by the local€'s date (Dec 2 1979)

X is replaced by the local€'stime (06:55:15)

%y isreplaced by the year of the century, from 00 (79)

WY isreplaced by the year (1979)

% is replaced by the time zone name, if any (EST)

%Who is replaced by the percent character %

If aconversion specifier is not one of the above, the behavior is
undefined.

If the total number of resulting charactersincluding the terminating
null character is not more than maxsi ze, thestrftime function
returns the number of characters placed into the array pointed to
by s not including the terminating null character. Otherwise, zero
is returned and the contents of the array are indeterminate.

113

114

Chapter 13 Test Output <report.h>

The header <report . h> defines several functionsthat are useful in
test programs. These are based on similar functionsin the Ada
Validation suite (the ACV C Tests) in the package Report.

Briefly, atest program begins by calling the functiont est. The
first parameter gives the name of the test, the second parameter
givesabrief description of thetest. A test endswith acall toresul t.
Thiswill print the result of the the test in astandard (and machine
readable) format, and will typically report PASSED or FAILED.

Between the calls of test andresul t, are the tests. Any test that
fails should call f ai | ed with a parameter giving the reason for the
failure. Comments may be output using the function coment . Both
fai | ed and comment take aformat string parameter optionally
followed by a number of valuesto print, and are compatible with
printf.

115

Chapter 13. Test Output <report.h>

Example 13.1. Test Program

#include <report.h>
int
min ()
{
int ans =1 + 2;
test ("t1", "Exanple test progrant);

if (ans = 3)
failed ("error in arithmetic, got %, expected 3", ans);
result ();

}

If the test passes, then the output will be as follows:

Example 13.2. Output from Test Program

,.,. t1 GIS Version 0.1
- t1 Exanple test program
==== t1 PASSED

If the test fails (by changing “1 + 2" to “2 + 2" for example), then
we get the following output:

Example 13.3. Output from Failed Test Program

,. t1 XTS Version 0.2
- t1 Exanple test program

*t1 error inarithnmetic, got 4, expected 3
*k k% tl FAI LED ****************************.

13.1. Test Support Functions

Thetest function
test
Synopsis

#include <report.h>

116

void test (nane, description);

const char *nane;
const char *descri ption;

Description

Thetest functioniscaledtoinitialize thetest. The argumentsnane
and descri pti on are copied into static memory, and used in the
reports written by the other functions.

The comment function

comment
Synopsis
#include <report.h>
void comment (s,);

const char *s;

Description

The comment function is use to write comments to the test output
log. Comments have a distinctive prefix.

Thefailed function
failed
Synopsis
#include <report.h>
void failed (reason,);

const char *reason;

117

Chapter 13. Test Output <report.h>

Description

Thefailed function is called to indicate that atest has failed, and
gives the reason for the failure.

Theresult function
result
Synopsis
#include <report.h>
void result ();
Description

Theresult function is called at the end of atest program to print
the test result.

118

Chapter 14

POS X Threads

The XGC library supports a subset of POSIX Threads as defined
in |EEE 1003.1¢c-1995. It provides the majority of the POSIX
functions for threads, mutexes, and condition variables, aswell as
pthread_once, thread-specific data, and cleanup handlers. Thereis
an additional function to make athread wait for an interrupt.

Therelevant Pthread attribute functions are provided, but there are
no useful Mutex attributes or Condition Variable attributes and
hence no associated functions; the attr parameter to
pthread_nutex_init ortopthread_cond_init must be null.

Thereis currently no pt hr ead_key_del et e function, nor isthe
asynchronous pt hread_cancel or theassociated functions provided.

Programs using Pthreads must call pt hread_i nit before calling
any other Pthread function. Termination of the main program will
cause the termination of al threads, unless exit is made via

pt hread_exi t . (But thereisno need for other threadsto finish with
pthread_exit).

Scheduling is always FIFO within priority.

