
Using the
Ada Compiler

XGC Users Guide

www.xgc.com

Using the Ada Compiler
XGC Users Guide

Order Number: XGC-ADA-UG-110803

XGC Technology

London
UK
<www.xgc.com>

Using the Ada Compiler: XGC Users Guide
by Ada Core Technologies, Inc. and XGC Software

Publication date August 3, 2011
© 1999, 2000, 2001, 2004, 2011 XGC Technology
© 1995, 1996, 1997 Ada Core Technologies, Inc.
© 1988, 1989, 1992, 1993, 1994 , 1995 Free Software Foundation, Inc.

License

XGC Ada is commercial open-source distributed under the terms of the GNU Public license. Permission is granted to make and distribute
verbatim copies of this document provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to
copy and distribute modified versions of this document under the conditions for verbatim copying, provided that the entire resulting derived
work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this
document into another language, under the above conditions for modified versions.

Contents

About This Guide vii
1 Audience vii
2 Related Documents vii
3 Reader's Comments viii
4 Documentation Conventions viii

Using the Compiler 1Chapter 1

1.1 Compiling Programs 1
1.2 Switches for GCC 3

1.2.1 Error Message Control 7
1.2.2 Debugging and Assertion Control 12
1.2.3 Run-Time Checks 13
1.2.4 Using GCC for Syntax Checking 14
1.2.5 Using GCC for Semantic Checking 15
1.2.6 Compiling Ada 83 Programs 15
1.2.7 Style Checking 16
1.2.8 Character Set Control 17
1.2.9 File Naming Control 18
1.2.10 Subprogram Inlining Control 18
1.2.11 Auxiliary Output Control 19
1.2.12 Debugging Control 19

1.3 Search Paths and the Run-Time Library 21

iii

1.4 Order of Compilation Issues 22
1.5 Examples 23

Binding with gnatbind 25Chapter 2

2.1 Running gnatbind 26
2.2 Consistency-Checking Modes 29
2.3 Binder Error Message Control 30
2.4 Elaboration Control 31
2.5 Output Control 32
2.6 Binding for Non-Ada Main Programs 32
2.7 Summary of Binder Switches 33
2.8 Search Paths for gnatbind 35
2.9 Examples of gnatbind Usage 36

Linking with gnatlink 37Chapter 3

3.1 Running gnatlink 37
3.2 Switches for gnatlink 38

Making Programs with gnatmake 39Chapter 4

4.1 Running gnatmake 40
4.2 Switches for gnatmake 40
4.3 Mode switches for gnatmake 44
4.4 Notes on the Command Line 45
4.5 How gnatmake Works 46
4.6 Examples of gnatmake Usage 47

Renaming Files with gnatchop 49Chapter 5

5.1 Handling Files with Multiple Units 49
5.2 Command Line for gnatchop 50
5.3 Switches for gnatchop 51
5.4 Examples of gnatchop Use 52

Cross-Referencing with gnatxref 53Chapter 6

6.1 Command Line of gnatxref 53
6.2 Switches for gnatxref 54
6.3 Command Line of gnatfind 55

6.3.1 Regular expressions in gnatfind and
gnatxref 56

6.4 Example of the Use of gnatxref 57

iv

Using the Ada Compiler

Shortening File Names with gnatkr 59Chapter 7

7.1 About gnatkr 59
7.2 Using gnatkr 60
7.3 Crunching Method 60
7.4 Examples of gnatkr Usage 62

Preprocessing with gnatprep 63Chapter 8

8.1 Using gnatprep 63
8.2 Switches for gnatprep 64
8.3 Form of definitions file 64
8.4 Form of input text for gnatprep 65

Browsing the Library with gnatls 67Chapter 9

9.1 Running gnatls 67
9.2 Switches for gnatls 68
9.3 Example of the Use of gnatls 70

Other Utility Programs 73Chapter 10

10.1 Using Other Utility Programs With XGC Ada 73
10.2 The gnatpsys Utility Program 73
10.3 The gnatpsta Utility Program 74
10.4 The External Symbol Naming Scheme of
XGC Ada 74

The Compilation Model 77Appendix A

A.1 Source Representation 77
A.2 Foreign Language Representation 78

A.2.1 Latin-1 78
A.2.2 Other Eight-Bit Codes 79
A.2.3 Wide Character Encodings 80

A.3 File Naming Rules 81
A.4 Using Other File Names 83
A.5 Naming of XGC Ada Source Files 84
A.6 Generating Object Files 85
A.7 Source Dependencies 86
A.8 The Ada Library Information Files 87
A.9 Representation of Time Stamps 92
A.10 Binding an Ada Program 93
A.11 Mixed Language Programming 93

v

Using the Ada Compiler

A.12 Comparison of XGC Ada With C/C++
Compilation Model 94
A.13 Comparison of XGC Ada With Ada Library
Model 95

Handling of Configuration Pragmas 97Appendix B

B.1 The gnat.adc File 97

Handling Elaboration Order 99Appendix C

C.1 Elaboration Code in Ada 95 99
C.2 Checking the Elaboration Order in Ada 95 102
C.3 Controlling the Elaboration Order in Ada 95 103
C.4 Controlling Elaboration in XGC Ada - Internal
Calls 107
C.5 Controlling Elaboration in XGC Ada - External
Calls 111
C.6 Default Behavior in XGC Ada - Ensuring
Safety 113
C.7 What to do if the Default Elaboration Behavior
Fails 114
C.8 Elaboration for Access-to-Subprogram Values 116
C.9 Summary of Procedures for Elaboration
Control 117

Performance Considerations 119Appendix D

D.1 Controlling Run-time Checks 120
D.2 Optimization Levels 120
D.3 Inlining of Subprograms 121

Index 123

vi

Using the Ada Compiler

About This Guide

This guide describes the XGC Ada compiler, the command line
options, and details of the user interface.

1. Audience

This guide is written for the experienced programmer who is
already familiar with the Ada 95 programming language and with
embedded systems programming in general. We assume some
knowledge of the target computer architecture.

2. Related Documents

Getting Started with XGC Ada describes how to prepare and run
a simple program. It also includes an introduction to more advanced
topics.

The Assembler, Linker and Object Code Utilities, which describes
the command line options and directives for the post-compiler
tools.

Running and Debugging XGC Programs, which describes the
instruction set simulator and symbolic debugger.

vii

The XGC Libraries documents the library functions available with
the XGC C and C++ compilers, and which may be called from Ada
programs.

The XGC Ada Reference Manual Supplement documents the
implementation-defined aspects of the Ada 95 programming
language supported by the compiler.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments in the following ways:

• Internet electronic mail: readers_comments@xgc.com

Please include the following information along with your
comments:

• The full title of the book and the order number. (The order
number is printed on the title page of this book.)

• The section numbers and page numbers of the information on
which you are commenting.

• The version of the software that you are using.

Technical support enquiries should be directed to the XGC web
site [http://www.xgc.com/] or by email to support@xgc.com.

4. Documentation Conventions

This guide uses the following typographic conventions:

%, $
A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

#

A number sign represents the superuser prompt.

viii

About This Guide

readers_comments@xgc.com
http://www.xgc.com/
http://www.xgc.com/
http://www.xgc.com/
support@xgc.com

$ vi hello.c

Boldface type in interactive examples indicates typed user
input.

file

Italic or slanted type indicates variable values, place-holders,
and function argument names.

[|], { | }
In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

...
In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat(1)
A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mb/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

ix

Documentation Conventions

x

Using the CompilerChapter 1

This chapter discusses how to compile Ada programs using the
gcc command, and the command line switches that can be used to
control the behavior of the Ada compiler.

1.1. Compiling Programs

The first step in creating an executable program is to compile the
units of the program using the gcc command. You must compile
the following files:

• the body file (.adb) for a library level subprogram or generic
subprogram

• the spec file (.ads) for a library level package or generic package
that has no body

• the body file (.adb) for a library level package or generic package
that has a body

You need not compile the following files

• the spec of a library unit which has a body

1

• subunits

because they are compiled as part of compiling related units.
XGC Ada compiles generic units when a client instantiates the
generic, specs when the corresponding body is compiled, and
subunits when the parent is compiled. If you attempt to compile
any of these files, you will get one of the following messages
(where Filename is the name of the file you compiled):

No code generated for file Filename (package spec)
No code generated for file Filename (subunit)

The basic command for compiling a file containing an Ada unit is

$ prefix-gcc -c [switches] filename

where filename is the name of the Ada file (usually having an
extension .ads for a spec or .adb for a body). You specify the -c
switch to tell gcc to compile, but not link, the file. The result of a
successful compilation is an object file, which has the same name
as the source file but an extension of .o and an Ada Library
Information (ALI) file, which also has the same name as the source
file, but with .ali as the extension. XGC Ada creates these two
output files in the current directory, but you may specify a source
file in any directory using an absolute or relative path specification
containing the directory information.

gcc is actually a driver program that looks at the extensions of the
file arguments and loads the appropriate compiler. For example,
the GNU C compiler is cc1, and the Ada compiler is gnat1. These
programs are in directories known to the driver program, but need
not be in your path. The gcc driver also calls the assembler and
any other utilities needed to complete the generation of the required
object-code files.

It is possible to supply several file names on the same gcc
command. This causes gcc to call the appropriate compiler for each
file. For example, the following command lists three separate files
to be compiled:

$ prefix-gcc -c x.adb y.adb z.c

2

Chapter 1. Using the Compiler

calls gnat1 (the Ada 95 compiler) twice to compile x.adb and
y.adb, and cc1 (the ANSI C compiler) once to compile z.c. The
compiler generates three object files x.o, y.o and z.o and the two
ALI files x.ali and y.ali from the Ada compilations. Any switches
apply to all the files listed, except for -gnatx switches, which apply
only to Ada compilations.

1.2. Switches for GCC

The gcc command accepts numerous switches to control the
compilation process, which are fully described in this section.

-c

Compile. Always use this switch when compiling Ada
programs.

Note that you may not use gcc without a -c switch to compile
and link in one step. This is because the binder must be run,
and currently gcc cannot be used to run the XGC Ada binder.

-g

Generate debugging information. This information is stored
in the object file and copied from there to the final executable
file by the linker, where it can be read by the debugger. You
must use the -g switch if you plan on using the debugger or
simulator.

-Idir

Direct XGC Ada to search the dir directory for source files
needed by the current compilation (see Section 1.3, “Search
Paths and the Run-Time Library” [21]).

-I-

Do not look for source files in the directory containing the
source file named in the command line (see Section 1.3,
“Search Paths and the Run-Time Library” [21]).

-o file

This switch is used in gcc to redirect the generated object file
and its associated ALI file. Beware of this switch with

3

Switches for GCC

XGC Ada, because it may cause the object file and ALI file to
have different names which in turn may confuse the binder
and the linker.

-O[n]

n controls the optimization level.

n = 0
No optimization

n = 1
Normal optimization, the default if you specify -O without
an operand.

n = 2
Extensive optimization, the default

n = 3
Extensive optimization with automatic inlining. This
applies only to inlining within a unit. See Section 1.2.10,
“Subprogram Inlining Control” [18] for details on control
of inter-unit inlining.

-S

Used in place of -c to cause the assembler source file to be
generated, using .s as the extension, instead of the object file.
This may be useful if you need to examine the generated
assembly code.

-v

Show commands generated by the gcc driver. Normally used
only for debugging purposes or if you need to be sure what
version of the compiler you are executing.

-V ver

Execute ver version of the compiler. This is the gcc version,
not the XGC Ada version.

4

Chapter 1. Using the Compiler

-Wuninitialized

Generate warnings for uninitialized variables. You must also
specify the -O switch (in other words, This switch works only
if optimization is turned on).

-gnata

Assertions enabled. Pragma Assert and pragma Debug to be
activated.

-gnatb

Generate brief messages to stderr even if verbose mode set.

-gnatc

Check syntax and semantics only (no code generation
attempted).

-gnate

Error messages generated immediately, not saved up till end.

-gnatE

Full dynamic elaboration checks.

-gnatf

Full errors. Multiple errors per line, all undefined references.

-gnatg

Ada style checks enabled.

-gnatic

Identifier char set (c=1/2/3/4/8/p/f/n/w).

-gnatje

Wide character encoding method (e=n/h/u/s/e).

-gnatkn

Limit file names to n (1-999) characters (k = krunch).

-gnatl

Output full source listing with embedded error messages.

-gnatmn

Limit number of detected errors to n (1-999).

5

Switches for GCC

-gnatn

Activate inlining across unit boundaries for subprograms for
which pragma inline is specified.

-gnatN

Activate inlining across unit boundaries for all subprograms
(not just those for which pragma inline is specified. This is
equivalent to using -gnatn and adding a pragma inline for
every subprogram in the program.

-fno-inline

Suppresses all inlining, even if other optimization or inlining
switches are set.

-gnato

Enable other checks, not normally enabled by default, including
numeric overflow checking, and access before elaboration
checks.

-gnatp

Suppress all checks.

-gnatq

Don't quit; try semantics, even if parse errors.

-gnatr

Reference manual column layout required.

-gnats

Syntax check only.

-gnatt

Tree output file to be generated.

-gnatu

List units for this compilation.

-gnatv

Verbose mode. Full error output with source lines to stdout.

-gnatwm

Warning mode (m=s,e,l for suppress, treat as error, elaboration
warnings).

-gnatzm

Distribution stub generation (m=r/s for receiver/sender stubs).

6

Chapter 1. Using the Compiler

-gnat83

Enforce Ada 83 restrictions.

-gnat95

Standard Ada 95 mode

You may combine a sequence of XGC Ada switches into a single
switch. For example, the specifying the switch

-gnatcfi3

is equivalent to specifying the following sequence of switches:

-gnatc -gnatf -gnati3

1.2.1. Error Message Control

The standard default format for error messages is called “brief
format”. Brief format messages are written to stdout (the standard
output file) and have the following form:

e.adb:3:04: Incorrect spelling of keyword "function"
e.adb:4:20: ";" should be "is"

The first integer after the file name is the line number and the
second integer is the column number. emacs can parse the error
messages and point to the referenced character. The following
switches allow control over the error message format:

-gnatv

The v stands for verbose. The effect is to write long-format
error messages to stdout. The same program compiled with
the -gnatv switch would generate:

3. funcion X (Q : Integer)
 |
 >>> Incorrect spelling of keyword "function"
 4. return Integer;
 |
 >>> ";" should be "is"

7

Error Message Control

The vertical bar indicates the location of the error, and the
“>>>” prefix can be used to search for error messages. When
this switch is used the only source lines output are those with
errors.

-gnatl

The l stands for list. This switch causes a full listing of the file
to be generated. The output is as follows:

1. procedure E is
 2. V : Integer;
 3. funcion X (Q : Integer)
 |
 >>> incorrect spelling of keyword "function"

 4. return Integer;
 |
 >>> ";" should be "is"

 5. begin
 6. return Q + Q;
 7. end;
 8. begin
 9. V := X + X;
 10. end E;

When you specify the -gnatv or -gnatl switches and standard
output is redirected, a brief summary is written to stderr
(standard error) giving the number of error messages and
warning messages generated.

-gnatb

The b stands for brief. This switch causes XGC Ada to generate
the brief format error messages to stdout as well as the verbose
format message or full listing.

-gnatmn

The m stands for maximum. n is a decimal integer in the range
of 1 to 999 and limits the number of error messages to be
generated. For example, using -gnatm2 might yield

8

Chapter 1. Using the Compiler

e.adb:3:04: Incorrect spelling of keyword "function"
e.adb:5:35: missing ".."
fatal error: maximum errors reached
compilation abandoned

-gnatf

The f stands for full. Normally, the compiler suppresses error
messages that are likely to be redundant. This switch causes
all error messages to be generated. One particular effect is for
the case of references to undefined variables. If a given variable
is referenced several times, the normal format of messages is

e.adb:7:07: "V" is undefined (more references follow)

where the parenthetical comment warns that there are additional
references to the variable V. Compiling the same program with
the -gnatf switch yields

e.adb:7:07: "V" is undefined
e.adb:8:07: "V" is undefined
e.adb:8:12: "V" is undefined
e.adb:8:16: "V" is undefined
e.adb:9:07: "V" is undefined
e.adb:9:12: "V" is undefined

-gnatq

The q stands for quit (really "don't quit"). In normal operation
mode the compiler first parses the program and determines if
there are any syntax errors. If there are, appropriate error
messages are generated and compilation is immediately
terminated. This switch tells XGC Ada to continue with
semantic analysis even if syntax errors have been found. This
may enable the detection of more errors in a single run. On the
other hand, the semantic analyzer is more likely to encounter
some internal fatal error when given a syntactically invalid
tree.

-gnate

Normally, the compiler saves up error messages and generates
them at the end of compilation in proper sequence. This switch
(the “e” stands for error) causes error messages to be generated

9

Error Message Control

as soon as they are detected. The use of -gnate usually causes
error messages to be generated out of sequence. Use this switch
when the compiler terminates abnormally because of an internal
error. In this case, the error messages may be lost. Sometimes
abnormal terminations are the result of mis-handled error
messages, so you may want to run with the -gnate switch to
determine whether any error messages were generated before
the crash.

In addition to error messages, corresponding to illegalities as
defined in the reference manual, the compiler detects two kinds of
warning situations.

First, the compiler considers some constructs suspicious and
generates a warning message to alert you to a possible error.
Second, if the compiler detects a situation that is sure to raise an
exception at run time, it generates a warning message. The
following shows an example of warning messages:

e.adb:4:24: warning: creation of object may raise Storage_Error
e.adb:10:17: warning: static value out of range
e.adb:10:17: warning: "Constraint_Error" will be raised at run time

XGC Ada detects a large number of situations which it considers
appropriate for the generation of warning messages. As always,
warnings are not definite indications of errors. For example, if you
do an out of range assignment with the deliberate intention of
raising a Constraint_Error exception, then the warning that may
be issued does not indicate an error. Some of the situations that
XGC Ada issues warnings for (at least some of the time) are:

• Possible infinitely recursive calls

• Out of range values being assigned

• Possible order of elaboration problems

• Unreachable code

• Variables that are never assigned a value

• Variables that are referenced before being initialized

• Task entries that are never accepted

10

Chapter 1. Using the Compiler

• Duplicate accepts for the same task entry in a select

• Objects that take too much storage

• Unchecked conversion with differing sizes

• Missing return statements in a function

• Incorrect pragmas

• Incorrect external names

• Allocation from empty storage pool

• Potentially blocking operations in protected types

• Suspicious parenthesization of expressions

• Mismatching bounds in an aggregate

• Attempt to return local value by reference

• Unrecognized pragmas

• Premature instantiation of generic body

• Attempt to pack aliased components

• Out of bounds array subscript

• Wrong length on string assignment

Three switches are available to control the handling of warning
messages:

-gnatwu (warn on unused entities)

This switch causes warning messages to be generated for
entities that are defined but not referenced, and for units that
are with'ed and not referenced. In the case of packages, a
warning is also generated if no entities in the package are
referenced. This means that if the package is referenced but
the only references are in use clauses or renames declarations,
a warning is still generated. A warning is also generated for a
generic package that is with'ed but never instantiated.