The POSIX functionssl eep, nanos! eep, and cl ock_gettine are
provided, with aresolution of 0.01 seconds. The timeout parameter

119

Chapter 14. POSIX Threads

of pt hread_cond_ti medwai t requiresan absolutetimethat isbased
onclock_gettine.

Theimplementation of signalsistheANSI C one, with just si gnal
and r ai se, not the POSIX one with thread-specific masks.
Synchronous interrupts, such as overflow, are mapped onto the
appropriate ANSI C signal, and raised in the context of the current
thread, which is the one that contains the fault.

Asynchronousinterrupts can be handled by user supplied interrupt
functions, connected by the handl er function, and will run outside
the context of any thread. User's handlers must save and restore
the global errno if thereisany risk of them altering it.

Alternatively, athread can wait for one or moreinterrupts by using
thei ntwai t function, which takes a mask saying which interrupts
itiswaiting for, and returns a code saying which one was received.
At most one thread can wait for each interrupt at any onetime.

14.1. Initialization Functions

The pthread_init function

pthread_init

#include <pthread.h>
void pthread_init (void);

voi d;

Description

Thept hread_i ni t function must be called before any other function
in the POSIX Threads library.

I mplementation Notes

None

120

Create and Destroy Functions

14.2. Create and Destroy Functions

The pthread_create function

Synopsis

pthread_create

#include <pthread.h>
int pthread create (thread, attr, , arg);

pt hread_t *thread;

const pthread attr_t *attr;

void * (*start_routine)(void *) ;
void *arg;

Description

Returns

Thept hread_cr eat e function creates athread with the attributes
specifiedinattr. If attr iSNULL then the default attributes are used.
The new thread startsexecutioninstart _routi ne, whichispassed
the single specified argument.

If the pt hread_cr eat e function succeeds it returns O and puts the
new thread id into t hr ead, otherwise it returns -1 and sets an error
number as follows:

EAGAI Nif there isinsufficient memory to create another thread
ENOVEMIf there isinsufficient memory for the thread's stack
EI N\VAL if avalue specified by attr isinvalid

I mplementation Notes

SeeAlso

The function pt hread_cr eat e callscal | oc to allocate memory for
the thread's data, and callsmal | oc to allocates the thread's stack.

The pthread_exit function [123]
The pthread join function [123]

121

Chapter 14. POSIX Threads

The pthread_detach function
pthread_detach
Synopsis
#include <pthread.h>
int pthread _detach (thread ptr);
pthread_t *thread_ptr;
Description

Thept hread_det ach function marks the threads'sinternal data
structure for deletion.

Returns

Thept hread_det ach function returns zero if the call is successful,
otherwise it setserrno to EI NVAL and returns - 1.

I mplementation Notes

None

The pthread_equal function
pthread equal
Synopsis
#include <pthread.h>
int pthread _equal (t1, t2);

pthread_t t1;
pthread_t t2;

Description

Thept hread_equal function compares the two threadst 1 andt 2.

122

Returns

Thept hread_equal function returns one if the two threads are the
same thread, and zero otherwise.

I mplementation Notes

None

The pthread_exit function
pthread exit
Synopsis
#include <pthread.h>
void pthread _exit (status);
any_t status;
Description

Thept hread_exi t function terminates the calling thread returning
thevauegiven by st at us to any thread that hascalled pt hread_j oi n
for the calling thread.

Returns
Thept hread_exit function returns no value.
I mplementation Notes

None

The pthread_join function
pthread _join
Synopsis
#include <pthread.h>

int pthread join (thread, status);

123

Chapter 14. POSIX Threads

pt hread_t thread;
any_t *status;

Description

Thept hread_j oi n function causesthe calling thread to wait for the
given thread'stermination. If the parameter st at us isnot null then
it receives the return value of the terminating thread.

Returns

Thept hread_j oi n function returns zero if the call is successful,
otherwise it setserrno to EI NVAL and returns - 1.

| mplementation Notes

None

14.3. Scheduling Functions

The pthread_getschedparam function
pthread _getschedparam

Synopsis
#include <pthread.h>

i nt pthread_getschedparam (thread, policy,
par anj ;

pt hread_t thread;

int *policy;

struct sched_param *param

Description

Thept hread_set schedpar amand pt hr ead_get schedpar amfunctions
alow the scheduling policy and scheduling priority parametersto
be set and retrieved for individual threads.

Thept hr ead_get schedpar amfunction retrievesthe scheduling policy
and scheduling priority parameters for the thread ID given by

124

t hread, and then storesthevaluesinthepol i cy andsched priority
member of par am respectively.

Returns

The pt hread_get schedpar amfunction returns -1 and setserrno if
thereisan error.

I mplementation Notes
Thevalue for pol i cy must be SCHED FI FO.
SeeAlso

The pthread_setschedparam function [125]

The pthread_setschedparam function
pthread setschedparam

Synopsis
#include <pthread.h>

i nt pthread_setschedparam (thread, policy,
par anj ;

pt hread_t thread;
int policy;
struct sched_param *param

Description

Thept hread_set schedpar amand pt hr ead_get schedpar amfunctions
allow the scheduling policy and scheduling priority parameters to
be set and retrieved for individual threads.

Thept hread_set schedpar amfunction sets the scheduling policy
and related scheduling priority for the thread ID given by t hr ead
to the policy and associated priority provided in pol i cy, and the
sched_priority member of param respectively.

Returns

Thept hread_set schedpar amfunction returns 1 and setserrno in
th event of an error.

125

Chapter 14. POSIX Threads

I mplementation Notes
The value for pol i cy must be SCHED FI FO.
SeeAlso

The pthread getschedparam function [124]

The sched_get_priority_max function
sched_get_priority_max

Synopsis
#include <pthread.h>
int sched get priority nmax (policy);
int policy;

Description

Thesched_get _priority_max functionreturnsthefirst valueinthe
range of prioritiesfor the given policy.

Returns
Thesched_get _priority_max function returns the priority.
I mplementation Notes
The range of priority is0 .. 100. The lowest priority is0. The

highest priority is 100.
Thevalue for pol i cy must be SCHED FI FO.

The sched_get_priority_min function
sched_get_priority_min
Synopsis
#include <pthread.h>

int sched get priority mn (policy);

126

int policy;
Description

Thesched_get _priority_ninfunctionreturnsthefirst valueinthe
range of priorities for the given policy.

Returns
Thesched_get _priority_ni n function returnsthe priority.
| mplementation Notes
The range of priority isO .. 100. The lowest priority is0. The

highest priority is 100.
Thevaluefor pol i cy must be SCHED FI FO.

The sched_yield function
sched yield
Synopsis
#include <pthread.h>
int sched yield ();
Description
The sched_yi el d function yields the processor to another thread.
Returns
Thesched_yi el d function returns 0.
I mplementation Notes

None

127

Chapter 14. POSIX Threads

14.4. Timing Functions

The sleep function
sleep
Synopsis
#include <pthread.h>
int sleep (seconds);
unsi gned int seconds;
Description

The sl eep function delays the execution of the calling thread by
at least the given number of seconds.

Returns

Thesl eep function returns zero if successful, or -1 in the event of
an error.

| mplementation Notes

On 16-bit targets the maximum sleep time is 32767 seconds, or
approximately 9 hours.
32-hit targets use a 31-bit signed value for deep time.

SeeAlso

The nanosleep function [129]

The clock_gettime function
clock_gettime
Synopsis
#include <pthread.h>

int clock_gettime (clock_id, tp);

128

int clock id;
struct tinmespec *tp;

Description
Thecl ock_get ti ne function gets the time from the given clock.
Returns

Thecl ock_gettine function returns zero if successful and - 1
otherwise.

| mplementation Notes

The value of cl ock_i d must be CLOCK_REALTI ME.

The nanoslegp function
nanosleep
Synopsis
#include <pthread.h>
int nanosleep (rqtp, rntp);

const struct timespec *rqtp;
struct timespec *rntp;

Description

The nanos! eep function delays the execution of the calling thread
until either the time interval given by rt gp has elapsed or asignal
is handled by the thread.