11

Error Message Control

-gnatwe (treat warnings as errors)

This switch causes warning messages to be treated as errors.
The warning string still appears, but the warning messages are
counted as errors, and prevent the generation of an object file.

-gnatws (suppress warnings)

The “s” stands for suppress. This switch completely suppresses
the output of all warning messages.

-gnatwl (warn on elaboration order errors)

This switch causes the generation of additional warning
messages relating to elaboration issues. See the separate chapter
on elaboration order handling for full details of the use of this
switch.

-gnatx

Normally the compiler generates full cross-referencing
information in the .ali file. This information is used by a
number of tools, including gnatfind and gnatxref. The -gnatx
switch suppresses this information. This saves some space and
may slightly speed up compilation, but means that these tools
cannot be used.

1.2.2. Debugging and Assertion Control

-gnata

The pragmas Assert and Debug normally have no effect and
are ignored. This switch, where “a” stands for assert, causes
Assert and Debug pragmas to be activated.

The pragmas have the form:

pragma Assert (Boolean-expression [, static-string-expression])
pragma Debug (procedure call)

The Assert pragma causes Boolean-expression to be tested.
If the result is True, the pragma has no effect (other than
possible side effects from evaluating the expression). If the
result is False, the exception Assert_Error declared in the

12

Chapter 1. Using the Compiler

package System.Assertions is raised (passing
static-string-expression, if present, as the message
associated with the exception). If no string expression is given
the default is a string giving the file name and line number of
the pragma.

The Debug pragma causes procedure to be called. Note that
pragma Debug may appear within a declaration sequence,
allowing debugging procedures to be called between
declarations.

1.2.3. Run-Time Checks

If you compile with the default options, XGC Ada will insert many
run-time checks into the compiled code, including code that
performs range checking against constraints, but not arithmetic
overflow checking for integer operations (including division by
zero) or checks for access before elaboration on subprogram calls.
All other run-time checks, as required by the Ada 95 Reference
Manual, are generated by default. The following gcc switches refine
this default behavior:

-gnatp

Suppress all run-time checks as though you have pragma
Suppress (all_checks) in your source. Use this switch to
improve the performance of the code at the expense of safety
in the presence of invalid data or program bugs.

-gnato

Enables overflow checking for integer operations. This causes
XGC Ada to generate slower and larger executable programs
by adding code to check for both overflow and division by
zero (resulting in raising Constraint_Error as required by Ada
semantics). Note that the -gnato switch does not affect the
code generated for any floating-point operations; it applies
only to integer operations. For floating-point, XGC Ada has
the Machine_Overflows attribute set to False and the normal
mode of operation is to generate IEEE NaN and infinite values
on overflow or invalid operations (such as dividing 0.0 by 0.0).

13

Run-Time Checks

-gnatE

Enables dynamic checks for access before elaboration on
subprogram calls and generic instantiations. For full details of
the effect and use of this switch, see Chapter 1, Using the
Compiler [1].

The setting of these switches only controls the default setting of
the checks. You may modify them using either Suppress (to remove
checks) or Unsuppress (to add back suppressed checks) pragmas
in the program source.

1.2.4. Using GCC for Syntax Checking

-gnats

The s stands for syntax. Run XGC Ada in syntax checking
only mode. For example, the command

$ prefix-gcc -c -gnats x.adb

compiles file x.adb in syntax-check-only mode. You can check
a series of files in a single command, and can use wild cards
to specify such a group of files. Note that you must specify the
-c (compile only) flag in addition to the -gnats flag.

You may use other switches in conjunction with -gnats. In
particular, -gnatl and -gnatv are useful to control the format
of any generated error messages.

The output is simply the error messages, if any. No object file
or ALI file is generated by a syntax-only compilation. Also,
no units other than the one specified are accessed. For example,
if a unit X with's a unit Y, compiling unit X in syntax check only
mode does not access the source file containing unit Y.

Normally, XGC Ada allows only a single unit in a source file.
However, this restriction does not apply in syntax-check-only
mode, and it is possible to check a file containing multiple
compilation units concatenated together. This is primarily used
by the gnatchop utility (see Chapter 5, Renaming Files with
gnatchop [49]).

14

Chapter 1. Using the Compiler

1.2.5. Using GCC for Semantic Checking

-gnatc

The c stands for check. Cause the compiler to operate in
semantic check mode, with full checking for all illegalities
specified in the reference manual, but without generation of
any source code (no object or ALI file generated).

Because dependent files must be accessed, you must follow
the XGC Ada semantic restrictions on file structuring to operate
in this mode:

• The needed source files must be accessible (see Section 1.3,
“Search Paths and the Run-Time Library” [21]).

• Each file must contain only one compilation unit.

• The file name and unit name must match (see Section A.3,
“File Naming Rules” [81]).

The output consists of error messages as appropriate. No object
file or ALI file is generated. The checking corresponds exactly
to the notion of legality in the Ada reference manual.

Any unit can be compiled in semantics-checking-only mode,
including units that would not normally be compiled (generic
library units, subunits, and specifications where a separate
body is present).

1.2.6. Compiling Ada 83 Programs

-gnat83

Although XGC Ada is primarily an Ada 95 compiler, it accepts
this switch to specify that an Ada 83 mode program is being
compiled. If you specify this switch, XGC Ada rejects Ada 95
extensions and applies Ada 83 semantics. It is not possible to
guarantee this switch does a perfect job; for example, some
subtle tests of pathological cases, such as are found in ACVC
tests that have been removed from the ACVC suite for Ada
95, may not compile correctly. However for practical purposes,
using this switch should ensure that programs that compile

15

Using GCC for Semantic Checking

correctly under the -gnat83 switch can be ported reasonably
easily to an Ada 83 compiler. This is the main use of the switch.

With few exceptions (most notably the need to use <> on
unconstrained generic formal parameters), it is not necessary
to use the -gnat83 switch when compiling Ada 83 programs,
because, with rare and obscure exceptions, Ada 95 is upwardly
compatible with Ada 83. This means that a correct Ada 83
program is usually also a correct Ada 95 program.

-gnat95

This switch specifies normal Ada 95 mode, and cancels the
effect of any previously given -gnat83 switch.

1.2.7. Style Checking

-gnatr

Normally, XGC Ada permits any code layout consistent with
the reference manual requirements. This switch (“r” is for
"reference manual") enforces the layout conventions suggested
by the examples and syntax rules of the Ada Language
Reference Manual. For example, an else must line up with an
if and code in the then and else parts must be indented. The
compile considers violations of the layout rules a syntax error
if you specify this switch.

-gnatg

Enforces a set of style conventions that correspond to the style
used in the XGC Ada source code. All compiler units are
always compiled with the -gnatg switch specified.

You can find the full documentation for the style conventions
imposed by -gnatg in the body of the package Style in the
compiler sources (in the file style.adb).

You should not normally use the -gnatg switch. However, you
must use -gnatg for compiling any language-defined unit, or
for adding children to any language-defined unit other than
Standard.

16

Chapter 1. Using the Compiler

1.2.8. Character Set Control

-gnatic

Normally XGC Ada recognizes the Latin-1 character set in
source program identifiers, as described in the reference
manual. This switch causes XGC Ada to recognize alternate
character sets in identifiers. c is a single character indicating
the character set, as follows:

1

Latin-1 identifiers

2

Latin-2 letters allowed in identifiers

3

Latin-3 letters allowed in identifiers

4

Latin-4 letters allowed in identifiers

p

IBM PC letters (code page 437) allowed in identifiers

8

IBM PC letters (code page 850) allowed in identifiers

f

Full upper-half codes allowed in identifiers

n

No upper-half codes allowed in identifiers

w

Wide-character codes allowed in identifiers

See Section A.2, “Foreign Language Representation” [78], for
full details on the implementation of these character sets.

-gnatje

Specify the method of encoding for wide characters. e is one
of the following:

17

Character Set Control

n

No wide characters allowed (default setting)

h

Hex encoding

u

Upper half encoding

s

Shift/JIS encoding

e

EUC encoding

See Section A.2.3, “Wide Character Encodings” [80] for full details
on the these encoding methods.

1.2.9. File Naming Control

-gnatkn

Activates file name "crunching". n, a decimal integer in the
range 1-999, indicates the maximum allowable length of a file
name (not including the .ads or .adb extension). The default
is not to enable file name crunching.

For the source file naming rules, see Section A.3, “File Naming
Rules” [81].

1.2.10. Subprogram Inlining Control

-gnatn

The n here is intended to suggest the first syllable of the word
"inline". XGC Ada recognizes and processes Inline pragmas.
However, for the inlining to actually occur, optimization must
be enabled. To enable inlining across unit boundaries, this is,
inlining a call in one unit of a subprogram declared in a with'ed
unit, you must also specify this switch. In the absence of this
switch, XGC Ada does not attempt inlining across units and
does not need to access the bodies of subprograms for which
pragma Inline is specified if they are not in the current unit.

18

Chapter 1. Using the Compiler

If you specify this the compiler will access these bodies,
creating an extra source dependency for the resulting object
file, and where possible, the call will be in-lined. See
Section D.3, “Inlining of Subprograms” [121] for further details
on when inlining is possible.

-gnatN

This switch enforces a more extreme form of inlining across
unit boundaries. It causes the compiler to proceed as though
the normal (pragma) inlining switch was set, and to assume
that there is a pragma Inline for every subprogram referenced
by the compiled unit.

1.2.11. Auxiliary Output Control

-gnatt

Cause XGC Ada to write the internal tree for a unit to a file
(with the extension .atb for a body or .ats for a spec). This
is not normally required, but is used by separate analysis tools.
Typically these tools do the necessary compilations
automatically, so you should never have to specify this switch
in normal operation.

-gnatu

Print a list of units required by this compilation on stdout. The
listing includes all units on which the unit being compiled
depends either directly or indirectly.

1.2.12. Debugging Control

-gnatdx

Activate internal debugging switches. x is a letter or digit, or
string of letters or digits, which specifies the type of debugging
outputs desired. Normally these are used only for internal
development or system debugging purposes. You can find full
documentation for these switches in the body of the Debug unit
in the compiler source file debug.adb.

One switch you may wish to use is -gnatdg, which causes a
listing of the generated code in Ada source form. For example,

19

Auxiliary Output Control

all tasking constructs are reduced to appropriate run-time library
calls. The syntax of this listing is close to normal Ada with the
following additions:

new xxx [storage_pool = yyy]

Shows the storage pool being used for an allocator.

at end procedure-name;

Shows the finalization (cleanup) procedure for a scope.

(if expr then expr else expr)

Conditional expression equivalent to the x?y:z construction
in C.

target^(source)

A conversion with floating-point truncation instead of
rounding.

target?(source)

A conversion that bypasses normal Ada semantic checking.
In particular enumeration types and fixed-point types are
treated simply as integers.

target?^(source)

Combines the above two cases.

x #/ y, x #mod y, x #* y, x #rem y
A division or multiplication of fixed-point values which
are treated as integers without any kind of scaling.

free expr [storage_pool = xxx]

Shows the storage pool associated with a free statement.

freeze typename [actions]

Shows the point at which typename is frozen, with possible
associated actions to be performed at the freeze point.

reference itype

Reference (and hence definition) to internal type itype.

function-name! (arg, arg, arg)

Intrinsic function call.

labelname : label

Declaration of label labelname.

20

Chapter 1. Using the Compiler

expr && expr && expr ... && expr

A multiple concatenation (same effect as expr & expr &
expr, but handled more efficiently).

[constraint_error]

Raise the Constraint_Error exception.

expression'reference

A pointer to the result of evaluating expression.

target-type!(source-expression)

An unchecked conversion of source-expression to
target-type.

[numerator/denominator]

Used to represent internal real literals (that) have no exact
representation in base 2-16 (for example, the result of
compile time evaluation of the expression 1.0/27.0).

1.3. Search Paths and the Run-Time Library

With the XGC Ada source-based library system, the compiler must
be able to find source files for units that are needed by the unit
being compiled. Search paths are used to guide this process.

The compiler compiles one source file whose name must be given
explicitly on the command line. In other words, no searching is
done for this file. To find all other source files that are needed (the
most common being the specs of units), the compiler looks in the
following directories, in the following order:

1. The directory containing the source file of the main unit being
compiled (the file name on the command line).

2. Each directory named by an -I switch given on the gcc
command line, in the order given.

3. Each of the directories listed in the value of the
ADA_INCLUDE_PATH environment variable. Construct this value
exactly as the PATH environment variable: a list of directory
names separated by colons.

4. The default location for the XGC Ada Run Time Library (RTL)
source files. This is determined at the time XGC Ada is built
and installed on your system.

21

Search Paths and the Run-Time Library

Specifying the switch -I- inhibits the use of the directory containing
the source file named in the command line. You can still have this
directory on your search path, but in this case it must be explicitly
requested with a -I switch.

The compiler outputs its object files and ALI files in the current
working directory. Caution: The object file can be redirected with
the -o switch; however, gcc and gnat1 have not been coordinated
on this so the ALI file will not go to the right place. Therefore, you
should avoid using the -o switch.

The packages Ada, System, and Interfaces and their children make
up the XGC Ada RTL, together with the simple System.IO package
used in the "Hello World" example. The sources for these units are
needed by the compiler and are kept together in one directory. Not
all of the bodies are needed, but all of the sources are kept together
anyway. In a normal installation, you need not specify these
directory names when compiling or binding. Either the environment
variables or the built-in defaults cause these files to be found.

In addition to the language-defined hierarchies (System, Ada and
Interfaces), the XGC Ada distribution provides a fourth hierarchy,
consisting of child units of XGC Ada. This is a collection of
generally useful routines. See the XGC Ada reference manual for
further details.

Besides the assistance in using the RTL, a major use of search
paths is in compiling sources from multiple directories. This can
make development environments much more flexible.

1.4. Order of Compilation Issues

If, in our earlier example, there was a spec for the hello procedure,
it would be contained in the file hello.ads; yet this file would not
need to be explicitly compiled. This is the result of the model we
chose to implement library management. Some of the consequences
of this model are as follows:

• There is no point in compiling or specs (except for package specs
with no bodies) because these are compiled as needed by clients.
If you attempt a useless compilation, you will receive an error
message. It is also useless to compile subunits because they are
compiled as needed by the parent.

22

Chapter 1. Using the Compiler

• There are no order of compilation requirements and performing
a compilation never obsoletes anything. The only way you can
obsolete something and require recompilations is to modify one
of the dependent source files.

• There is no library as such, apart from the ALI files (see
Section A.8, “The Ada Library Information Files” [87]., for
information on the format of these files). For now we find it
convenient to create separate ALI files, but eventually the
information therein may be incorporated into the object file
directly.

• When you compile a unit, the source files for the specs of all
units that it with's, all its subunits, and the bodies of any generics
it instantiates must be available (findable by the search-paths
mechanism described above), or you will receive a fatal error
message.

1.5. Examples

The following are some typical Ada compilation command line
examples:

$ prefix-gcc -c xyz.adb

Compile body in file xyz.adb with all default options.

$ prefix-gcc -c -O2 -gnatp -gnata xyz-def.adb

Compile the child unit package in file xyz-def.adb with
extensive optimizations, checks suppressed, and pragma
Assert/Debug statements enabled.

$ prefix-gcc -c -gnatc abc-def.adb

Compile the subunit in file abc-def.adb in
semantic-checking-only mode.

23

Examples

24

Binding with gnatbindChapter 2

This chapter describes the XGC Ada binder, gnatbind, which is
used to bind compiled XGC Ada objects. The gnatbind program
performs four separate functions:

1. Checks that a program is consistent, in accordance with the rules
in Chapter 10 of the Ada 95 Reference Manual. In particular,
error messages are generated if a program uses inconsistent
versions of a given unit.

2. Checks that an acceptable order of elaboration exists for the
program and issues an error message if it cannot find an order
of elaboration satisfying the rules in Chapter 10 of the Ada 95
Reference Manual.

3. Generates a main program incorporating the given elaboration
order. This program is a small C source file that must be
subsequently compiled using the C compiler. The two most
important functions of this program are to call the elaboration
routines of units in an appropriate order and to call the main
program.

4. Determines the set of object files required by the given main
program. This information is output as comments in the

25

generated C program, to be read by the gnatlink utility used to
link the Ada application.

2.1. Running gnatbind

The form of the gnatbind command is

$ prefix-gnatbind [switches] mainprog.ali [switches]

where mainprog.adb is the Ada file containing the main program
unit body. If no switches are specified, gnatbind constructs a C
file whose name is b_mainprog.c. For example, if given the
parameter “hello.ali”, for a main program contained in file
hello.adb, the binder output file would be b_hello.c.

When doing consistency checking, the binder takes any source
files it can locate into consideration. For example, if the binder
determines that the given main program requires the package Pack,
whose ALI file is pack.ali and whose corresponding source spec
file is pack.ads, it attempts to locate the source file pack.ads (using
the same search path conventions as previously described for the
gcc command). If it can located this source file, the time stamps
or source checksums must match. In other words, any ALI files
mentioning this spec must have resulted from compiling this version
of the source file (or in the case where the source checksums match,
a version close enough that the difference does not matter).

The effect of this consistency checking, which includes source
files, is that the binder ensures that the program is consistent with
the latest version of the source files that can be located at bind time.
Editing a source file without compiling files that depend on the
source file cause error messages to be generated from the binder.

For example, suppose you have a main program hello.adb and a
package P, from file p.ads and you perform the following steps:

1. Enter gcc -c hello.adb to compile the main program.

2. Enter gcc -c p.ads to compile package P.

3. Edit file p.ads.

4. Enter gnatbind hello.ali.

26

Chapter 2. Binding with gnatbind

At this point, the file p.ali contains an out-of-date time stamp
because the file p.ads has been edited. The attempt at binding fails,
and the binder generates the following error messages:

error: "hello.adb" must be recompiled ("p.ads" has been modified)
error: "p.ads" has been modified and must be recompiled

Now both files must be recompiled as indicated, and then the bind
can succeed, generating the spec and body of the main program.
You need not normally be concerned with the contents of these
files, but they are similar to the following:

pragma No_Run_Time;
package Ada_Main is
 Main_Priority : Integer;
 pragma Export (C, Main_Priority, "_main_priority");

 Queuing_Policy : constant Character := ' ';
 pragma Export (C, Queuing_Policy, "_queuing_policy");

 procedure adafinal;
 pragma Export (C, adafinal);

 procedure adainit;
 pragma Export (C, adainit);

 procedure Break_Start;
 pragma Export (C, Break_Start, "__break_start");

 function main
 return Integer;
 pragma Export (C, main, "main");

 type Version_32 is mod 2 ** 32;
 u00001 : constant Version_32 := 16#2B8FEC61#;
 u00002 : constant Version_32 := 16#26C73A9A#;
 u00003 : constant Version_32 := 16#6B5AC2B6#;
 u00004 : constant Version_32 := 16#37D0E260#;
 u00005 : constant Version_32 := 16#2299004B#;
 u00006 : constant Version_32 := 16#34601D38#;
 u00007 : constant Version_32 := 16#08D76389#;
 u00008 : constant Version_32 := 16#2359F9ED#;
 u00009 : constant Version_32 := 16#48E7D060#;
 u00010 : constant Version_32 := 16#34054F96#;

27

Running gnatbind

 pragma Export (C, u00001, "helloB");
 pragma Export (C, u00002, "text_ioS");
 pragma Export (C, u00003, "xgcS");
 pragma Export (C, u00004, "xgc__text_ioB");
 pragma Export (C, u00005, "xgc__text_ioS");
 pragma Export (C, u00006, "ada__exceptionsB");
 pragma Export (C, u00007, "ada__exceptionsS");
 pragma Export (C, u00008, "adaS");
 pragma Export (C, u00009, "systemS");
 pragma Export (C, u00010, "ada__io_exceptionsS");

end Ada_Main;

pragma Source_File_Name (Ada_Main, Spec_File_Name => "b~hello.ads");
pragma Source_File_Name (Ada_Main, Body_File_Name => "b~hello.adb");

with System;

package body Ada_Main is

 procedure adainit is
 begin
 Main_Priority := -1;
 -- Ada'Elab_Spec;
 Ada.Exceptions'Elab_Spec;
 -- System'Elab_Spec;
 -- Ada.Exceptions'Elab_Body;
 -- Ada.Io_Exceptions'Elab_Spec;
 -- Xgc'Elab_Spec;
 Xgc.Text_Io'Elab_Spec;
 -- Xgc.Text_Io'Elab_Body;
 -- Text_Io'Elab_Spec;
 -- Hello'Elab_Body;
 end adainit;

 procedure adafinal is
 begin
 null;
 end adafinal;

 procedure Break_Start is
 begin
 null;
 end Break_Start;

 function main return Integer is

28

Chapter 2. Binding with gnatbind

 procedure Ada_Main_Program;
 pragma Import (Ada, Ada_Main_Program, "_ada_hello");

 begin
 adainit;
 Break_Start;
 Ada_Main_Program;
 adafinal;
 return 0;
 end;

-- BEGIN Object file/option list
 -- ./hello.o
 -- -L./
 -- -L/opt/erc32-ada-1.8/lib/gcc-lib/erc-coff/2.8.1/adalib/
 -- -lgnat
-- END Object file/option list

end Ada_Main;

The list of unsigned constants gives the version number
information. Version numbers are computed by combining all the
characters from the source file, omitting blanks and characters in
comments. These values are used for implementation of the Version
and Body_Version attributes.

Finally, a set of comments gives full names of all the object files
required to be linked for the Ada component of the program. As
seen in the previous example, this list includes the files explicitly
supplied and referenced by the user as well as implicitly referenced
run-time unit files. The latter are omitted if the corresponding units
reside in shared libraries. The directory names for the run-time
units depend on the system configuration.

2.2. Consistency-Checking Modes

As described in the previous section, by default gnatbind checks
that object files are consistent with one another and are consistent
with any source files it can locate. The following switches to control
access to sources.

29

Consistency-Checking Modes

-s

Require source files to be present. In this mode, the binder
insists on being able to locate all source files that are referenced
and checks their consistency. In normal mode, if a source file
cannot be located it is simply ignored. If you specify this
switch, a missing source file is an error.

-x

Exclude source files. In this mode, the binder only checks that
ALI files are consistent with one another. Source files are not
accessed. The binder runs faster in this mode, and there is still
a guarantee that the resulting program is self-consistent. If a
source file has been edited because it was last compiled and
you specify the this switch, the binder will not detect that the
object file is out of date with the source file. Note that this is
the mode that is automatically used by gnatmake because in
this case the checking against sources has already been
performed by gnatmake.

2.3. Binder Error Message Control

The following switches provide control over the generation of error
messages from the binder:

-v

Verbose mode. In the normal mode, brief error messages are
generated to stderr. If this switch is present, a header is written
to stdout and any error messages are directed to stdout. All
that is written to stderr is a brief summary message.

-b

Generate brief error messages to stderr even if verbose mode
is specified. This is relevant only when used with the -v switch.

-mn

Limits the number of error messages to n, a decimal integer in
the range 1-999. The binder terminates immediately if this
limit is reached.

30

Chapter 2. Binding with gnatbind

-r

Renames the generated main program from main to gnat_main.
This is useful in the case of some cross-building environments,
where the actual main program is separate from the one
generated by gnatbind.

-ws

Suppress all warning messages.

-we

Treat any warning messages as fatal errors.

-t

Ignore time stamp errors. Any time stamp error messages are
treated as warning messages. This switch essentially
disconnects the normal consistency checking, and the resulting
program may have undefined semantics if inconsistent units
are present. This means that -t should be used only in unusual
situations, with extreme care.

2.4. Elaboration Control

The following switches provide additional control over the
elaboration order. See Appendix C, Handling Elaboration
Order [99] for full details.

-f

Requests the binder to ignore suggestions from the compiler
about implied Elaborate_All pragmas, and to use full reference
manual semantics in an attempt to find a legal elaboration
order, even if it seems likely that this order will cause an
elaboration exception.

-h

Normally the binder attempts to choose an elaboration order
that is likely to minimize the likelihood of an elaboration order
error resulting in raising a Program_Error exception. This
switch reverses the action of the binder, and requests that it

31

Elaboration Control

deliberately choose an order that is likely to maximize the
likelihood of an elaboration error

2.5. Output Control

The following switches allow additional control over the output
generated by the binder.

-e

Output complete list of elaboration-order dependencies,
showing the reason for each dependency. This output can be
rather extensive but may be useful in diagnosing problems with
elaboration order. The output is written to stdout.

-l

Output chosen elaboration order. The output is written to
stdout.

-o file

Set name of output file to file instead of the normal b_prog.c
default. You would normally give file an extension of .c
because it will be a C source program.

-c

Check only. Do not generate the binder output file. In this mode
the binder performs all error checks but does not generate an
output file.

2.6. Binding for Non-Ada Main Programs

In our description in this chapter so far we have assumed the main
program is in Ada and the task of the binder is to generate a
corresponding function main to pass control to this Ada main
program. XGC Ada also supports the building of executable
programs where the main program is not in Ada, but some of the
called routines are written in Ada and compiled using XGC Ada.
The following switch is used in this situation:

32

Chapter 2. Binding with gnatbind

-n

No main program. The main program is not in Ada.

In this case, most of the functions of the binder are still required,
but instead of generating a main program, the binder generates a
file containing the following callable routines:

adainit

You must call this routine to initialize the Ada part of the
program by calling the necessary elaboration routines. A call
to adainit is required before the first call to an Ada
subprogram.

adafinal

You must call this routine to perform any library-level
finalization required by the Ada subprograms. A call to
adafinal is required after the last call to an Ada subprogram,
and before the program terminates.

If the -n switch is given, more than one ALI file may appear on
the command line for gnatbind. The normal closure calculation
is performed for each of the specified units. Calculating the closure
means finding out the set of units involved by tracing with
references. The reason it is necessary to be able to specify more
than one ALI file is that a given program may invoke two or more
quite separate groups of Ada subprograms.

The binder takes the name of its output file from the first specified
ALI file, unless overridden by the use of the -o file, The output
file is a C source file, which must be compiled using the C compiler.
This compilation occurs automatically as part of the gnatmake
processing.

2.7. Summary of Binder Switches

The following are the switches available with gnatbind:

-b

Generate brief messages to stderr even if verbose mode set.

-c

Check only, no generation of binder output file.

33

Summary of Binder Switches

-e

Output complete list of elaboration-order dependencies.

-aI

Specify directory to be searched for source file.

-aO

Specify directory to be searched for ALI files.

-I

Specify directory to be searched for source and ALI files.

-I-

Do not look for sources in the current directory where gnatbind
was invoked, and do not look for ALI files in the directory
containing the ALI file named in the gnatbind command line.

-l

Output-chosen elaboration order.

-mn

Limit number of detected errors to n (1-999).

-n

No main program.

-o file

Name the output file file (default is b_xxx.c).

-s

Require all source files to be present.

-t

Ignore time-stamp errors.

-v

Verbose mode. Write error messages, header, summary output
to stdout.

-wx

Warning mode (x=s/e for suppress/treat as error)

-x

Exclude source files (check object consistency only).

34

Chapter 2. Binding with gnatbind

You may obtain this listing by running the program gnatbind with
no arguments.

2.8. Search Paths for gnatbind

The binder takes the name of an ALI file as its argument and needs
to locate source files as well as other ALI files to verify object
consistency.

For source files, it follows exactly the same search rules as gcc
(see Section 1.3, “Search Paths and the Run-Time Library” [21]).
For ALI files the directories searched are:

1. The directory containing the ALI file named in the command
line, unless the switch -I- is specified.

2. All directories specified by -I switches on the gnatbind
command line, in the order given.

3. Each of the directories listed in the value of the
ADA_OBJECTS_PATH environment variable. Construct this value
the same as the PATH environment variable: a list of directory
names separated by colons.

4. The default location for the XGC Ada Run-Time Library (RTL)
files, determined when XGC Ada was built and installed on
your system.

In the binder the switch -I is used to specify both source and library
file paths. Use -aI instead if you just want to specify source paths
only and -aO if you want to specify library paths only. This means
that for the binder -Idir is equivalent to -aIdir
\-aO\/OBJECT_SEARCH=dir. The binder generates the bind file (a C
language source file) in the current working directory.

The packages Ada, System, and Interfaces and their children make
up the XGC Ada Run-Time Library, together with the package
XGC Ada and its children which contain a set of useful additional
library functions provided by XGC Ada. The sources for these
units are needed by the compiler and are kept together in one
directory. The ALI files and object files generated by compiling
the RTL are needed by the binder and the linker and are kept
together in one directory, typically different from the directory
containing the sources. In a normal installation, you need not

35

Search Paths for gnatbind

specify these directory names when compiling or binding. Either
the environment variables or the built-in defaults cause these files
to be found.

Besides the assistance in using the RTL, a major use of search
paths is in compiling sources from multiple directories. This can
make development environments much more flexible.

2.9. Examples of gnatbind Usage

This section contains a number of examples of using the XGC Ada
binding utility gnatbind.

gnatbind hello.ali
The main program Hello (source program in hello.adb) is
bound using the standard switch settings. The generated main
program is b_hello.c. This is the normal, default use of the
binder.

gnatbind main.ali -o mainprog.c -x -e
The main program Main (source program in main.adb) is bound,
excluding source files from the consistency checking,
generating the file mainprog.c.

gnatbind -x main_program.ali -o mainprog.c
This command is exactly the same as the previous example.
Switches may appear anywhere in the command line, and single
letter switches may be combined into a single switch.

gnatbind -n math.ali dbase.ali -o ada-control.c
The main program is in a language other than Ada, but calls
to subprograms in packages Math and Dbase appear. This call
to gnatbind generates the file control.c containing the adainit
and adafinal routines to be called before and after accessing
the Ada subprograms.

36

Chapter 2. Binding with gnatbind

Linking with gnatlinkChapter 3

This chapter discusses gnatlink, a utility program used to link Ada
programs and build an executable file. This program is basically
a simple process which invokes the linker (via the gcc command)
with a correct list of object files and library references. gnatlink
automatically determines the list of files and references for the Ada
part of a program. It uses the binder file generated by the binder
to determine this list.

3.1. Running gnatlink

The form of the gnatlink command is

prefix-gnatlink [switches] mainprog[.ali] [non-Ada objects] [gcc options]

where mainprog.ali references the ALI file of the main program.
The .ali extension of this file can be omitted. From this reference,
gnatlink locates the corresponding binder file b_mainprog.c and,
using the information in this file along with the list of non-Ada
objects and linker options, constructs a linker command file to
create the executable.

37

The arguments following mainprog.ali are passed to the linker
uninterpreted. They typically include the names of object files for
units written in other languages than Ada and any library references
required to resolve references in any of these foreign language
units, or in pragma Import statements in any Ada units. This list
may also include linker switches.

gnatlink determines the list of objects required by the Ada program
and prepends them to the list of objects passed to gcc. gnatlink
also gathers any arguments set by the use of pragma Linker_Options
and adds them to the list of arguments presented to the linker.

3.2. Switches for gnatlink

The following switches are available with the gnatlink utility:

-o exec-name

exec-name specifies an alternative name for the generated
executable program. If this switch is omitted, the executable
is called the name of the main unit. So gnatlink try.ali creates
an executable called try.

-v

Causes additional information to be output, including a full
list of the included object files. This switch option is most
useful when you want to see what set of object files are being
used in the link step.

-g

The option to include debugging information causes the C bind
file (in other words, b_mainprog.c) to be compiled with -g. In
addition, the binder does not delete the b_mainprog.c and
b_mainprog.o files. Without -g, the binder removes these files
by default.

-gnatlink name

name is the name of the linker to be invoked. You normally
omit this switch, in which case the default name for the linker
is (gcc).

38

Chapter 3. Linking with gnatlink

Making Programs with
gnatmake

Chapter 4

A typical development cycle when working on an Ada program
consists of the following steps:

1. Edit some sources to fix bugs.

2. Add enhancements.

3. Compile all sources affected.

4. Re-bind and re-link.

5. Test.

The third step can be tricky, because not only do the modified files
have to be compiled, but any files depending on these files must
also be recompiled. The dependency rules in Ada can be quite
complex, especially in the presence of overloading, use clauses,
generics and in-lined subprograms.

gnatmake automatically takes care of the third and fourth steps of
this process. It determines which sources need to be compiled,
compiles them, and binds and links the resulting object files.

Unlike some other Ada make programs, the dependencies are
always accurately recomputed from the new sources. The source

39

based approach of the XGC Ada compilation model makes this
possible. This means that if changes to the source program cause
corresponding changes in dependencies, they will always be tracked
exactly correctly by gnatmake.

4.1. Running gnatmake

The gnatmake command has the form:

$ prefix-gnatmake switches unit_or_file_name

The only required argument is unit_or_file_name, which specifies
the compilation unit that is the main program. There are two ways
to specify this:

• By giving the lowercase name of the compilation unit (gnatmake
unit). In this case gnatmake will use the switches {-aIdir} and
{-Idir} to locate the appropriate file.

• By giving the name of the source containing it (gnatmake
[dir/]file.adb). If no relative or absolute directory dir is
specified, the input source file will be searched for in the
directory where gnatmake was invoked. gnatmake will not use
the switches {-aIdir} and {-Idir} to locate the source file.

All gnatmake output (except when you specify -M) is to stderr.
The output produced by the -M switch is send to stdout.

4.2. Switches for gnatmake

You may specify any of the following switches to gnatmake:

-a

Consider all files in the make process, even the XGC Ada
internal system files (for example, the predefined Ada library
files), and also any locked files. Locked files are filed whose
ALI file is write protected. By default, gnatmake does not
check these files, because the assumption is that the XGC Ada
internal files are properly up to date, and also that any write
protected ALI files have been properly installed. Note that if
there is an installation problem, such that one of these files is

40

Chapter 4. Making Programs with gnatmake

not up to date, it will be properly caught by the binder. You
may have to specify this switch if you are working on
XGC Ada itself. -f is also useful in conjunction with -a if you
need to recompile an entire application, including run-time
files, using special configuration pragma settings, such as a
non-standard Float_Representation pragma. By default
gnatmake -a compiles all XGC Ada internal files with gcc -c
-gnatg rather than gcc -c.

-c

Compile only. Do not perform binding and linking. If the root
unit specified by unit_or_file_name is not a main unit, this is
the default. Otherwise gnatmake will attempt binding and
linking unless all objects are up to date and the executable is
more recent than the objects.

-f

Force recompilations. Recompile all sources, even though some
object files may be up to date, but don't recompile predefined
or XGC Ada internal files or locked files (files with a write
protected ALI file), unless the -a switch is also specified.

-jn

Use n processes to carry out the (re)compilations. If you have
a multiprocessor machine, compilations will occur in parallel.
In the event of compilation errors, messages from various
compilations might get interspersed (but gnatmake will give
you the full ordered list of failing compiles at the end). If this
is problematic, rerun the make process with n set to 1 to get a
clean list of messages.

-k

Keep going. Continue as much as possible after a compilation
error. To ease the programmer's task in case of compilation
errors, the list of sources for which the compile fails is given
when gnatmake terminates.

-M

Check if all objects are up to date. If they are output the object
dependences to stdout in a form that can be directly exploited
in a Makefile. By default, each source file is prefixed with its

41

Switches for gnatmake

(relative or absolute) directory name. This name is whatever
you specified in the various -aI and -I switches. If you use
gnatmake -M -q (see -q below), only the source file names,
without relative paths, are output. If you just specify the -M
switch, dependencies of the XGC Ada internal system files are
omitted. This is typically what you want. If you also specify
the -a switch, dependencies of the XGC Ada internal files are
also listed. Note that dependencies of the objects in external
Ada libraries (see switch -aLdir in the following list) are never
reported.

-i

In normal mode, gnatmake compiles all object files and ALI
files into the current directory. If the -i switch is used, then
instead object files and ALI files that already exist are
overwritten in place. This means that once a large project is
organized into separate directories in the desired manner, then
gnatmake will automatically maintain and update this
organization. If no ALI files are found on the Ada object path
(See Section 1.3, “Search Paths and the Run-Time
Library” [21]), the new object and ALI files are created in the
directory containing the source being compiled. If another
organization is desired, where objects and sources are kept in
different directories, a useful technique is to create dummy
ALI files in the desired directories. These are dummy files, so
gnatmake will be forced to recompile the corresponding source
files, but it will be put the resulting object and ALI files in the
location where it found the dummy file.

-m

Specifies that the minimum necessary amount of re-compilation
be performed. Ignore time stamp differences when the only
modifications to a source file consist in adding/removing
comments, empty lines, spaces or tabs. This means that if you
have changed the comments in a source file or have simply
reformatted it, using this switch will tell gnatmake not to
recompile files that depend on it (provided other sources on
which these files depend have undergone no semantic
modifications).

42

Chapter 4. Making Programs with gnatmake

-n

Don't compile, bind, or link. Checks if all objects are up to
date. If they are not the full name of the first file that needs to
be recompiled is printed. Repeated use of this option, followed
by compiling the indicated source file, will eventually result
in recompiling all required units.

-o exec_name

Output executable name. The name of the final executable
program will be exec_name. If the -o switch is omitted the
default name for the executable will be the name of the input
file in appropriate form for an executable file.

-q

Quiet. When this flag is not set, the commands carried out by
gnatmake are displayed.

-v

Verbose. Displays the reason for all recompilations gnatmake
decides are necessary.

gcc switches

The switch -g or any uppercase switch (other than -A, or -L)
or any switch that is more than one character is passed to gcc
(e.g. -O, -gnato, etc.)