Returns

The nanosl eep function returns zero to indicate the given time
interval has elapsed. Otherwise it returns -1 to indicate that the
delay has been interrupted, and setsr nt p to the time interval
remaining.

I mplementation Notes

The resolution of nanosl eep is determined by the interrupt period
of thereal time clock. Thisis set to 10 mSec in thefile crtO.

129

Chapter 14. POSIX Threads

The maximum time interval is 2147483647.999 seconds, or
approximately 68 years.

SeeAlso

The slegp function [128]

14.5. Pthread Attribute Functions

The pthread_attr_destroy function
pthread attr_destroy
Synopsis
#include <pthread.h>
int pthread_attr_destroy (attr);
pthread_attr_t *attr;
Description

Thept hread_attr_dest roy function destroys the given thread
attribute object.

Returns
Thepthread_attr_destroy function returns 0.
I mplementation Notes

None

The pthread_attr_getdetachstate function
pthread attr_getdetachstate
Synopsis
#include <pthread.h>

int pthread_attr_getdetachstate (attr,
det achstate) ;

130

pthread attr_t *attr;
i nt *detachstate;

Description

Thept hread_attr_get det achst at e function gets the value of the
detachstate attribute from attr object.

Returns

Thept hread_attr_get det achst at e function returns zero if
successful and - 1 otherwise.

| mplementation Notes

None

The pthread_attr_getinheritsched function
pthread attr_getinheritsched
Synopsis
#include <pthread.h>

int pthread attr_getinheritsched (attr,
i nherit);

pthread_attr_t *attr;
int *inherit;

Description

Thept hread_attr_getinheritsched function getsthe value of the
inheritsched attribute.

Returns

Thepthread_attr_getinheritsched function returns zero if
successful and - 1 otherwise.

| mplementation Notes

None

131

Chapter 14. POSIX Threads

The pthread_attr_getschedparam function
pthread attr_getschedparam
Synopsis
#include <pthread.h>
int pthread_attr_getschedparam (attr, paramn;

pthread_attr_t *attr;
struct sched_param *param

Description

Thept hread_at tr_get schedpar amfunction gets the value of the
scheduling parameter attribute.

Returns

Thept hread_at tr_get schedpar amfunction returns zero if successful
and - 1 otherwise.

| mplementation Notes

The scheduling parameter attribute consists of the thread priority.

The pthread_attr_getschedpolicy function
pthread attr_getschedpolicy

Synopsis
#include <pthread.h>

int pthread _attr_getschedpolicy (attr,
policy);

pthread_attr_t *attr;
int *policy;

Description

Thept hread_attr_get schedpol i cy function getsthepolicy for the
given attribute.

132

Returns

Thept hread_attr_get schedpol i cy function returns zero if the
given attributeis valid and - 1 otherwise.

I mplementation Notes

None

The pthread_attr_init function
pthread_attr_init
Synopsis
#include <pthread.h>
int pthread attr_init (attr);
pthread attr_t *attr;
Description

Thepthread_attr_init functioninitializesathread attribute object
with default values.

Returns

Thepthread_attr_init function returns zero if thecall is
successful, otherwise it setserrno to El NVAL and returns - 1.

I mplementation Notes
The default priority is0.

The default stack sizeis 8192 bytes on 32-hit targetrs, and 1024
words (2048 bytes) on 16-bit targets.

The pthread_attr_setdetachstate function
pthread attr_setdetachstate
Synopsis
#include <pthread.h>

133

Chapter 14. POSIX Threads

int pthread _attr_setdetachstate (attr,
det achstate);

pthread_attr_t *attr;
i nt detachstat e;

Description

Thept hread_attr_set det achst at e function sets the detachstate
attribute in referenced attr object.