Source and library search path switches:

-aIdir

When looking for source files also look in directory dir. The
order in which source files search is undertaken is described
in Section 1.3, “Search Paths and the Run-Time Library” [21].

-aLdir

Consider dir as being an externally provided Ada library.
Instructs gnatmake to skip compilation units whose .ali files
have been located in directory dir. This allows you to have
missing bodies for the units in dir. You still need to specify
the location of the specs for these units by using the switches
-aIdir or -Idir. Note: this switch is provided for compatibility

43

Switches for gnatmake

with previous versions of gnatmake. The easier method of
causing standard libraries to be excluded from consideration
is to write protect the corresponding ALI files.

-aOdir

When searching for library and object files, look in directory
dir. The order in which library files are searched is described
in Section 2.8, “Search Paths for gnatbind” [35].

-Adir

Equivalent to -aLdir -aIdir.

-Idir

Equivalent to -aOdir -aIdir.

-I-

Do not look for source files in the directory containing the
source file named in the command line. Do not look for ALI
or object files in the directory where gnatmake was invoked.

-Ldir

Add directory dir to the list of directories in which the linker
will search for libraries. This is equivalent to -largs -Ldir.

4.3. Mode switches for gnatmake

The mode switches allow the inclusion of switches to be passed
on to the compiler, binder or linker. The effect of a mode switch
is to cause all subsequent switches up to the end of the switch list,
or up to the next mode switch, to be interpreted as switches to be
passed on to the designated component.

-cargs switches

Compiler switches. Here switches is a list of switches that are
valid switches for gcc. They will be passed on to all compile
steps performed by gnatmake.

44

Chapter 4. Making Programs with gnatmake

-bargs switches

Binder switches. Here switches is a list of switches that are
valid switches for gcc. They will be passed on to all bind steps
performed by gnatmake.

-largs switches

Linker switches. Here switches is a list of switches that are
valid switches for gcc. They will be passed on to all link steps
performed by gnatmake.

4.4. Notes on the Command Line

This section contains some additional useful notes on the operation
of the gnatmake command.

• If gnatmake finds no ALI files, it recompiles the main program
and all other units required by the main program. This means
that gnatmake can be used for the initial compile, as well as
during the re-edit development cycle.

• If you enter gnatmake file.adb, where file.adb is a subunit or
body of a generic unit, gnatmake recompiles file.adb (because
it finds no ALI) and stops, issuing a warning.

• In gnatmake the switch -I is used to specify both source and
library file paths. Use -aI instead if you just want to specify
source paths only and -aO if you want to specify library paths
only.

• gnatmake examines both an ALI file and its corresponding
object file for consistency. If an ALI is more recent than its
corresponding object, or the object is missing, the corresponding
source will be recompiled. Note that gnatmake expects an ALI
and the corresponding object file to be in the same directory.

• gnatmake will ignore any files whose ALI file is write protected.
This may conveniently be used to exclude standard libraries
from consideration and in particular it means that the use of the
-f switch will not recompile these files unless -a is also specified.

• gnatmake has been designed to make the use of Ada libraries
particularly convenient. Assume you have an Ada library
organized as follows: obj-dir contains the objects and ALI files

45

Notes on the Command Line

for of your Ada compilation units, whereas include-dir contains
the specs of these units, but no bodies. Then to compile a unit
stored in main.adb, which uses this Ada library you would just
type

$ prefix-gnatmake -aIinclude-dir -aLobj-dir main

• Using gnatmake along with the -s (minimal re-compilation)
switch provides an extremely powerful tool: you can freely
update the comments/format of your source files without having
to recompile everything. Note, however, that adding or deleting
lines in a source files may render its debugging info obsolete. If
the file in question is a spec, the impact is rather limited, as that
debugging info will only be useful during the elaboration phase
of your program. For bodies the impact can be more significant.
In all events, your debugger will warn you if a source file is
more recent than the corresponding object, and so obsolescence
of debugging information cannot go unnoticed.

4.5. How gnatmake Works

Generally gnatmake automatically performs all necessary
recompilations and you don't need to worry about how it works.
However, it may be useful to have some basic understanding of
the gnatmake approach and in particular to understand how it uses
the results of previous compilations without incorrectly depending
on them.

First a definition: an object file is considered up to date if the
corresponding ALI file exists and its time stamp predates that of
the object file and if all the source files listed in the dependency
section of this ALI file have time stamps matching those in the
ALI file. This means that neither the source file itself nor any files
that it depends on have been modified, and hence there is no need
to recompile this file.

gnatmake works by first checking if the specified main unit is up
to date. If so, no compilations is required for the main unit. If not,
gnatmake compiles the main program to build a new ALI file that
reflects the latest sources. Then the ALI file of the main unit is
examined to find all the source files on which the main program

46

Chapter 4. Making Programs with gnatmake

depends, and recursively applies the above procedure test on all
these files.

This process ensures that gnatmake only trusts the dependencies
in an existing ALI file if they are known to be correct. Otherwise
it always recompiles to determine a new, guaranteed accurate set
of dependencies. As a result the program is compiled "upside down"
from what may be more familiar as the required order of
compilation in some other Ada systems. In particular, clients are
compiled before the units on which they depend. The ability of
XGC Ada to compile in any order is critical in allowing an order
of compilation to be chosen that guarantees that gnatmake will
recompute a correct set of new dependencies if necessary.

4.6. Examples of gnatmake Usage

prefix-gnatmake hello.adb

Compile all files necessary to bind and link the main program
hello.adb (containing unit Hello) and bind and link the
resulting object files to generate an executable file hello.

prefix-gnatmake -q Main_Unit -cargs -O2 -bargs -l

Compile all files necessary to bind and link the main program
unit Main_Unit (from file main_unit.adb). All compilations
will be done with optimization level 2 and the order of
elaboration will be listed by the binder. gnatmake will operate
in quiet mode, not displaying commands it is executing.

47

Examples of gnatmake Usage

48

Renaming Files with
gnatchop

Chapter 5

This chapter discusses how to handle files with multiple units by
using the gnatchop utility. This utility is also useful in renaming
files to meet the standard XGC Ada default file naming
conventions.

5.1. Handling Files with Multiple Units

The basic compilation model of XGC Ada requires a file submitted
to the compiler have only one unit and there must be a strict
correspondence between the file name and the unit name.

The gnatchop utility allows both of these rules to be relaxed,
allowing XGC Ada to process files which contain multiple
compilation units and files with arbitrary file names. The approach
used by gnatchop is to read the specified file and generate one or
more output files, containing one unit per file and with proper file
names as required by XGC Ada.

If you want to permanently restructure a set of foreign files so that
they match the XGC Ada rules and do the remaining development
using the XGC Ada structure, you can simply use gnatchop once,
generate the new set of files and work with them from that point
on.

49

Alternatively, if you want to keep your files in the foreign format,
perhaps to maintain compatibility with some other Ada compilation
system, you can set up a procedure where you use gnatchop each
time you compile, regarding the source files that it writes as
temporary files that you throw away.

5.2. Command Line for gnatchop

The gnatchop command has the form:

$ prefix-gnatchop switches file name [directory]

The only required argument is the file name of the file to be
chopped. There are no restrictions on the form of this file name.
The file itself contains one or more Ada files, in normal XGC Ada
format, concatenated together.

When run in default mode, gnatchop generates one output file in
the current directory for each unit in the file. For example, given
a file called hellofiles containing

procedure hello;
with Text_IO; use Text_IO;
procedure hello is
begin
 Put_Line ("Hello");
end hello;

the command

$ prefix-gnatchop hellofiles

generates two files in the current directory, one called hello.ads
containing the single line that is the procedure spec, and the other
called hello.adb containing the remaining text. The original file
is not affected. The generated files can be compiled in the normal
manner.

directory, if specified, gives the name of the directory to which
the output files will be written. If it is not specified, all files are
written to the current directory.

50

Chapter 5. Renaming Files with gnatchop

5.3. Switches for gnatchop

gnatchop recognizes the following switches:

-kmm

Limit generated file names to the specified number characters.
This is useful if the resulting set of files is required to be
inter-operable with systems which limit the length of file
names.

-r

Generate Source_Reference pragmas. Use this switch if the
output files are regarded as temporary and development is to
be done in terms of the original unchopped file. This switch
causes Source_Reference pragmas to be inserted into each of
the generated files to refers back to the original file name and
line number. The result is that all error messages refer back to
the original unchopped file.

In addition, the debugging information placed into the object
file (when the -g switch of gcc or gnatmake is specified) also
refers back to this original file so that tools like profilers and
debuggers will give information in terms of the original
unchopped file.

-s

Write a compilation script to stdout containing gcc commands
to compile the generated files.

-w

Overwrite existing file names. Normally gnatchop regards it
as a fatal error situation if there is already a file with the same
name as a file it would otherwise output. This switch bypasses
this check, and any such existing files will be silently
overwritten.

51

Switches for gnatchop

5.4. Examples of gnatchop Use

gnatchop -w hello_s.ada src/files
Chops the source file hello_s.ada. The output files will be
placed in the directory src/files, overwriting any files with
matching names in that directory (no files in the current
directory are modified).

gnatchop -s -r collect
Chops the source file collect into the current directory. A
compilation script is also generated, and all output files have
Source_Reference pragmas, so error messages will refer back
to the file collect with proper line numbers.

gnatchop archive
Chops the source file archive into the current directory. One
useful application of gnatchop is in sending sets of sources
around, for example in email messages. The required sources
are simply concatenated (for example, using a UNIX cat
command), and then gnatchop is used at the other end to
re-constitute the original file names.

52

Chapter 5. Renaming Files with gnatchop

Cross-Referencing with
gnatxref

Chapter 6

The compiler generates cross-referencing information (unless you
set the -gnatx switch), which is saved in the .ali files. This
information indicates where in the source each entity is declared
and referenced.

The two tools gnatxref and gnatfind take advantage of this
information to provide the user with the capability to easily locate
the declaration and references to an entity. These tools are quite
similar, the difference being that gnatfind is intended for locating
definitions and/or references to a specified entity or entities,
whereas gnatxref is oriented to generating a full report of all
cross-references.

6.1. Command Line of gnatxref

The gnatxref command line is of the following form:

$ prefix-gnatxref [switches] files

53

6.2. Switches for gnatxref

The following list contains the descriptions of the cross-referencing
flags available with gnatxref:

-a

If this switch is present, gnatfind and gnatxref will parse the
read-only files found in the library search path. Otherwise,
these files will be ignored. This option can be used to protect
Gnat sources or your own libraries from being parsed, thus
making gnatfind and gnatxref much faster, and their output
much smaller.

-aIDIR

When looking for source files also look in directory DIR. The
order in which source file search is undertaken is the same as
for gnatmake.

-aODIR

When searching for library and object files, look in directory
DIR. The order in which library files are searched is the same
as for gnatmake.

-f

If this switch is set, the output file names will be preceded by
their directory (if the file was found in the search path). If this
switch is not set, the directory will not be printed.

-g

If this switch is set, information is output only for library-level
entities, ignoring local entities. The use of this switch may
accelerate gnatfind and gnatxref.

-IDIR

Equivalent to -aODIR -aIDIR.

-PFILE

Specify a project file to use. By default, gnatxref and gnatfind
will try to locate a project file in the current directory.

If a project file is either specified or found by the tools, then
the content of the source directory and object directory lines
are added as if they had been specified respectively by -aI and
-aO.

54

Chapter 6. Cross-Referencing with gnatxref

-u

Output only unused symbols. This may be really useful if you
give your main compilation unit on the command line, as
gnatxref will then display every unused entity and 'with'ed
package.

-v

Instead of producing the default output, gnatxref will generate
a tags file that can be used by vi. See examples of gnatxref
usage for examples how to use this feature. The tags file is
output to the standard output, thus you will have to redirect it
to a file.

All these switches may be in any order on the command line, and
may even appear after the file names. They need not be separated
by spaces, thus you can say gnatxref -ag instead of gnatxref -a
-g.

6.3. Command Line of gnatfind

The gnatfind command line is of the following form:

$ prefix-gnatfind pattern[:sourcefile[:line[:column]]] [files]

where

pattern

An entity will be output only if it matches the regular
expression found in pattern (See Section 6.3.1, “Regular
expressions in gnatfind and gnatxref” [56]).

Omitting the pattern is equivalent to specifying *, which will
match any entity. Note that if you do not provide a pattern, you
have to provide both a sourcefile and a line.

Entity names are given in Latin-1, with upper-lower case
equivalence for matching purposes. At the current time there
is no support for 8-bit codes other than Latin-1, or for wide
characters in identifiers.

sourcefile

gnatfind will look for references, bodies or declarations of
symbols referenced in sourcefile, at line line and column
column. See examples of gnatfind usage, for syntax examples.

55

Command Line of gnatfind

line

is a decimal integer identifying the line number containing the
reference to the entity (or entities) to be located.

column

is a decimal integer identifying the exact location on the line
of the first character of the identifier for the entity reference.
Columns are numbered from 1.

files

The search will be restricted to these files. If none are given,
then the search will be done for every library file in the search
path. These file must appear only after the pattern or sourcefile.

At least one of sourcefile or pattern has to be present on the
command line.

6.3.1. Regular expressions in gnatfind and gnatxref

As specified in the section about gnatfind, the pattern can be a
regular expression. Actually, there are to set of regular expressions
which are recognized by the program :

globbing patterns
These are the most usual regular expression. They are the same
that you generally used in a UNIX shell command line, or in
a DOS session.

Here is a more formal grammar :

regexp ::= term
 term ::= elmt -- matches elmt
 term ::= elmt elmt -- concatenation (elmt then elmt)
 term ::= * -- any string of 0 or more characters
 term ::= ? -- matches any character
 term ::= [char {char}] -- matches any character listed
 term ::= [char - char] -- matches any character in range

full regular expression
The second set of regular expressions is much more powerful.
This is the type of regular expressions recognized by utilities
such a grep.

The following is the form of a regular expression, expressed
in Ada reference manual style BNF is as follows:

56

Chapter 6. Cross-Referencing with gnatxref

regexp ::= term {| term} -- alternation (term or term ...)

 term ::= item {item} -- concatenation (item then item)

 item ::= elmt -- match elmt
 item ::= elmt * -- zero or more elmt's
 item ::= elmt + -- one or more elmt's
 item ::= elmt ? -- matches elmt or nothing

 elmt ::= nschar -- matches given character
 elmt ::= [nschar {nschar}] -- matches any character listed
 elmt ::= [^ nschar {nschar}] -- matches any character not listed
 elmt ::= [char - char] -- matches chars in given range
 elmt ::= \ char -- matches given character
 elmt ::= . -- matches any single character
 elmt ::= (regexp) -- parens used for grouping

 char ::= any character, including special characters
 nschar ::= any character except ()[].*+?^

Following are a few examples :

abcde|fghi

will match any of the two strings “abcde” and “fghi”.

abc*d

will match any string like “abd”, “abcd”, “abccd”,
“abcccd”, and so on

[a-z]+

will match any string which has only lower-case characters
in it (and at least one character

6.4. Example of the Use of gnatxref

test.adb

01 with Part1; -- unused
02 with Part2; use Part2;
03 procedure Test is
04
05 Thing : Number;
06 type Client is record
07 Number : Integer;
08 State : Boolean;

57

Example of the Use of gnatxref

09 end record;
10 type Color is (Red, Green); -- unused
11 My_Client : Client;
12
13 begin
14 My_Client.Number := 1;
15 My_Client.State := True;
16 Thing := 20;
17 Thing := Thing + Thing;
18 end;

part1.ads

01 package Part1 is
02 type Useless is new Integer;
03 end;

part2.ads

01 package Part2 is
02 type Number is new Integer range 1 .. 1000;
03 The_Number : constant := 42;
04 end;

The result of invoking gnatxref test is:

$ prefix-gnatxref test
Part1 U part1.ads:1:9 {} {test.adb:1:6 }
Part2 U part2.ads:1:9 {} {test.adb:2:6 2:17 }
Number I part2.ads:2:9 {} {test.adb:5:12 }
Test U test.adb:3:11 {} {}
Thing I test.adb:5:4 {test.adb:16:4 17:4 } {test.adb:17:13 17:21 }
Client R test.adb:6:9 {} {test.adb:11:16 }
Number I test.adb:7:7 {} {test.adb:14:14 }
State E test.adb:8:7 {} {test.adb:15:14 }
Color E test.adb:10:9 {} {}
My_Client R test.adb:11:4 {test.adb:14:14 15:14 } {test.adb:14:4 15:4 }

58

Chapter 6. Cross-Referencing with gnatxref

Shortening File Names
with gnatkr

Chapter 7

This chapter discusses the method used by the compiler to shorten
the default file names chosen for Ada units so that they do not
exceed the maximum length permitted, and also describes the
gnatkr utility that can be used to determine the result of applying
this shortening.

7.1. About gnatkr

The normal rule in using XGC Ada if default file names are used
is that the file name must be derived from the unit name. The exact
default rule is: Take the unit name and replace all dots by hyphens,
except that if such a replacement occurs in the second character
position of a name and the first character is one of a/g/s/i then
replace the dot by the character ~ (tilde) instead of a minus. The
reason for this special exception is to avoid clashes with the
standard names for children of System, Ada and Interfaces, which
use the prefixes -s -a and -i respectively.

The -gnatknn switch of the compiler activates a “crunching” circuit
that limits file names to nn characters (where nn is a decimal
integer). For example, using OpenVMS, where the maximum file
name length is 63, the value of nn is usually set to 63, but if you

59

want to generate a set of files that would be usable if ported to a
system with some different maximum file length, then a different
value might be appropriate. The default value of 63 for OpenVMS
need not be specified.

The gnatkr utility can be used to determine the crunched name for
a given file, when crunched to a specified maximum length.

7.2. Using gnatkr

The gnatkr command has the form

$ prefix-gnatkr name [length]

name can be an Ada name with dots or the XGC Ada name of the
unit where the dots representing child units or subunit are replaced
by hyphens. The only confusion arises if a name ends in .ads or
.adb. gnatkr takes this to be an extension if there are no other dots
in the name and the whole name is in lowercase.

length represents the length of the crunched name. The default
without any argument given is 8 characters. A length of zero stands
for unlimited, in other words no chop except for system files which
are always 8.

The output is the crunched name. The output has an extension only
if the original argument was a file name with an extension.

7.3. Crunching Method

The initial file name is determined by the name of the unit that the
file contains. The name is formed by taking the full expanded name
of the unit and replacing the separating dots with hyphens and using
lowercase for all letter, except that a hyphen in the second character
position is replaced by a tilde if the first character is a, i, g, or s.
The extension is .ads for a specification and .adb for a body.
Crunching does not affect the extension, but the file name is shorted
to the specified length by following these rules:

• The name is divided into segments separated by hyphens, tildes
or underscores and all hyphens, tildes, and underscores are
eliminated. If this leaves the name short enough, we are done.

60

Chapter 7. Shortening File Names with gnatkr

• If not the longest segment is located (left-most if there are two
of equal length), and shortened by dropping its last character.
This is repeated until the name is short enough.

As an example, consider the krunch of
our-strings-wide_fixed.adb to fit the name into 8 characters
as required by some operating systems.

our-strings-wide_fixed 22
our strings wide fixed 19
our string wide fixed 18
our strin wide fixed 17
our stri wide fixed 16
our stri wide fixe 14
our str wide fixe 14
our str wid fixe 13
our str wid fix 12
ou str wid fix 11
ou st wid fix 10
ou st wi fix 9
ou st wi fi 8
Final file name: oustwifi.adb

• The file names for all predefined units are always crunched to
eight characters. The crunching of these predefined units uses
the following special prefix replacements:

ada-

replaced by a-

gnat-
replaced by g-

interfaces-

replaced by i-

system-

replaced by s-

These system files have a hyphen in the second character
position. That is why normal user files replace such a character
with a tilde, to avoid confusion with system file names.

As an example of this special rule, consider
ada-strings-wide_fixed.adb, which gets crunched as follows:

61

Crunching Method

ada-strings-wide_fixed 22
a- strings wide fixed 18
a- string wide fixed 17
a- strin wide fixed 16
a- stri wide fixed 15
a- stri wide fixe 14
a- str wide fixe 13
a- str wid fixe 12
a- str wid fix 11
a- st wid fix 10
a- st wi fix 9
a- st wi fi 8
Final file name: a-stwifi.adb

Of course no file shortening algorithm can guarantee uniqueness
over all possible unit names, and if file name crunching is used
then it is your responsibility to ensure that no name clashes occur.
The utility program gnatkr is supplied for conveniently determining
the crunched name of a file.

7.4. Examples of gnatkr Usage

$ prefix-gnatkr very_long_unit_name.ads
velounna.ads
$ prefix-gnatkr very_long_unit_name.ads 6
vlunna.ads
$ prefix-gnatkr very_long_unit_name.ads 0
very_long_unit_name.ads
$ prefix-gnatkr grandparent-parent-child.ads
grparchi.ads
$ prefix-gnatkr Grandparent.Parent.Child
grparchi

62

Chapter 7. Shortening File Names with gnatkr

Preprocessing with
gnatprep

Chapter 8

The gnatprep utility provides a simple preprocessing capability
for Ada programs. It is designed for use with XGC Ada, but is not
dependent on any special features of XGC Ada.

8.1. Using gnatprep

To call gnatprep use

$ prefix-gnatprep infile outfile deffile switches

where

infile

is the full name of the input file, which is an Ada source file
containing preprocessor directives.

outfile

is the full name of the output file, which is an Ada source in
standard Ada form. When used with XGC Ada, this file name
will normally have an ads or adb suffix.

63

deffile

is the full name of a text file containing definitions of symbols
to be referenced by the preprocessor.

switches

is an optional sequence of switches as described in the next
section

8.2. Switches for gnatprep

-c

Causes both preprocessor lines and the lines deleted by
preprocessing to be retained in the output source as comments
marked with the special string "-! ". This option will result in
line numbers being preserved in the output file.

-b

Causes both preprocessor lines and the lines deleted by
preprocessing to be replaced by blank lines in the output source
file, preserving line numbers in the output file.

-r

Causes a Source_Reference pragma to be generated that
references the original input file, so that error messages will
use the file name of this original file. The use of this switch
forces -b if -c is not set, so that source line numbers are not
modified.

-s

Causes a sorted list of symbol names and values to be listed
on the standard output file.

-v

Causes gnatprep to output a copyright notice including the
version number of gnatprep.

Note: if neither -b nor -c is present, then preprocessor lines and
deleted lines are completely removed from the output, unless -r is
specified, in which case -b is assumed.

8.3. Form of definitions file

The definitions file contains lines of the form

64

Chapter 8. Preprocessing with gnatprep

symbol := value

where symbol is an identifier, following normal Ada
(case-insensitive) rules for its syntax, and value is one of the
following:

• Empty, corresponding to a null substitution

• A string literal using normal Ada syntax

• Any sequence of characters from the set (letters, digits, period,
underline)

Comment lines may also appear in the definitions file, starting with
the usual -, and comments may be added to the definitions lines.

8.4. Form of input text for gnatprep

The input text may contain preprocessor conditional inclusion lines,
and also general symbol substitution sequences. The preprocessor
conditional inclusion commands have the form

#if [not] symbol [then]
lines
#elsif [not] symbol [then]
lines
#elsif [not] symbol [then]
lines
...
#else
lines
#end if;

For these Boolean tests, the symbol must have either the value True
or False. If the value is True, then the corresponding lines are
included, and if the value is False, they are excluded. It is an error
to reference a symbol not defined in the symbol definitions file, or
to reference a symbol that has a value other than True or False.
The use of the not operator inverts the sense of this logical test, so
that the lines are included only if the symbol is not defined. The
THEN keyword is optional as shown

65

Form of input text for gnatprep

The # must be in column one, but otherwise the format is free form.
Spaces or tabs may appear between the # and the keyword. The
keywords and the symbols are case insensitive as in normal Ada
code. Comments may be used on a preprocessor line, but other
than that, no other tokens may appear on a preprocessor line. Any
number of #elsif clauses can be present, including none at all.
The #else is optional, as in Ada.

The # marking the start of a preprocessor line must be the first
non-blank character on the line, that is it must be preceded only
by spaces or horizontal tabs.

Symbol substitution is obtained by using the sequence:

$symbol

anywhere within a source line, except in a comment. The identifier
following the $ must match one of the symbols defined in the
symbol definition file, and the result is to substitute the value of
the symbol in place of $symbol in the output file.

66

Chapter 8. Preprocessing with gnatprep

Browsing the Library
with gnatls

Chapter 9

gnatls is a tool that outputs information about compiled units. It
gives the relationship between objects, unit names and source files.
It can also be used to check the source dependencies of a unit as
well as various characteristics.

9.1. Running gnatls

The gnatls command has the form:

$ prefix-gnatls switches object_or_ali_file

The main argument is the list of object or ali files (see Section A.8,
“The Ada Library Information Files” [87].) for which information
is requested.

In normal mode, without additional option, gnatls produces a
four-column listing. Each line represents information for a specific
object. The first column gives the full path of the object, the second
column gives the name of the principal unit in this object, the third
column gives the status of the source and the fourth column gives
the full path of the source representing this unit. Here is a simple
example of use:

67

$ prefix-gnatls *.o
./demo1.o demo1 DIF demo1.adb
./demo2.o demo2 OK demo2.adb
./hello.o h1 OK hello.adb
./instr-child.o instr.child MOK instr-child.adb
./instr.o instr OK instr.adb
./tef.o tef DIF tef.adb
./text_io_example.o text_io_example OK text_io_example.adb
./tgef.o tgef DIF tgef.adb

The first line can be interpreted as follows: the main unit which is
contained in object file demo1.o is demo1, whose main source is
in demo1.adb. Furthermore, the version of the source used for the
compilation of demo1 has been modified (DIF). Each source file
has a status qualifier which can be OK, MOK, DIF or NFP:

OK (unchanged)

The version of the source file used for the compilation of the
specified unit corresponds exactly to the actual source file.

MOK (slightly modified)

The version of the source file used for the compilation of the
specified unit differs from the actual source file but not enough
to require re-compilation (this information is not currently used
by gnatmake but may be in some future version of the system).

DIF (modified)

No version of the source found on the path corresponds to the
source used to build this object.

??? (file not found)

No source file was found for this unit.

HID (hidden, unchanged version not first on PATH)

The version of the source that corresponds exactly to the source
used for compilation has been found on the path but it is hidden
by another version of the same source that has been modified.

9.2. Switches for gnatls

gnatls recognizes the following switches:

68

Chapter 9. Browsing the Library with gnatls

-a

Consider all units, including those of the predefined Ada
library. Especially useful with -d.

-d

List sources from which specified units depend on.

-h

Output the list of options.

-o

Only output information about object files.

-s

Only output information about source files.

-u

Only output information about compilation units.

-aOdir, -aIdir, -Idir, -I-
Source and Object path manipulation. Same meaning as the
equivalent gnatmake flags. See Section 4.2, “Switches for
gnatmake” [40]

-v

Verbose mode. Output the complete source and object paths.
Do not use the default column layout but instead use long
format giving as much as information possible on each
requested units, including special characteristics such as:

Preelaborable

The unit is preelaborable in the Ada 95 sense.

No_Elab_Code

No elaboration code has been produced by the compiler
for this unit.

Pure

The unit is pure in the Ada 95 sense.

69

Switches for gnatls

Elaborate_Body

The unit contains a pragma Elaborate_Body.

Remote_Types

The unit contains a pragma Remote_Types.

Shared_Passive

The unit contains a pragma Shared_Passive.

Predefined

This Unit is part of the predefined environment and cannot
be modified by the user.

Remote_Call_Interface

The unit contains a pragma Remote_Call_Interface.

9.3. Example of the Use of gnatls

Example of using the verbose switch. Note how the source and
object paths are affected by the -I switch.

$ prefix-gnatls -v hello
GNATLS 1.8 Copyright 1997-2001 Free Software Foundation, Inc.

Source Search Path:
 <Current_Directory>
 /opt/.../lib/gcc-lib/prefix/2.8.1/adainclude/

Object Search Path:
 <Current_Directory>
 /opt/.../lib/gcc-lib/prefix/2.8.1/adalib/

./hello.o
 Unit =>
 Name => hello
 Kind => subprogram body
 Flags => No_Elab_Code
 Source => hello.adb unchanged

Examples of use of the dependency list. Note the use of the -s
switch which gives a straight list of source file. This can be useful
for building specialized scripts.

70

Chapter 9. Browsing the Library with gnatls

$ prefix-gnatls -d hello
./hello.o hello
 OK hello.adb
 OK io.ads

$ prefix-gnatls -d -s -a hello

hello.adb
io.ads
/opt/.../lib/gcc-lib/prefix/2.8.1/adainclude/system.ads
/opt/.../lib/gcc-lib/prefix/2.8.1/adainclude/s-unstyp.ads

71

Example of the Use of gnatls

72

Other Utility ProgramsChapter 10

This chapter discusses some other utility programs that are included
with XGC Ada.

10.1. Using Other Utility Programs With XGC Ada

The object files generated by XGC Ada are in standard system
format and in particular the debugging information uses this format.
This means programs generated by XGC Ada can be used with
existing utilities that depend on these formats.

10.2. The gnatpsys Utility Program

Many of the definitions in package System are implementation
dependent. Furthermore, although the source of the package System
is available for inspection, it uses special attributes for
parameterizing many of the critical values, so the source is not
informative.

The gnatpsys utility is designed to deal with this situation. It is an
Ada program that when it runs, dynamically determines the values
of all the relevant parameters in System, and prints them out in the

73

form of an Ada source listing for System that shows all the values
that are of interest. This output is generated to stdout.

To determine the value of any parameter in package System, simply
run gnatpsys with no qualifiers or arguments, and examine the
output. This is preferable to consulting documentation, because
you know that the values you are getting are the actual ones
provided by the system.

10.3. The gnatpsta Utility Program

Many of the definitions in package Standard are implementation
dependent. However, the source of this package does not exist as
an Ada source file, so these values cannot be determined by
inspecting the source. They can be determined by examining in
detail the coding of cstand.adb which creates the image of Standard
in the compiler, but this is awkward and requires a great deal of
internal knowledge about the system.

The gnatpsta utility is designed to deal with this situation. It is an
Ada program that when it runs, dynamically determines the values
of all the relevant parameters in Standard, and prints them out in
the form of an Ada source listing for Standard that shows all the
values that are of interest. This output is generated to stdout.

To determine the value of any parameter in package Standard,
simply run gnatpsta with no qualifiers or arguments, and examine
the output. This is preferable to consulting documentation, because
you know that the values you are getting are the actual ones
provided by the system.

10.4. The External Symbol Naming Scheme of XGC Ada

In order to interpret the output from XGC Ada, when using tools
that are originally intended for use with other languages, it is useful
to understand the conventions used to generate link names from
the Ada entity names.

All names are in all lower-case letters. With the exception of library
procedure names, the mechanism used is simply to use the full
expanded Ada name with dots replaced by double underscores.
For example, suppose we have the following package spec:

74

Chapter 10. Other Utility Programs

package QRS is MN : Integer; end QRS;

The variable MN has a full expanded Ada name of QRS.MN, so the
corresponding link name is qrs__mn. Of course if a pragma Export
is used this may be overridden:

package Exports is
 Var1 : Integer;
 pragma Export (Var1, C, External_Name => "var1_name");
 Var2 : Integer;
 pragma Export (Var2, C, Link_Name => "var2_link_name");
end Exports;

In this case, the link name for Var1 is var1_name, and the link name
for Var2 is var2_link_name.

One exception occurs for library level procedures. A potential
ambiguity arises between the required name _main for the C main
program, and the name we would otherwise assign to an Ada library
level procedure called Main (which might well not be the main
program).

To avoid this ambiguity, we attach the prefix _ada_ to such names.
So if we have a library level procedure such as

procedure Hello (S : String);

the external name of this procedure will be _ada_hello.

75

The External Symbol Naming Scheme of XGC Ada

76

The Compilation ModelAppendix A

This Appendix describes the compilation model used by XGC Ada.
Although similar to that used by other languages, such as C and
C++, this model is different from the traditional Ada compilation
models, which are based on a library. The model is initially
described without reference to this traditional model. If you have
not previously used an Ada compiler, you need only read the first
part of this Appendix. The last section describes and discusses the
differences between the XGC Ada model and the traditional Ada
compiler models. If you have used other Ada compilers, you may
find this section helps you to understand those differences.

A.1. Source Representation

Ada source programs are represented in standard text files, using
Latin-1 coding. Latin-1 is the ASCII character set with additional
characters used for representing foreign languages (see Section A.2,
“Foreign Language Representation” [78] for support of international
character sets). The format effector characters are represented using
their standard ASCII encodings, as follows:

16#0B#Vertical tabVT

16#09#Horizontal tabHT

77

16#0D#Carriage returnCR

16#0A#Line feedLF

16#0C#Form feedFF

The end of physical lines is marked by any of the following
sequences: LF, CR, CR-LF, or LF-CR. Standard UNIX-format files
simply use LF to terminate physical lines. The other combinations
are recognized to provide convenient processing for files imported
from other operating systems.

The end of a source file is normally represented by the physical
end of file. However the control character 16#1A# (Ctrl+Z) is also
represented as signaling the end of the source file. Again, this is
provided for compatibility with other operating systems where this
code is used to represent the end of file.

Each file contains a single Ada compilation unit, including any
pragmas associated with the unit. For example, this means you
must place a package declaration (a package spec) and the
corresponding body in separate files. An Ada compilation (which
is a sequence of compilation units) is represented using a sequence
of files. Similarly, you will place each subunit or child unit in a
separate file.

A.2. Foreign Language Representation

XGC Ada supports the standard character sets defined in Ada 95
as well as several other non-standard character sets for use in
localized versions of the compiler.

A.2.1. Latin-1

The basic character set is Latin-1. This character set is defined by
ISO standard 8859, part 1. The lower half (character codes 16#00#
... 16#7F#) is identical to standard ASCII coding, but the upper half
is used to represent additional characters. This includes extended
letters used by European languages, such as the vowels with
umlauts used in German, and the extra letter A-ring used in
Swedish.

For a complete list of Latin-1 codes and their encodings, see the
source of library unit Ada.Characters.Latin_1. You may use any

78

Appendix A. The Compilation Model

of these extended characters freely in character or string literals.
In addition, the extended characters that represent letters can be
used in identifiers.

A.2.2. Other Eight-Bit Codes

XGC Ada also supports several other eight-bit coding schemes:

Latin-2

Latin-2 letters allowed in identifiers, with uppercase and
lowercase equivalence.

Latin-3

Latin-3 letters allowed in identifiers, with uppercase and
lowercase equivalence.

Latin-4

Latin-4 letters allowed in identifiers, with uppercase and
lowercase equivalence.

IBM PC (code page 437)

This code page is the normal default for PCs in the USA. It
corresponds to the original IBM PC character set. This set has
some, but not all, of the extended Latin-1 letters, but these
letters do not have the same encoding as Latin-1. In this mode,
these letters are allowed in identifiers with uppercase and
lowercase equivalence.

IBM PC (code page 850)

This code page is a modification of 437 extended to include
all the Latin-1 letters, but still not with the usual Latin-1
encoding. In this mode, all these letters are allowed in
identifiers with uppercase and lowercase equivalence.

Full Upper 8-bit
Any character in the range 80-FF allowed in identifiers, and
all are considered distinct. In other words, there are no
uppercase and lower case equivalences in this range. This is
useful in conjunction with certain encoding schemes used for

79

Other Eight-Bit Codes

some foreign character sets (e.g. the typical method of
representing Chinese characters on the PC).

No Upper-Half
No upper-half characters in the range 80-FF are allowed in
identifiers. This gives Ada 83 compatibility for identifier
names.

For precise data on the encodings permitted, and the uppercase and
lower case equivalences that are recognized, see the file csets.adb
in the XGC Ada compiler sources. You will need to obtain a full
source release of XGC Ada to obtain this file.

A.2.3. Wide Character Encodings

XGC Ada allows wide character codes to appear in character and
string literals, and also optionally in identifiers, using the following
possible encoding schemes:

Brackets Coding
In this encoding, a wide character is represented by the
following eight character sequence:

[" a b c d "]

Where a, b, c, d are the four hexadecimal characters (using
uppercase letters) of the wide character code. For example,
["A345"] is used to represent the wide character with code
16#A345#. This scheme is compatible with use of the full
Wide_Character set, and is also the method used for wide
character encoding in the standard ACVC (Ada Compiler
Validation Capability) test suite distributions.

Hex Coding
In this encoding, a wide character is represented by the
following five character sequence:

ESC a b c d

Where a, b, c, d are the four hexadecimal characters (using
uppercase letters) of the wide character code. For example,
ESC A345 is used to represent the wide character with code

80

Appendix A. The Compilation Model

16#A345#. This scheme is compatible with use of the full
Wide_Character set.

Upper-Half Coding

The wide character with encoding 16#abcd# where the upper
bit is on (in other words, a is in the range 8 to F) is represented
as two bytes, 16#ab# and 16#cd#. The second byte may never
be a format control character, but is not required to be in the
upper half. This method can be also used for shift-JIS or EUC,
where the internal coding matches the external coding.

Shift JIS Coding

A wide character is represented by a two-character sequence,
16#ab# and 16#cd#, with the restrictions described for upper-half
encoding as described above. The internal character code is
the corresponding JIS character according to the standard
algorithm for Shift-JIS conversion. Only characters defined in
the JIS code set table can be used with this encoding method.

EUC Coding

A wide character is represented by a two-character sequence
16#ab# and 16#cd#, with both characters being in the upper
half. The internal character code is the corresponding JIS
character according to the EUC encoding algorithm. Only
characters defined in the JIS code set table can be used with
this encoding method.