Returns

Thept hread_attr_set det achst at e function returns zero if the call
is successful, otherwiseit setserrno to El NVAL and returns- 1.

| mplementation Notes

None

The pthread_attr_setinheritsched function
pthread attr_setinheritsched
Synopsis
#include <pthread.h>

int pthread_attr_setinheritsched (attr,
i nherit);

pthread_attr_t *attr;
int inherit;

Description

Thepthread_attr_setinheritsched function setstheinheritsched
attribute in the referenced attr object.

Returns

Thept hread_attr_setinheritsched function returns zero if the
call is successful, otherwiseit setserrno to El NVAL and returns- 1.

134

I mplementation Notes

None

The pthread_attr_setschedparam function
pthread attr setschedparam

Synopsis
#include <pthread.h>
int pthread_attr_setschedparam (attr, param;

pthread_attr_t *attr;
struct sched_param *param

Description

Thept hread_attr_set schedpar amfunction sets the priority in the
referenced attr object.

Returns

Thepthread_attr_set schedpar amfunction returns zero if the call
is successful, otherwiseit setserrno to El NVAL and returns- 1.

| mplementation Notes

None

The pthread_attr_setschedpolicy function
pthread attr_setschedpolicy
Synopsis
#include <pthread.h>

int pthread_attr_setschedpolicy (attr,
policy);

pthread_attr_t *attr;
int policy;

135

Chapter 14. POSIX Threads

Description

Thept hread_attr_set schedpol i cy function sets the scheduling
policy.

Returns

Thept hread_attr_set schedpol i cy function returns zero if the call
is successful, otherwise it setserrno to El NVAL and returns- 1.

I mplementation Notes

Thevaluefor pol i cy must be SCHED FI FO.

The pthread_attr_setstacksize function
pthread attr_setstacksize
Synopsis
#include <pthread.h>

int pthread attr_setstacksize (attr,
st acksi ze);

pthread attr_t *attr ;
size_t stacksize ;

Description

Thepthread_attr_set st acksi ze function setsthe stack size value
on the given attribute.

Returns

Thept hread_attr_set st acksi ze function returns zero if the call
is successful, otherwise it setserrno to El NVAL and returns- 1.

| mplementation Notes

None

136

Pthread Cond Functions

14.6. Pthread Cond Functions

The pthread_cond_broadcast function
pthread_cond_broadcast

Synopsis
#include <pthread.h>
i nt pthread _cond_broadcast (cond);
pt hread _cond_t *cond ;

Description

Thept hread_cond_broadcast function unblocks all threads that
are waiting on the given condition variable.

Returns

Thept hread_cond_broadcast function returns zero if thecall is
successful, otherwise it setserrno to El NVAL and returns - 1.

| mplementation Notes

None

The pthread_cond_destroy function
pthread cond_destroy
Synopsis
#include <pthread.h>
i nt pthread _cond_destroy (cond);

pt hread_cond_t *cond ;

137

Chapter 14. POSIX Threads

Description

The pt hr ead_cond_dest r oy function destroys the given condition
variable. If the variabl e has one or more waiting threadsthener r no
iS set to EBUSY.

Returns

Thept hread_cond_dest roy function returns zero if the call is
successful, otherwise it setserrno and returns- 1.

I mplementation Notes

None

The pthread_cond_init function
pthread_cond_init
Synopsis
#include <pthread.h>
int pthread cond init (cond, attr);

pt hread cond_t *cond ;
pt hread _condattr_t *attr ;

Description

Thept hread_cond_i ni t function initializes the given condition
variable.

Returns

Thept hread_cond_i nit function returns zero if thecall is
successful, otherwise it setserrno to El NVAL and returns - 1.

| mplementation Notes

The value of at tr must be null.

The pthread_cond_signal function

pthread_cond_signal

138

Synopsis
#include <pthread.h>
i nt pthread_cond_signal (cond);
pt hread cond t *cond ;

Description
Thept hread_cond_si gnal function unblocks at least one thread
waiting on acondition variable. The scheduling priority determines
which thread is runs next.

Returns

Thept hread_cond_si gnal function returns zero if thecall is
successful, otherwise it setserrno to El NVAL and returns - 1.

I mplementation Notes

None

The pthread_cond_timedwait function

pthread_cond_timedwait

Synopsis
#include <pthread.n>

int pthread cond tinmedwait (cond, mutex,
ti meout);

pt hread cond t *cond ;
pt hread nutex t *nutex ;
struct tinespec *tineout ;

Description

Thept hread_cond_t i medwai t function unlocks the given mutex
and placesthe calling thread into blocked state. When the specified
condition variable is signaled or broadcast, or the system timeis
greater thani or equal toti meout , thisfunction re-locks the mutex
and returns to the caller.

139

Chapter 14. POSIX Threads

Returns

Thept hread_cond_tinedwai t function returns zero if the call is
successful, otherwiseit setserrno to El NVAL and returns - 1.

I mplementation Notes

None

The pthread_cond_wait function
pthread _cond_wait
Synopsis
#include <pthread.h>
int pthread cond wait (cond, nutex);

pt hread cond t *cond ;
pt hread nutex t *nutex ;

Description

Thept hread_cond_wai t function unlocks the given mutex and
places the calling thread into a blocked state. When the specified
condition variable is signaled or broadcast, this function re-locks
the mutex and returnsto the caller.

Returns

Thept hread_cond_wai t function returns zero if thecall is
successful, otherwise it setserrno to El NVAL and returns - 1.

I mplementation Notes

None

14.7. Pthread Mutex Functions

The pthread_mutex_init function

pthread_mutex_init

140

Synopsis
#include <pthread.h>
int pthread_nutex_init (nutex, attr);

pt hread nutex_t *mutex ;
pt hread nutexattr t *attr;

Description

Thept hread_nut ex_i ni t functioninitializesthe given mutex with
the given attributes. If attr isnull, then the default attributes are
used.

Returns

Thept hread_nut ex_i nit function returns zero if thecall is
successful, otherwise it setserrno to El NVAL and returns - 1.

I mplementation Notes

Theargument at t r must be null. The default attributes are always
used.

The pthread_mutex_destroy function
pthread _mutex_destroy
Synopsis
#include <pthread.n>
int pthread nmutex_destroy (mutex);
pt hread nutex t *nutex;
Description

Thept hread_nut ex_dest r oy function destroys the given mutex. If
the mutex is already destroyed, then errno is set to EINVAL. If
the mutex is locked, then errno is set to EBUSY.

141

Chapter 14. POSIX Threads

Returns

The pt hread_nut ex_dest r oy function returns zero if the call is
successful, otherwiseit setserrno and returns- 1.

I mplementation Notes

None

The pthread_mutex_lock function
pthread_mutex_lock
Synopsis
#include <pthread.h>
int pthread rmutex | ock (rmutex);
pt hread nutex t *nutex;
Description

The pt hread_nut ex_| ock function locks the given mutex. If the
mutex is already locked, then the calling thread blocks until the
thread that currently holds the mutex unlocksiit.

Returns

Thept hread_nut ex_| ock function returns zero if the call is
successful, otherwise it setserrno to El NVAL and returns - 1.

I mplementation Notes

None

The pthread_mutex_trylock function
pthread_mutex_trylock
Synopsis
#include <pthread.h>

int pthread nmutex _trylock (mutex);

142

pt hread _nutex_t *mnutex;
Description

Thept hread_nut ex_t ryl ock function triesto lock the given mutex.
If the mutex isalready |ocked, the function returns without waiting
for the mutex to be unlocked.

Returns

Thept hread_nut ex_tryl ock function returns zero if the call is
successful, otherwiseit setserrno to El NVAL and returns - 1.

| mplementation Notes

None

The pthread_mutex_unlock function
pthread mutex_unlock
Synopsis
#include <pthread.h>
i nt pthread_nutex_unl ock (mutex);
pt hread_nutex_t *mnut ex;
Description
The pt hread_nut ex_unl ock function unlocks the given mutex.
Returns

Thept hread_nut ex_unl ock function returns zero if the call is
successful, otherwiseit setserrno to El NVAL and returns - 1.