Note: Some of these coding schemes do not permit the full use of
the Ada 95 character set. For example, neither Shift JIS, nor EUC
allow the use of the upper half of the Latin-1 set.

A.3. File Naming Rules

The default file name is determined by the name of the unit the file
contains. The name is formed by taking the full expanded name of
the unit and replacing the separating dots with hyphens and using
lowercase for all letters.

A special exception arises if the file name according to the above
rules has one of the characters a,g,i, or s and the second character
is a minus. In this case, the character /tilde/dollar sign/ is used in

81

File Naming Rules

place of the The reason for this special exception is to avoid clashes
with the standard names for children of System, Ada, Interfaces,
and XGC Ada, which use the prefixes -s -a -i and -g respectively.

The extension is .ads for a spec and .adb for a body. The following
table shows some examples of these rules.

main.ads

Main (spec)

main.adb

Main (body)

arith_functions.ads

Arith_Functions (package spec)

arith_functions.adb

Arith_Functions (package body)

func-spec.ads

Func.Spec (child package spec)

func-spec.adb

Func.Spec (child package body)

main-sub.adb

Sub (subunit of Main)

a~bad.adb

A.Bad (child package body)

Following these rules can result in excessively long file names if
corresponding unit names are long (for example, if child units or
subunits are heavily nested). An option is available to shorten such
long file names (called file name “krunching”). This may be
particularly useful when programs being developed with XGC Ada
are to be used on operating systems with limited file name lengths.
See Section 7.2, “Using gnatkr” [60].

Of course, no file shortening algorithm can guarantee uniqueness
over all possible unit names; if file name krunching is used it is
your responsibility to ensure no name clashes occur, or alternatively
you can specify the exact file names that you want to be used, as
described in the next section.

82

Appendix A. The Compilation Model

A.4. Using Other File Names

In the previous section, we have described the default rules used
by XGC Ada to determine the file name in which a given unit
resides. It is often convenient to follow these default rules, and if
you do then the compiler knows without being explicitly told where
to find all the files it needs.

However, in some cases, particularly when a program is imported
from another Ada compiler environment, it may be more convenient
for the programmer to specify which file names are used. XGC Ada
allows arbitrary file names to be used via the Source_File_Name
pragma. The form of this pragma is as shown in the following
examples:

pragma Source_File_Name (My_Utilities.Stacks,
 Spec_File_Name => "myutilst_a.ada");
pragma Source_File_name (My_Utilities.Stacks,
 Body_File_Name => "myutilst.ada");

As shown in this example, the first argument for the pragma is the
unit name (in this example a child unit). The second argument must
have an identifier which indicates if the file name is for the spec
or the body, and the file name itself is given as a static string
constant.

The source file name pragma is a configuration pragma, which
means that normally it will be placed in the gnat.adc file used to
hold configuration pragmas that apply to a complete compilation
environment. See Appendix B, Handling of Configuration
Pragmas [97] for more details on how the gnat.adc file is created
and used. XGC Ada allows completely arbitrary file names to be
specified using the source file name pragma. However, if the file
name specified has an extension other than .ads .adb or .ada it is
necessary to use a special syntax when compiling the file. The
name in this case must be preceded by the special sequence -x
followed by a space, as in:

$ prefix-gcc -c -x peculiar_file_name.sim

If gnatmake is used, then it handles non standard file names
automatically. One special case arises if the main unit has a
non-standard file name, in this case, the gnatmake argument must

83

Using Other File Names

be this non-standard file name. It is not possible to use the normal
unit name form of the gnatmake command in this case.

A.5. Naming of XGC Ada Source Files

If you want to examine the workings of the XGC Ada system, the
following brief description of its organization may be helpful:

• Files with prefix sc contain the lexical scanner.

• All files prefixed with par are components of the parser. The
numbers correspond to chapters of the Ada standard. For
example, parsing of select statements can be found in
par-ch9.adb.

• All files prefixed with sem perform semantic analysis. The
numbers correspond to chapters of the Ada standard. For
example, all issues involving context clauses can be found in
sem_ch10.adb.

• All files prefixed with exp perform AST normalization and
expansion, using the same numbering scheme. For example, the
construction of record initialization procedures is done in
exp_ch3.adb.

• The files prefixed with bind implement the binder, which verifies
the consistency of the compilation, determines an order of
elaboration, and generates the bind file.

• The files atree.ads and atree.adb detail the low-level data
structures used by the front-end.

• The files sinfo.ads and sinfo.adb detail the structure of the
abstract syntax tree as produced by the parser.

• The files einfo.ads and einfo.adb detail the attributes of all
entities, computed during semantic analysis.

• Library management issues are dealt with in files with prefix
lib.

• Ada files with the prefix a- are children of Ada, as defined in
Annex A.

84

Appendix A. The Compilation Model

• Files with prefix i- are children of Interfaces, as defined in
Annex B.

• Files with prefix s- are children of System. This includes both
language-defined children and XGC Ada run-time routines).

A.6. Generating Object Files

An Ada program consists of a set of source files, and the first step
in compiling the program is to generate the corresponding object
files. These are generated by compiling a subset of these source
files. The files you need to compile are the following:

• If a package spec has no body, compile the package spec to
produce the object file for the package.

• If a package has both a spec and a body, compile the body to
produce the object file for the package. The source file for the
package spec need not be compiled in this case because there is
only one object file, which contains the code for both the spec
and body of the package.

• For a subprogram, compile the subprogram body to produce the
object file for the subprogram. The spec, if one is present, is as
usual in a separate file, and need not be compiled.

• In the case of subunits, only compile the parent unit. A single
object file is generated for the entire subunit tree, which includes
all the subunits.

• Compile child units completely independently from their parent
units (though, of course, the spec of the parent unit must be
present).

• Compile generic units in the same manner as any other units.
The object files in this case are small dummy files that contain
at most the flag used for elaboration checking, because XGC Ada
always handles generic instantiation using macro expansion.
However, it is still necessary to compile generic units, for
dependency checking and elaboration purposes.

The preceding rules describe the set of files that must be compiled
to generate the object files for a program. Each object file has the

85

Generating Object Files

same name as the corresponding source file, except that the
extension is .o as usual.

You may wish to compile other files for the purpose of checking
syntactic and semantic correctness. For example, in the case where
a package has a separate spec and body, you would not normally
compile the spec. However, it is convenient in practice to compile
the spec to make sure it is correct before compiling clients of this
spec, because such compilations will fail if there is an error in the
spec.

XGC Ada provides the option for compiling such files purely for
the purposes of checking correctness; such compilations are not
required as part of the process of building a program. To compile
a file in this checking mode, use the -gnatc switch.

A.7. Source Dependencies

A given object file clearly depends on the source file which is
compiled to produce it. Here we are using depends in the sense of
a typical make utility; in other words, an object file depends on a
source file if changes to the source file require the object file to be
recompiled. In addition to this basic dependency, a given object
may depend on additional source files as follows:

• If a file being compiled with's a unit X, the object file depends
on the file containing the spec of unit X. This includes files that
are with'ed implicitly either because they are parents of with'ed
child units or they are run-time units required by the language
constructs used in a particular unit.

• If a file being compiled instantiates a library level generic unit,
the object file depends on both the spec and body files for this
generic unit.

• If a file being compiled instantiates a generic unit defined within
a package, the object file depends on the body file for the
package as well as the spec file.

• If a file being compiled contains a call to a subprogram for which
pragma Inline applies and inlining is activated with the -gnatn
switch, the object file depends on the file containing the body
of this subprogram as well as on the file containing the spec.

86

Appendix A. The Compilation Model

Similarly if the -gnatN switch is used, then the unit is dependent
on all body files.

• The object file for a parent unit depends on all its subunit body
files.

These rules are applied transitively: if unit A with's unit B, whose
elaboration calls an inlined procedure in package C, the object file
for unit A will depend on the body of C, in file c.adb.

The set of dependent files described by these rules includes all the
files on which the unit is semantically dependent, as described in
the Ada 95 Language Reference Manual. However it is larger
because of the inclusion of generic, inline, and subunit
dependencies.

An object file must be recreated by recompiling the corresponding
source file if any of the source files on which it depends are
modified. For example, if the make utility is used to control
compilation, the rule for an Ada object file must mention all the
source files on which the object file depends. The determination
of the necessary recompilations may be done automatically using
gnatmake.

A.8. The Ada Library Information Files

Each compilation actually generates two output files. The first of
these is the normal object file with a .o extension. The second is
a text file containing the dependency information file. It has the
same name but with an .ali extension. This file is known as the
Ada Library Information (ALI) file.

You normally need not be concerned with the contents of this file,
but this section is included in case you want to understand how
these files are being used. Each ALI file consists of a series of lines
of the form:

Key_Character parameter parameter ...

The first two lines in the file identify the library output version and
Standard version. These are required to be consistent across the
entire set of compilation units in your program.

87

The Ada Library Information Files

V "xxxxxxxxxxxxxxxx"

This line indicates the library output version, as defined in
gnatvsn.ads. It ensures that separate object modules of a program
are consistent. It must be changed if anything changes that would
affect successful binding of modules compiled separately. Examples
of such changes are modifications in the format of the library
information described in this package, modifications to calling
sequences, or to the way data is represented.

S "xxxxxxxxxxxxxxxx"

This line contains information regarding types declared in packages
Standard as stored in Gnatvsn.Standard_Version. The purpose (on
systems where, for example, the size of Integer can be set by
command line switches) is to ensure that all units in a program are
compiled with a consistent set of options.

M type [priority]

This line is present only for a unit that can be a main program. type
is either P for a parameterless procedure or F for a function returning
a value of integral type. The latter is for writing a main program
that returns an exit status. priority is present only if there was a
valid pragma Priority in the corresponding unit to set the main
task priority. It is an unsigned decimal integer.

F x

This line is present if a pragma Float_Representation or Long_Float
is used to specify other than the default floating-point format. This
option applies only to implementations of XGC Ada for the Digital
Alpha Systems. The character x is 'I' for IEEE_Float, 'G' for
VAX_Float with Long_Float using G_Float, and 'D' for VAX_Float
for Long_Float with D_Float.

P L=x Q=x T=x

This line is present if the unit uses tasking directly or indirectly,
and has one or more valid xxx_Policy pragmas that apply to the
unit. The arguments are as follows

88

Appendix A. The Compilation Model

L=x (locking policy)

This is present if a valid Locking_Policy pragma applies to the
unit. The single character indicates the policy in effect (e.g. “C”
for Ceiling_Locking).

Q=x (queuing policy)

This is present if a valid Queuing_Policy pragma applies to the
unit. The single character indicates the policy in effect (e.g. “P”
for Priority_Queuing).

T=x (task_dispatching policy)

This is present if a valid Task_Dispatching_Policy pragma applies
to the unit. The single character indicates the policy in effect (e.g.
“F” for FIFO_Within_Priorities).

Following these header lines, a set of information lines appears for
each compilation unit that appears in the corresponding object file.
In particular, when a package body or subprogram body is compiled
there will be two sets of information, one for the spec and one for
the body, with the entry for the body appearing first. This is the
only case in which a single ALI file contains more than one unit.
Note that subunits do not count as compilation units for this
purpose, and generate no library information, because they are
inlined. The lines for each compilation unit have the following
form:

U unit-name source-name version [attributes]

This line identifies the unit to which this section of the library
information file applies. unit-name is the unit name in internal
format, as described in package Uname, and source-file is the name
of the source file containing the unit.

version is the version given as eight hexadecimal characters with
lowercase letters. This value is a hash code that includes
contributions from the time stamps of this unit and all its
semantically dependent units.

89

The Ada Library Information Files

The optional attributes are a series of two-letter codes indicating
information about the unit. They give the nature of the unit, and
also the information provided by categorization pragmas.

EB

Unit has pragma Elaborate_Body.

NE

Unit has no elaboration routine. All subprogram specs are in
this category, as are subprogram bodies if access before
elaboration checks are being generated. Package bodies and
specs may or may not have NE set, depending on whether or
not elaboration code is required.

PK

Unit is a package, rather than a subprogram.

PU

Unit has pragma Pure.

PR

Unit has pragma Preelaborate.

RC

Unit has pragma Remote_Call_Interface.

RT

Unit has pragma Remote_Types.

SP

Unit has pragma Shared_Passive.

SU

Unit is a subprogram, rather than a package.

The attributes may appear in any order, separated by spaces.
Another line in the ALI file has the following form:

W unit-name [source-name lib-name [E] [EA] [ED]]

90

Appendix A. The Compilation Model

One of these lines is present for each unit mentioned in an explicit
with clause by the current unit. unit-name is the unit name in
internal format. source-name is the file name of the file that must
be compiled to compile that unit (usually the file for the body,
except for packages that have no body). lib-name is the file name
of the library information file that contains the results of compiling
the unit. The E and EA parameters are present if pragma Elaborate
or pragma Elaborate_All, respectively, apply to this unit. ED is
used to indicate that the compiler has determined that a pragma
Elaborate_All for this unit would be desirable. See Appendix C,
Handling Elaboration Order [99] for details on the use of the ED
parameter.

Following the unit information is an optional series of lines that
indicate the usage of pragma Linker_Options. For each appearance
of pragma Linker_Options in any of the units for which unit lines
are present, a line of the form

L string

appears where string is the string from the pragma enclosed in
quotes. Within the quotes, the following can occur:

• 7-bit graphic characters other than " or {

• "" (indicating a single " character)

• {hh} indicating a character whose code is hex hh

For further details, see Stringt.Write_String_Table_Entry in the
file stringt.ads. Note that wide characters in the form {hhhh}
cannot be produced, because pragma Linker_Option accepts only
String, not Wide_String.

Finally, at the end of the ALI file is a series of lines that indicate
the source files on which the compiled units depend. This is used
by the binder for consistency checking and look like:

D source-name time-stamp [comments]

where comments, if present, must be separated from the time stamp
by at least one blank. Currently this field is unused.

91

The Ada Library Information Files

Blank lines are ignored when the library information is read, and
separate sections of the file are separated by blank lines to ease
readability. Extra blanks between fields are also ignored.

A.9. Representation of Time Stamps

All compiled units are marked with a time stamp, which is derived
from the source file. The binder uses these time stamps to ensure
consistency of the set of units that constitutes a single program.
Time stamps are twelve-character strings of the form YYMMDDHHMMSS.
Each two-character field has the following meaning:

YY

year (2 low order digits)

MM

month (2 digits 01-12)

DD

day (2 digits 01-31)

HH

hour (2 digits 00-23)

MM

minutes (2 digits 00-59)

SS

seconds (2 digits 00-59)

Time stamps may be compared lexicographically (in other words,
the order of Ada comparison operations on strings) to determine
which is later or earlier. However, in normal mode, only equality
comparisons have any effect on the semantics of the library.
Later/earlier comparisons are used only for determining the most
informative error messages to be issued by the binder. Note that
this means that despite the fact that only two digits are used for the
year, there are no “year 2000” problems with this representation
choice.

The time stamp is the actual stamp stored with the file without any
adjustment resulting from time zone comparisons. This avoids
problems in using libraries across networks with clients spread
across multiple time zones, but may mean the time stamp will differ

92

Appendix A. The Compilation Model

from that displayed in a directory listing. For example, in UNIX
systems, file time stamps are stored in Greenwich Mean Time
(GMT), but the ls command displays local times.

A.10. Binding an Ada Program

When using languages such as C and C++, the only remaining step
in building an executable program once the source files have been
compiled is linking the object modules together. This means it is
possible to link an inconsistent version of a program in which two
units have included different versions of the same header.

The rules in Ada do not permit such an inconsistent program to be
built. For example, if two clients have different versions of the
same package, it is not possible to build a program containing these
two clients. These rules are enforced by the XGC Ada binder,
which also determines an elaboration order consistent with the Ada
rules.

The XGC Ada binder is run after all the object files for a program
have been compiled. It is given the name of the main program unit,
and from this it determines the set of units required by the program,
reading the corresponding ALI files. It generates error messages
if the program is inconsistent or if no valid order of elaboration
exists.

If no errors are detected, the binder produces a main program, in
C, that contains calls to the required elaboration procedures,
followed by a call to the main program. This C program is compiled
using the C compiler to generate the object file for the main
program. The name of the C file is b_xxx.c where xxx is the name
of the main program unit.

Finally, the linker is used to build the resulting executable program,
using the object from the main program from the bind step as well
as the object files for the Ada units of the program.

A.11. Mixed Language Programming

You build a program that contains some Ada files and some other
language files in one of two ways, depending on whether the main
program is in Ada or not. If the main program is in Ada, you
proceed as follows:

93

Binding an Ada Program

1. Compile the Ada units to produce a set of object files and ALI
files.

2. Compile the other language files to generate object files.

3. Run the Ada binder on the Ada main program.

4. Compile the Ada main program.

5. Link the Ada main program, Ada objects and other language
objects.

If the main program is in some language other than Ada, you use
a special option of the binder to generate callable routines to
initialize and finalize the Ada units. You must insert calls to these
routines in the main program, or some other appropriate point. The
call to initialize the Ada units must occur before the first Ada
subprogram is called, and the call to finalize the Ada units must
occur after the last Ada subprogram returns. You use the same
procedure for building the program as described previously. In this
case, however, the binder places the initialization and finalization
subprograms into file b_xxx.c instead of the main program.

A.12. Comparison of XGC Ada With C/C++ Compilation Model

The XGC Ada model of compilation is close to the C and C++
models. You can think of Ada specs as corresponding to header
files in C. As in C, you don't need to compile specs; they are
compiled when they are used. The Ada with is similar in effect to
the #include of a C header.

One notable difference is that, in Ada, you may compile specs
separately to check them for semantic and syntactic accuracy. This
is not always possible with C headers because they are fragments
of programs that have no specific syntactic or semantic rules.

The other major difference is the requirement for running the
binder, which performs two important functions. First, it checks
for consistency. In C or C++, the only defense against putting
together inconsistent programs is outside the compiler, in a make
file, for example. The binder satisfies the Ada requirement that it
be impossible to construct an inconsistent program when the
compiler is used in normal mode.

94

Appendix A. The Compilation Model

The other important function of the binder is to deal with
elaboration issues. There are also elaboration issues in C++ that
are handled automatically. This automatic handling has the
advantage of being simpler to use, but the C++ programmer has
no control over elaboration. Where gnatbind might complain there
was no valid order of elaboration, a C++ compiler would simply
construct a program that malfunctioned at run time.

A.13. Comparison of XGC Ada With Ada Library Model

This section is intended to be useful to Ada programmers who have
previously used an Ada compiler implementing the traditional Ada
library model, as described in the Ada 95 Languages Reference
Manual. If you have not used such a system, please go on to the
next section.

In XGC Ada, there no library in the normal sense. Instead, the set
of source files themselves acts as the library. Compiling Ada
programs does not generate any centralized information, but rather
an object file and a ALI file, which are of interest only to the binder
and linker. In a traditional system, the compiler reads information
not only from the source file being compiled, but also from the
centralized library. This means that the effect of a compilation
depends on what has been previously compiled. In particular:

• When a unit is with'ed, the unit seen by the compiler corresponds
to the version of the unit most recently compiled into the library.