I mplementation Notes

None

143

Chapter 14. POSIX Threads

14.8. Miscellaneous Functions

The pthread_once function
pthread once
Synopsis
#include <pthread.h>
int pthread _once (once_control,);

pt hread_once_t *once_control ;
void (*init_routine) (void) ;

Description

The pthread_once function ensurethefunctioni nit _rout i ne runs
only once regardless of how many threads call it. The thread that
makesthefirst call to pthread once succeedsin the call. Subsequent
calls from other threads fail.

Returns
Thept hread_once function returns zero.
| mplementation Notes

None

The pthread_self function
pthread self
Synopsis
#include <pthread.h>

pthread_t pthread_self ();

144

Description

Thept hread_sel f function returns a pointer to the calling thread.
Returns

Thept hread_sel f function returns the pointer.
I mplementation Notes

None

The pthread_key createfunction
pthread key create

Synopsis
#include <pthread.h>
int pthread key create (key,);

pt hread_key t *key;
void (*destructor) ();

Description

Thept hread_key_creat e function create anew key that isvisible
to al threads. Thiskey can be used with pt hread_set speci fi ¢ and
pt hread_get speci f i ¢ to save and retrieve data associated with the
athread. If the function dest ruct or isnot NULL, then when a
thread terminates, the destructor function will be called with the
value associated with the key as the argument.

Returns

Thept hread_key_cr eat e function returns O if successful. Otherwise
it will return -1 and set er r no to ENOVEM

| mplementation Notes
The value of POSIX_DATA KEYS MAX is8.
SeeAlso

The pthread_getspecific function [146]

145

Chapter 14. POSIX Threads

The pthread_setspecific function [146]

The pthread_getspecific function
pthread getspecific
Synopsis
#include <pthread.h>
any_t pthread_getspecific (key);
pt hread_key t Kkey;
Description

Thept hread_get speci fi ¢ function retrieves the value of a data
key for the current thread. If key isnot avalid key, thenerrno is
set to El NVAL.

Returns

Thept hread_get speci fi ¢ function returns the value associated
with key, or returns NULL if key isinvalid.

I mplementation Notes

None

The pthread_setspecific function
pthread setspecific
Synopsis
#include <pthread.h>
int pthread_setspecific (key, value);

pt hread_key_t Kkey;
any_t val ue;

146

Description

Thept hread_set speci fi ¢ function associates a value with a data
key for the calling thread.

Returns

Thept hread_set speci fi ¢ function returns zero if thecall is
successful, otherwise it setserrno to El NVAL and returns - 1.

I mplementation Notes

None

The pthread_cleanup_push function

pthread cleanup_push
Synopsis

#include <pthread.h>

i nt pthread_cl eanup_push (new);

void (*fun) (), any_t arg, cleanup_t new,
Description

The pt hread_cl eanup_push function places the given function on
the top of the thread's cleanup stack.

Returns

Thept hread_cl eanup_push function returns zero if the call is
successful, otherwise it setserrno to El NVAL and returns- 1.

| mplementation Notes

None

The pthread_cleanup_pop function
pthread_cleanup_pop

147

Chapter 14. POSIX Threads

Synopsis
#include <pthread.h>
i nt pthread_cl eanup_pop (execute);
i nt execute;

Description

Thept hread_cl eanup_pop function pops a function off current
thread's cleanup stack and if execut e is non-zero, executes the
function with the argument given in the corresponding call to
pt hr ead_cl eanup_push.

Returns

The pt hread_cl eanup_pop function returns zero if the call is
successful, otherwise it setserrno to El NVAL and returns - 1.