• Inlining is effective only if the necessary body has already been
compiled into the library.

• Compiling a unit may obsolete other units in the library.

In XGC Ada, compiling one unit never affects the compilation of
any other units because the compiler reads only source files. Only
changes to source files can affect the results of a compilation. In
particular:

• When a unit is with'ed, the unit seen by the compiler corresponds
to the source version of the unit that is currently accessible to
the compiler.

• Inlining requires the appropriate source files for the package or
subprogram bodies to be available to the compiler. Inlining is

95

Comparison of XGC Ada With Ada Library Model

always effective, independent of the order in which units are
complied.

• Compiling a unit never affects any other compilations. The
editing of sources may cause previous compilations to be out of
date if they depended on the source file being modified.

The important result of these differences are that order of
compilation is never significant in XGC Ada. There is no situation
in which you are required to do one compilation before another.
What shows up as order of compilation requirements in the
traditional Ada library becomes, in XGC Ada, simple source
dependencies; in other words, it shows up as a set of rules saying
what source files must be present when a file is compiled.

96

Appendix A. The Compilation Model

Handling of
Configuration Pragmas

Appendix B

In Ada 95, configuration pragmas include those pragmas described
as being configuration pragmas in the Ada 95 Reference Manual,
as well as implementation dependent pragmas that are configuration
pragmas. See the individual descriptions of pragmas in the
XGC Ada Reference Manual for details on these additional
XGC Ada-specific configuration pragmas. Most notably, the
pragma Source_File_Reference, which allows specifying
non-default names for source files, is a configuration pragma.

Configuration pragmas may either appear at the start of a
compilation unit, in which case they apply only to that unit, or they
may apply to all compilations performed in a given compilation
environment.

B.1. The gnat.adc File

In the case of XGC Ada, a compilation environment is defined by
the current directory at the time that a compile command is given.
This current directory is searched for a file whose name is gnat.adc,
and if this file is present, then it is expected to contain one or more
configuration pragmas that will be applied to the current
compilation.

97

Configuration pragmas may be entered into the gnat.adc file either
by running gnatchop on a source file that consists only of
configuration pragmas, or, usually more convenient in practice, by
direct editing of the gnat.adc file, which is a standard format source
file.

98

Appendix B. Handling of Configuration Pragmas

Handling Elaboration
Order

Appendix C

This Appendix describes the handling of elaboration code in Ada
95, and in XGC Ada, and in particular discusses how the order of
elaboration can be controlled, automatically or as specified
explicitly by the program.

C.1. Elaboration Code in Ada 95

Ada 95 provides rather general mechanisms for executing code at
elaboration time, that is before the main program starts executing.
Such code arises in three contexts:

Initializers for variables:
Variables declared at the library level, in package specs or
bodies, can require initialization that is performed at elaboration
time, as is:

Power_Up_Latch : Boolean := Check_Power (High);

Package initialization code:
Code between begin and end at the outer level of a package
body is executed as part of the package body elaboration code.

99

Subprogram calls are possible in any of these contexts, which
means that any arbitrary part of the program may be executed as
part of the elaboration code. It is even possible to write a program
which does all its work at elaboration time, with a null main
program, although stylistically this is considered an inappropriate
way to structure a program.

An important concern arises in the context of this code, which is
that we have to be sure that it is elaborated in an appropriate order.
What we have is lots of little sections of elaboration code,
potentially one section of code for each unit in the program. It is
important that these execute in the correct order. Correctness here
means that, taking the above example of the declaration of
Sqrt_Half, that if some other piece of elaboration code references
Sqrt_Half, then it must run after the section of elaboration code
that contains the declaration of Sqrt_Half.

Now we would never have any elaboration order problems if we
made a rule that whenever you “with” a unit, you must elaborate
both the spec and body of that unit before elaborating the unit doing
the with'ing:

with Unit_1;
package Unit_2 is ...

would require that both the body and spec of Unit_1 be elaborated
before the spec of Unit_2. However, a rule like that would be far
too restrictive. In particular, it would make it impossible to have
routines in separate packages that were mutually recursive.

One might think that a clever enough compiler could look at the
actual elaboration code and determine an appropriate correct order
of elaboration, but in the general case, this is not possible. Consider
the following example.

In the body of Unit_1, we have a procedure Func_1 that references
the variable Sqrt_1, which is declared in the elaboration code of
the body of Unit_1:

Sqrt_1 : Float := Sqrt (0.1);

The elaboration code of the body of Unit_1 also contains:

100

Appendix C. Handling Elaboration Order

if expression_1 = 1 then
 Q := Unit_2.Func_2;
end if;

Unit_2 is exactly parallel, it has a procedure Func_2 that references
the variable Sqrt_2, which is declared in the elaboration code of
the body Unit_2:

Sqrt_2 : Float := Sqrt (0.1);

The elaboration code of the body of Unit_2 also contains:

if expression_2 = 2 then
 Q := Unit_1.Func_1;
end if;

Now the question is, which of the following orders of elaboration
is acceptable:

Spec of Unit_1
Spec of Unit_2
Body of Unit_1
Body of Unit_2

or

Spec of Unit_2
Spec of Unit_1
Body of Unit_2
Body of Unit_1

If you carefully analyze the flow here, you will see that you cannot
tell at compile time the answer to this question. If expression_1 is
not equal to 1, and expression_2 is not equal to 2, then either order
is acceptable, because neither of the function calls is executed. If
both tests evaluate to true, then neither order is acceptable and in
fact there is no correct order.

If one of the two expressions is true, and the other is false, then
one of the above orders is correct, and the other is incorrect. For
example, if expression_1 = 1 and expression_2 /= 2, then the call
to Func_2 will occur, but not the call to Func_1. This means that it

101

Elaboration Code in Ada 95

is essential to elaborate the body of Unit_1 before the body of
Unit_2, so the first order of elaboration is correct and the second
is wrong.

By making expression_1 and expression_2 depend on input data,
or perhaps the time of day, we can make it impossible for the
compiler or binder to figure out which of these expressions will be
true, and hence it is impossible to guarantee a safe order of
elaboration at run time.

C.2. Checking the Elaboration Order in Ada 95

In some languages that involve the same kind of elaboration
problems, e.g. Java and C++, the programmer is expected to worry
about these kind of ordering problems himself, and it is quite
possible to write a program in which an incorrect elaboration order
can give surprising results as a result of referencing variables before
they are initialized as intended. Ada 95 is designed to be a safe
language, so this approach is clearly not acceptable. Consequently,
the language provides three lines of defense:

Standard rules
Some standard rules restrict the possible choice of elaboration
order. In particular, if you with a unit, then its spec is always
elaborated before the unit doing the with. Similarly, a parent
spec is always elaborated before the child spec, and finally a
spec is always elaborated before its corresponding body.

Dynamic elaboration checks

Dynamic checks are made at run time, so that if the elaboration
order is incorrect, then an exception (Program_Error) is raised.

Elaboration control
Facilities are provided for the programmer to control the order
of elaboration to prevent such exceptions from being raised.

Let's look at these facilities in more detail. First, the rules for
dynamic checking. One possible rule would be simply to say that
the exception is raised if you access a variable which has not yet
been elaborated. The trouble with this approach is that it could
require expensive checks on every variable reference. Instead Ada
95 has two rules which are a little more restrictive, but easier to
check, and easier to state:

102

Appendix C. Handling Elaboration Order

Restrictions on calls
A subprogram can only be called at elaboration time if its body
has been elaborated. The rules for elaboration above guarantee
that the spec of the subprogram has been elaborated before the
call, but not the body. If this rule is violated, then the exception
Program_Error is raised.

Restrictions on instantiations
A generic unit can only be instantiated if the body of the
generic unit has been elaborated. Again, the rules for
elaboration above guarantee that the spec of the generic unit
has been elaborated before the instantiation, but not the body.
if this rule is violated, then the exception Program_Error is
raised.

The idea here is that if the body has been elaborated, then any
variables it references must have been elaborated, so by checking
for the body being elaborated, we are guaranteed that none of its
references causes any trouble. As we noted above, this is a little
too restrictive, because a subprogram that has no non-local
references in its body is in fact safe to call. However, it really would
not be right to rely on this, because it would mean that the caller
was relying on details of the implementation in the body, which is
something we always try to avoid in Ada.

To get an idea of how this might be implemented, consider the
following model implementation. A Boolean variable is associated
with each subprogram and generic unit. This variable is initially
set to False, and is set to True when the body is elaborated. Every
call or instantiation checks the variable, and raises Program_Error
if the variable is False.

C.3. Controlling the Elaboration Order in Ada 95

In the previous section we discussed the rules in Ada 95 which
ensure that Program_Error is raised if an incorrect elaboration order
is chosen. However, this is not sufficient. Although we certainly
prefer an exception to getting the wrong results, we need ways of
avoiding the exception. To achieve this, Ada 95 provides a number
of features for controlling the order of elaboration, and we discuss
these features in this section.

First, there are several ways of indicating to the compiler that a
given unit has no elaboration problems:

103

Controlling the Elaboration Order in Ada 95

packages that do not require a body
In Ada 95, a library package that does not require a body does
not permit a body. This means that if we have a such a package,
as in:

package Definitions is
 generic
 type m is new integer;
 package Subp is
 type a is array (1 .. 10) of m;
 type b is array (1 .. 20) of m;
 end mm;
end x;

A package that with's Definitions may safely instantiate
Definitions.Subp because the compiler can determine that
there definitely is no package body to worry about in this case

pragma Pure

Places sufficient restrictions on a unit so that it is impossible
for any call to any subprogram in the unit to result in an
elaboration problem. This means that the compiler does not
need to worry about the order of elaboration for such units,
and in particular, does not need to check any calls to any
subprograms in this unit.

pragma Preelaborate

This pragma places slightly less fierce restrictions on a unit,
but the restrictions are still sufficient to ensure that there are
no elaboration problems with any calls to the unit.

pragma Elaborate_Body

This pragma requires that the body of a unit be elaborated
immediately after its spec. Suppose a unit A has such a pragma,
and unit B does a with of unit A. Now the standard rules require
the spec of unit A to be elaborated before the with'ing unit, and
given the pragma in A, we also know that the body of A will be
elaborated before B, so calls to A are safe and do not need a
check.

Note that, unlike pragma Pure and pragma Preelaborate, the use
of Elaborate_Body does not guarantee that the program is free of

104

Appendix C. Handling Elaboration Order

elaboration problems, because it may not be possible to satisfy the
requested elaboration order. Let's go back to the example with
Unit_1 and Unit_2. If a programmer marks Unit_1 as
Elaborate_Body, and not Unit_2, then the order of elaboration will
be:

Spec of Unit_2
Spec of Unit_1
Body of Unit_1
Body of Unit_2

Now that means that the call to Func_1 in Unit_2 need not be
checked, it must be safe. But the call to Func_2 in Unit_1 may still
fail if Expression_1 is equal to 1, and the programmer must still
take responsibility for this not being the case.

If all units have pragma Elaborate_Body, then all problems are
eliminated, except for calls entirely within a body, which are in
any case fully under programmer control. However, this is not
always possible. In particular, for our Unit_1/Unit_2 example, if
we marked both of them as having pragma Elaborate_Body, then
clearly no elaboration order is possible.

The above pragmas allow a server to guarantee safe use by clients,
and clearly this is the preferable approach. Consequently a good
rule in Ada 95 is to mark units as Pure or Preelaborate if possible,
and if this is not possible, mark them as Elaborate_Body if possible.
But, as we have discussed, it is not always possible to use one of
these three pragmas. So we also provide methods for clients to
control the order of elaboration:

pragma Elaborate (unit)

This pragma is placed in the context clause, after a with
statement, and it requires that the body of the named unit be
elaborated before the unit in which the pragma occurs. The
idea is to use this pragma if you know that you will be making
calls, directly or indirectly, at elaboration time to subprograms
in a given unit.

pragma Elaborate_All (unit)

This is a stronger version of the Elaborate pragma. Consider
the following example:

105

Controlling the Elaboration Order in Ada 95

Unit A with's unit B and calls B.Func in elaboration code
Unit B with's unit C, and B.Func calls C.Func

Now if we put a pragma Elaborate (B) in unit A, this ensures
that the body of B is elaborated before the call, but not the body
of C, so the call to C.Func could still cause Program_Error to
be raised.

But the effect of a pragma Elaborate_All is stronger, it requires
not only that the body of the named unit be elaborated before
the unit doing the with, but also the bodies of all units that the
named unit uses, following with links transitively. For example,
if we put a pragma Elaborate_All (B) in unit A, then it requires
not only that the body of B be elaborated before A, but also the
body of C, because B with's C.

We are now in a position to give a usage rule in Ada 95 for avoiding
elaboration problems, at least if dynamic dispatching and access
to procedure values are not used. We will handle these cases
separately later.

The rule is simple. If a unit has elaboration code that can directly
or indirectly make a call to a subprogram in a with'ed unit, or
instantiate a generic unit in a with'ed unit, then if the with'ed unit
does not have pragma Pure, Preelaborate, or Elaborate_Body, then
the client should have an Elaborate_All for the with'ed unit. By
following this rule a client is assured that calls can be made without
risk of an exception. If this rule is not followed, then a program
may be in one of four states:

No order exists
No order of elaboration exists which follows the rules, taking
into account any Elaborate, Elaborate_All, or Elaborate_Body
pragmas. In this case, an Ada 95 compiler must diagnose the
situation at bind time, and refuse to build an executable
program.

One or more orders exist, all wrong
One or more acceptable elaboration orders exists, and all of
them generate an elaboration order problem. In this case, the
binder can build an executable program, but Program_Error
will be raised when the program is run.

106

Appendix C. Handling Elaboration Order

Several orders exist, some right, some wrong
One or more acceptable elaboration orders exists, and some of
them work, and some do not. The programmer has not
controlled the order of elaboration, so the binder may or may
not pick one of the correct orders, and the program may or may
not raise an exception when it is run. This is the worst case,
because it means that the program may fail when moved to
another compiler, or even another version of the same compiler.

One or more orders exists, all right
One ore more acceptable elaboration orders exists, and all of
them work. In this case the program runs successfully. This
state of affairs can be guaranteed by following the rule we gave
above, but may be true even if the rule is not followed.

Note that one additional advantage of following our Elaborate_All
rule is that the program continues to stay in the ideal (all orders
OK) state even if maintenance changes some bodies of some
subprograms. Even if a program that does not follow this rule
happens to be safe, this state of affairs may deteriorate silently as
a result of maintenance changes.

C.4. Controlling Elaboration in XGC Ada - Internal Calls

In the case of internal calls, that is calls within a single package,
the programmer has full control over the order of elaboration, and
it is up to the programmer to elaborate declarations in an appropriate
order. For example writing:

function One return Float;

Q : Float := One;

function One return Float is
begin
 return 1.0;
end One;

will obviously raise Program_Error at run time, and indeed
XGC Ada will generate a warning that the call will raise
Program_Error:

107

Controlling Elaboration in XGC Ada - Internal Calls

 1. procedure Y is
 2. function One return Float;
 3.
 4. Q : Float := One;
 |
 >>> warning: cannot call "One" before body seen
 >>> warning: Program_Error will be raised at run time

 5.
 6. function One return Float is
 7. begin
 8. return 1.0;
 9. end One;
 10.
 11. begin
 12. null;
 13. end Y;

Note that in this particular case, it is probably the case that, because
One does not access any global variables, the call really would be
safe, but in Ada 95, we do not want the validity of the check to
depend on the contents of the body (think about the separate
compilation case), so this is still wrong, as we discussed in the
previous sections.

The error is easily corrected by rearranging the declarations so that
the body of One appears before the elaboration call (note that in
Ada 95, declarations can appear in any order, so there is no
restriction that would prevent this reordering, and if we write:

function One return Float;

function One return Float is
begin
 return 1.0;
end One;

Q : Float := One;

then all is well, and no warning is generated, and no Program_Error
exception will be raised. Things get a bit more complicated when
a chain of subprograms is executed:

108

Appendix C. Handling Elaboration Order

function A return Integer;
function B return Integer;
function C return Integer;

function B return Integer is begin return A; end;
function C return Integer is begin return B; end;

X : Integer := C;

function A return Integer is begin return 1; end;

Now the call to C at elaboration time in the declaration of X is
correct, because the body of C is already elaborated, and the call
to B within the body of C is correct, but the call to A within the body
of B is incorrect, because the body of A has not been elaborated, so
Program_Error will be raised on the call to A. In this case XGC Ada
will generate a warning that Program_Error may be raised at the
point of the call. Let's look at the warning:

1. procedure X is
 2. function A return Integer;
 3. function B return Integer;
 4. function C return Integer;
 5.
 6. function B return Integer is begin return A; end;
 |
 >>> warning: call to "A" may occur before body is seen
 >>> warning: Program_Error may be raised at run time
 >>> warning: "B" called at line 7
 >>> warning: "C" called at line 9

 7. function C return Integer is begin return B; end;
 8.
 9. X : Integer := C;
 10.
 11. function A return Integer is begin return 1; end;
 12.
 13. begin
 14. null;
 15. end X;

Note that the message here says “may raise”, instead of the direct
case, where the message says “will be raised”. That's because
whether A is actually called depends on run-time flow of control
in the general case. For example, if the body of B said

109

Controlling Elaboration in XGC Ada - Internal Calls

function B return Integer is
begin
 if some-condition-depending-on-input-data then
 return A;
 else
 return 1;
 end if;
end B;

then we could not know till run time whether the incorrect call to
A would actually occur, so Program_Error might or might not be
raised. If XGC Ada felt more ambitious, it could do a better job of
analyzing bodies, to determine whether or not Program_Error might
be raised, but it certainly couldn't do a perfect job (that would
require solving the halting problem and is provably impossible),
and because this is a warning anyway, it does not seem worth the
effort to do the analysis. Cases in which it would be relevant are
rare.

In practice, warnings of either of the types given above will usually
correspond to real errors, and should be examined carefully, and
typically eliminated. In the rare case that a warning is bogus, it can
be suppressed by any of the following methods:

• Compile with the -gnatws switch set

• Suppress Elaboration_Checks for the called subprogram

• Use pragma Warnings_Off to turn warnings off for the call

For the internal elaboration check case, XGC Ada by default
generates the necessary run-time checks to ensure that
Program_Error is raised if any call fails an elaboration check. Of
course this can only happen if a warning has been issued as
described above. The use of pragma Suppress
(Elaboration_Checks) may (but is not guaranteed) to suppress
some of these checks, meaning that it may be possible (but is not
guaranteed) for a program to be able to call a subprogram whose
body is not yet elaborated, without raising a Program_Error
exception.