I mplementation Notes

None

148

| ndex

A

abort, 72
abs, 76
acos, 22
asctime, 109
asin, 23
assert, 9
atan, 24
atan2, 24
atexit, 73
atof, 62
atoi, 63
atol, 63

B
bsearch, 75

C

calloc, 69
ceil, 33

CHAR BIT, 5

CHAR_MAX, 5

CHAR_MIN, 5
clock, 106

clock_gettime, 119, 128

comment, 117
cos, 25

cosh, 27
ctime, 110

D

difftime, 107
div, 77

E
exit, 73
exp, 28

F
fabs, 34
failed, 117
fgetc, 54
fgets, 54
floor, 35
fmod, 35
fputc, 55
fputs, 56
free, 69

149

Index

frexp, 29

G

getc, 56
getchar, 57
gets, 58
gmtime, 110

I

INT_MAX, 5
INT_MIN, 5
isalnum, 12
isalpha, 12
iscntrl, 12
isdigit, 13
isgraph, 13
islower, 14
isprint, 14
ispunct, 14
isspace, 15
isupper, 15
isxdigit, 16

L

labs, 78
Idexp, 29

Idiv, 79
limits.h, 5
localtime, 111
log, 30
logl0, 31

LONG_MAX, 5
LONG_MIN, 5

longjmp, 38

M
malloc, 70

MB_LEN_MAX, 5

mblen, 80
mbstowcs, 83
mbtowc, 81
memchr, 96
memcmp, 92
memcpy, 87

memmove, 88
memset, 101
mktime, 107
modf, 31

N
nanosleep, 119, 129

P
POSIX

Threads, 119
pow, 32
printf, 51
pthread attr_destroy, 130
pthread attr_getdetachstate, 130

pthread attr_getinheritsched, 131
pthread attr_getschedparam, 132
pthread attr_getschedpolicy, 132

pthread attr_init, 133
pthread attr_setdetachstate, 133

pthread attr_setinheritsched, 134
pthread attr_setschedparam, 135
pthread attr_setschedpolicy, 135

pthread attr_setstacksize, 136
pthread cancel, 119
pthread cleanup_pop, 147
pthread cleanup push, 147
pthread _cond_broadcast, 137
pthread _cond_destroy, 137
pthread cond init, 138
pthread cond _signal, 138
pthread cond_timedwait, 139
pthread cond wait, 140
pthread create, 121

pthread detach, 122

pthread equal, 122

pthread exit, 119, 123
pthread getschedparam, 124
pthread getspecific, 146
pthread init, 119, 120
pthread join, 123
pthread key create, 145
pthread key delete, 119
pthread mutex_destroy, 141

150

pthread_mutex_init, 140
pthread_mutex_lock, 142
pthread_mutex_trylock, 142
pthread_mutex_unlock, 143
pthread once, 144

pthread self, 144

pthread setschedparam, 125
pthread_setspecific, 146
ptrdiff_t, 6

putc, 58

putchar, 59

puts, 59

R

raise, 44
rand, 67
realoc, 71
result, 118

S
SCHAR_MAX, 5
SCHAR_MIN, 5
sched get priority_min, 126
sched vield, 127
setjmp, 37
SHRT_MAX, 5
SHRT_MIN, 5
signal, 43

sin, 25

sinh, 27

size t, 6

sleep, 119, 128
sprintf, 52

sgrt, 33

srand, 67

streat, 90

strchr, 96
strcmp, 93
streoll, 94
strepy, 89
strespn, 97
strerror, 102
stritime, 111
strlen, 102

strnecat, 91
strncmp, 93
strncpy, 90
strpbrk, 98
strrchr, 98
strspn, 99
strstr, 100
strtod, 64
strtok, 100
strtol, 65
strtoul, 66
strxfrm, 95
system, 74

T

tan, 26

tanh, 28

test, 116

Threads
POSIX, 119

time, 108

tolower, 16

toupper, 17

U
UCHAR_MAX, 5
UINT_MAX, 5
ULONG_MAX, 5
USHRT_MAX, 5

V

va arg, 48

va end, 49
va start, 48
vprintf, 52

vsprintf, 53

W

wchar_t, 6
wcestombs, 84
wctomb, 82

151