110

Appendix C. Handling Elaboration Order

C.5. Controlling Elaboration in XGC Ada - External Calls

The previous section discussed the case in which the execution of
a particular thread of elaboration code occurred entirely within a
single unit. This is the easy case to handle, because a programmer
has direct and total control over the order of elaboration, and
furthermore, checks need only be generated in cases which are rare
and which the compiler can easily detect. The situation is more
complex when separate compilation is taken into account. Consider
the following:

package Math is
 function Sqrt (Arg : Float) return Float;
end Math;

package body Math is
 function Sqrt (Arg : Float) return Float is
 begin
 ...
 end Sqrt;
end Math;

with Math;
package Stuff is
 X : Float := Math.Sqrt (0.5);
end Stuff;

with Stuff;
procedure Main is
begin
 ...
end Main;

where Main is the main program. When this program is executed,
the elaboration code must first be executed, and one of the jobs of
the binder is to determine the order in which the units of a program
are to be elaborated. In this case we have four units the spec and
body of Math, the spec of Stuff and the body of Main), and the
question is in what order should the four separate sections of
elaboration code be executed?

There are some restrictions in the order of elaboration that the
binder can choose. In particular, if you have a with for a package
X, then you are assured that the spec of X is elaborated before you
are, but you are not assured that the body of X is elaborated before

111

Controlling Elaboration in XGC Ada - External Calls

you are. This means that in the above case, the binder is allowed
to choose the order:

spec of Math
spec of Stuff
body of Math
body of Main

but that's not good, because now the call to Math.Sqrt that happens
during the elaboration of the Stuff spec happens before the body
of Math.Sqrt is elaborated, and hence causes Program_Error
exception to be raised. At first glance, one might react that the
binder is being silly, because obviously you want to elaborate the
body of something you with first, but that is not a general rule that
can be followed in all cases. Consider this:

package X is ...

package Y is ...

with X;
package body Y is ...

with Y;
package body X is ...

This is a common arrangement, and, apart from the order of
elaboration problems that arise only in connection with elaboration
code, works fine. A rule that says that you must elaborate the body
first of anything you with cannot work in this case (the body of X
with's Y, which means you want to elaborate the body of Y first,
but that with's X, which means you want to elaborate the body of
X first, but ... and we have a loop that cannot be broken.

It is true that the binder can in many cases guess an order of
elaboration that is unlikely to cause a Program_Error exception to
be raised, and it tries to do so (in the above example of
Math/Stuff/Spec, the XGC Ada binder will in fact always elaborate
the body of Math right after its spec, so all will be well).

However, a program that blindly relies on the binder to be kind
can get into trouble, as we discussed in the previous sections, so
XGC Ada provides a number of facilities for assisting the

112

Appendix C. Handling Elaboration Order

programmer in developing programs that are robust with respect
to elaboration order.

C.6. Default Behavior in XGC Ada - Ensuring Safety

The default behavior in XGC Ada ensures elaboration safety. What
XGC Ada does in its default mode is to automatically and implicitly
implement the rule we previously suggested as the right approach.
Let's restate the rule:

If a unit has elaboration code that can directly or indirectly make
a call to a subprogram in a with'ed unit, or instantiate a generic
unit in a with'ed unit, then if the with'ed unit does not have pragma
Pure, Preelaborate, or Elaborate_Body, then the client should have
an Elaborate_All for the with'ed unit. By following this rule a
client is assured that calls can be made without risk of an exception.

What XGC Ada does is to trace all calls that are potentially made
from elaboration code, and put in any missing implicit
Elaborate_All pragmas. The advantage of this approach is that no
elaboration problems are possible if the binder can find an
elaboration order that is consistent with these implicit
Elaborate_All pragmas. The disadvantage of this approach is that
no such order may exist.

If the binder does not generate any diagnostics, then it means that
it has found an elaboration order that is guaranteed to be safe.
However, the binder may still be relying on implicitly generated
Elaborate_All pragmas so portability to other compilers than
XGC Ada is not guaranteed.

If it is important to guarantee portability, then the compilations
should use the -gnatwl (warn on elaboration problems) switch.
This will cause warning messages to be generated indicating the
missing Elaborate_All pragmas. Consider the following source
program:

with k;
package j is
 m : integer := k.r;
end;

113

Default Behavior in XGC Ada - Ensuring Safety

where it is clear that there really should be a pragma Elaborate_All
for unit k. An implicit pragma will be generated, and it is likely
that the binder will be able to honor this implicit pragma. However
it is safer to include the pragma explicitly in the source. If this unit
is compiled with the -gnatwl switch, then the compiler outputs a
warning:

1. with k;
2. package j is
3. m : integer := k.r;
 |
 >>> warning: call to "r" may raise Program_Error
 >>> warning: missing pragma Elaborate_All for "k"

4. end;

and these warnings can be used as a guide for supplying the missing
pragmas.

C.7. What to do if the Default Elaboration Behavior Fails

If the binder cannot find an acceptable order, it outputs quite
detailed diagnostics. For example:

error: elaboration circularity detected
info: "proc (body)" must be elaborated before "pack (body)"
info: reason: Elaborate_All probably needed in unit "pack (body)"
info: recompile "pack (body)" with -gnatwl
info: for full details
info: "proc (body)"
info: is needed by its spec:
info: "proc (spec)"
info: which is withed by:
info: "pack (body)"
info: "pack (body)" must be elaborated before "proc (body)"
info: reason: pragma Elaborate in unit "proc (body)"

In this case we have a cycle that the binder cannot break. On the
one hand, there is an explicit pragma Elaborate in proc for pack.
This means that the body of pack must be elaborated before the
body of proc. On the other hand, there is elaboration code in pack
that calls a subprogram in proc. This means that for maximum
safety, there should really be a pragma Elaborate_All in pack for
proc which would require that the body of proc be elaborated before

114

Appendix C. Handling Elaboration Order

the body of pack. Clearly both requirements cannot be satisfied.
Faced with a circularity of this kind, you have three different
options.

Fix the program
The most desirable option from the point of view of long term
maintenance is to rearrange the program so that the elaboration
problems are avoided. One useful technique is to separate off
the elaboration code into separate child packages. Another is
to move some of the initialization code to explicitly called
subprograms, where the program controls the order of
initialization explicitly. Although this is the most desirable
option, it may be impractical and involve too much
modification, especially in the case of large complex legacy
codes.

Perform dynamic checks
If the compilations are done using the -gnatE (dynamic
elaboration check) switch, then XGC Ada behaves in a quite
different manner. Dynamic checks are generated for all calls
that could possibly result in raising an exception. With this
switch, the compiler does not generate implicit Elaborate_All
pragmas. The behavior then is exactly as specified in the
reference manual. The binder will generate an executable
program that may or may not raise Program_Error, and then
it is the programmer's job to ensure that it does not raise an
exception. Note that it is important to compile all units with
the switch, it cannot be used selectively.

Suppress checks
One difficulty with generating dynamic checks is that they
generate a significant extra overhead at run time, both in space
and time. If you are absolutely sure that your program cannot
raise any elaboration exceptions, then you can use the -f switch
for the gnatbind step, or -bargs -f if you are using gnatmake.
This switch tells the binder to ignore any implicit
Elaborate_All pragmas that were generated by the compiler,
and suppresses any circularity messages that they cause. The
resulting executable will work fine if there are no elaboration
problems, but if there are some order of elaboration problems,
then they will not be detected, and unexpected results may
occur.

It is hard to generalize on which of these three approaches should
be taken. Obviously if it is possible to fix the program so that the

115

What to do if the Default Elaboration Behavior Fails

default treatment works, this is preferable, but this may not always
be practical. It is certainly simple enough to use -gnatE or -f but
the danger in either case is that, even if the XGC Ada binder finds
a correct elaboration error free order, it may not always do so, and
certainly a binder from another Ada compiler may not do so. A
combination of testing and analysis (for which the warnings
generated with the -gnatwl switch can be useful) must be used to
ensure that the program is free of errors. One switch that is useful
in this testing is the -h (horrible elaboration order) switch for
gnatbind. Normally the binder tries to find an order that has the
best chance of succeeding in avoiding elaboration problems. With
this switch, the binder plays a kind of devil's advocate role, and
tries to choose the order that has the best chance of failing. If your
program works even with this switch, then it has a better chance
of being error free, but this is still not a guarantee.

For an example of this approach in action, consider the C-tests
(executable tests) from the ACVC suite. If these are compiled and
run with the default treatment, then all but one of them succeeds
without generating any error diagnostics from the binder. However,
there is one test that fails, and this is not surprising, because the
whole point of this test is to ensure that the compiler can handle
cases where it is impossible to determine a correct order statically,
and it checks that an exception is indeed raised at run time.

This one test must be compiled and run using the -gnatE switch,
and then passes fine. Alternatively, the entire suite can be run using
this switch. It is never wrong to run with the dynamic elaboration
switch if your code is correct, and we assume that the C-tests are
indeed correct. It is less efficient, but efficiency is not a factor in
running the ACVC tests.

C.8. Elaboration for Access-to-Subprogram Values

The introduction of access-to-subprogram types in Ada 95
complicates the handling of elaboration. The trouble is that we now
have a situation where it is impossible at compile time to tell exactly
which procedure is being called. This means that it is not possible
to analyze the elaboration requirements statically at compile time
in this case.

If at the time the access value is created, the body of the subprogram
is known to have been elaborated, then the access value is safe,
and its use does not require a check. This may be achieved by

116

Appendix C. Handling Elaboration Order

appropriate arrangement of the order of declarations if the
subprogram is in the current unit, or, if the subprogram is in another
unit, then by using pragma Pure, Preelaborate, or Elaborate_Body
on the referenced unit.

If the referenced body is not known to have been elaborated at the
time the access value is created, then any use of the access value
must do a dynamic check, and this dynamic check will fail, raising
a Program_Error exception if the body still has not been elaborated.
XGC Ada will generate the necessary checks, and in addition, if
the -gnatwl switch is set, will generate warnings that such checks
are required.

The use of dynamic dispatching for tagged types similarly generates
a requirement for dynamic checks, and premature calls to any
primitive operation of a tagged type, before the body has been
elaborated, will also result in the raising of a Program_Error
exception

C.9. Summary of Procedures for Elaboration Control

First, compile your program with the default options, using none
of the special elaboration control switches. If the binder successfully
binds your program, then you can be confident that, apart from
issues raised by the use of access-to-subprogram types and dynamic
dispatching, the program is free of elaboration errors. If it is
important that the program be portable, then use the -gnatwl switch
to generate warnings about missing Elaborate_All pragmas, and
supply the missing pragmas.

If the program fails to bind using the default static elaboration
handling, then you can fix the program to eliminate the binder
message, or recompile the entire program with the -gnatE switch
to generate dynamic elaboration checks, or, if you are sure there
really are no elaboration problems, use the -f switch for the binder
to cause it to ignore implicit Elaborate_All pragmas generated by
the compiler.

117

Summary of Procedures for Elaboration Control

118

Performance
Considerations

Appendix D

The XGC Ada compiler provides a number of options that allow
a trade off between

• performance of the generated code;

• speed of compilation;

• minimization of dependencies and recompilation;

• and the degree of run-time checking.

The defaults if no options are selected are aimed at improving the
performance of the generated code:

• optimization level 2

• no inlining of subprogram calls

• all run-time checks enabled except overflow and elaboration
checks

These options are suitable for most program development purposes.
This chapter describes how you can modify these choices.

119

D.1. Controlling Run-time Checks

By default, XGC Ada produces all run-time checks except
arithmetic overflow checking for integer operations (including
division by zero) and checks for access before elaboration on
subprogram calls.

Two gnat switches, -gnatp and -gnato allow this default to be
modified. See Section 1.2.3, “Run-Time Checks” [13].

Our experience is that the default is suitable for most development
purposes.

We treat integer overflow and elaboration checks specially because
these are quite expensive and in our experience are not as important
as other run-time checks in the development process.

Note that the setting of the switches controls the default setting of
the checks. They may be modified using either pragma Suppress
(to remove checks) or pragma Unsuppress (to add back suppressed
checks) in the program source.

D.2. Optimization Levels

The default is optimization set to -O2. This results in the best
optimization for most applications. Where debugging is made
difficult because of optimizations, the you can use the -O0 switch.
In this case XGC Ada makes absolutely no attempt to optimize,
and the generated programs are considerably larger and slower.

-O0

no optimization

-O1

medium level optimization

-O2

full optimization (the default)

-O3

full optimization, and also attempt automatic inlining of small
subprograms within a unit (see Section D.3, “Inlining of
Subprograms” [121]).

120

Appendix D. Performance Considerations

The penalty in compilation time, and the improvement in execution
time, both depend on the particular application and the hardware
environment. You should experiment to find the best level for your
application.

Note Unlike the case with some other compiler systems, gcc
has been tested extensively at all optimization levels.
There are some bugs which appear only with
optimization turned on, but there have also been bugs
which show up only in unoptimized code. Selecting a
lower level of optimization does not improve the
reliability of the code generator, which in practice is
highly reliable at all optimization levels.

D.3. Inlining of Subprograms

A call to a subprogram in the current unit is inlined if all the
following conditions are met:

• The optimization level is at least -O1.

• The called subprogram is suitable for inlining: It must be small
enough and not contain nested subprograms or anything else
that gcc cannot support in inlined subprograms.

• The call occurs after the definition of the body of the subprogram.

• Either pragma Inline applies to the subprogram or it is small
and automatic inlining (optimization level -O3) is specified.

Calls to subprograms in with'ed units are normally not inlined. To
achieve this level of inlining, the following conditions must all be
true:

• The optimization level is at least -O1.

• The called subprogram is suitable for inlining: It must be small
enough and not contain nested subprograms or anything else gcc
cannot support in inlined subprograms.

• The call appears in a body (not in a package spec).

• There is a pragma Inline for the subprogram.

• The -gnatn switch is used in the gcc command line.

121

Inlining of Subprograms

Note that specifying the -gnatn switch causes additional
compilation dependencies. Consider the following:

package R is
 procedure Q;
 pragma Inline Q;
end R;
package body R is
 ...
end R;
with R;
procedure Main is
begin
 ...
 R.Q;
end Main;

With the default behavior (no -gnatn switch specified), the
compilation of the subprogram Main depends only on its own
source, main.adb, and the spec of the package in file r.ads. This
means that editing the body of R does not require recompiling Main.

On the other hand, the call R.Q is not inlined under these
circumstances. If the -gnatn switch is present when Main is
compiled, the call will be inlined if the body of Q is small enough,
but now Main depends on the body of R in r.adb as well as the spec.
This means that if the body is edited, the main program must be
recompiled. Note that this extra dependency occurs whether or not
the call is in fact inlined by gcc.

Note The -fno-inline switch can be used to prevent all
inlining. This switch overrides all other conditions and
ensures that no inlining occurs. The extra dependencies
resulting from -gnatn will still be active, even if this
switch is used to suppress the resulting inlining actions.

122

Appendix D. Performance Considerations

Symbols
-a (gnatls), 69
-a (gnatmake), 40
-A (gnatmake), 44
-aI (gnatmake), 43
-aL (gnatmake), 43
-aO (gnatmake), 44
-b (gnatbind), 30
-bargs (gnatmake), 45
-c (gcc), 3
-c (gnatbind), 32
-c (gnatmake), 41
-cargs (gnatmake), 44
-d (gnatls), 69
-e (gnatbind), 32
-f (gnatbind), 31
-f (gnatmake), 41
-fno-inline (gcc), 122
-g (gcc), 3
-g (gnatlink), 38
-gnat83 (gcc), 15
-gnat95 (gcc), 16
-gnata (gcc), 12
-gnatb (gcc), 8

-gnatc (gcc), 15
-gnate (gcc), 9
-gnatE (gcc), 14
-gnatf (gcc), 9
-gnatg (gcc), 16
-gnati (gcc), 17
-gnatj (gcc), 17
-gnatk (gcc), 18
-gnatl (gcc), 8
-gnatlink (gnatlink), 38
-gnatm (gcc), 8
-gnatn (gcc), 18, 121
-gnatn switch, 86
-gnato (gcc), 13, 120
-gnatp (gcc), 13, 120
-gnatq (gcc), 9
-gnatr (gcc), 16
-gnats (gcc), 14
-gnatt (gcc), 19
-gnatu (gcc), 19
-gnatv (gcc), 7
-gnatwe (gcc), 12
-gnatwl , 12
-gnatws (gcc), 12

Index

123

-gnatwu (gcc), 11
-gnatx (gcc), 12
-h (gnatbind), 31
-h (gnatls), 69
-I (gcc), 3
-i (gnatmake), 42
-I (gnatmake), 44
-I- (gcc), 3
-I- (gnatmake), 44
-j (gnatmake), 41
-k (gnatchop), 51
-k (gnatmake), 41
-l (gnatbind), 32
-L (gnatmake), 44
-largs (gnatmake), 45
-m (gnatbind), 30
-M (gnatmake), 41
-m (gnatmake), 42
-n (gnatbind), 33
-n (gnatmake), 43
-o (gcc), 3
-O (gcc), 4, 120
-o (gnatbind), 32
-o (gnatlink), 38
-o (gnatls), 69
-o (gnatmake), 43
-q (gnatmake), 43
-r (gnatbind), 31
-r (gnatchop), 51
-S (gcc), 4
-s (gnatbind), 30
-s (gnatchop), 51
-s (gnatls), 69, 69
-t (gnatbind), 31
-u (gnatls), 69
-v (gcc), 4
-V (gcc), 4
-v (gnatbind), 30
-v (gnatlink), 38
-v (gnatmake), 43
-w (gnatchop), 51
-we (gnatbind), 31
-ws (gnatbind), 31
-Wuninitialized (gcc), 5

-x (gnatbind), 30
_main, 75

A
Access before elaboration, 13
Access-to-subprogram, 116
ACVC

Ada 83 tests, 15
Ada, 35, 84
Ada 83 compatibility, 15
Ada.Characters.Latin_1, 78
ADA_INCLUDE_PATH, 21
ADA_OBJECTS_PATH, 35
adafinal, 33
adainit, 33
Annex A, 84
Annex B, 85
Assert, 12
Assertions, 12

B
Binder output file, 94
Binder, multiple input files, 33

C
Checks

access before elaboration, 13
division by zero, 13
elaboration, 14
overflow, 13
suppressing, 13

code page 437, 79
code page 850, 79
Combining XGC Ada switches, 7
Compilation model, 77
Configuration pragmas, 97
CtrlZ, 78

D
Debug, 12
Debugging information

including, 38
Debugging options, 19
Dependencies

124

Index

producing list, 41
Dependency rules, 39
Division by zero, 13

E
Elaborate, 90, 105
Elaborate_All, 90, 105
Elaborate_Body, 90, 104
elaboration

order of, 99
Elaboration checks, 14, 102
Elaboration control, 99, 117
Elaboration order control, 94
End of source file, 78
Error messages

suppressing, 9
EUC Coding, 81
Export, 75

F
File names, 83

G
Generic formal parameters, 16
Generics, 85
gnat.adc, 83, 97
gnat1, 2
gnatlink, 37
gnatmake, 40
Gnatvsn, 88

I
Inline, 86, 121
Inlining, 95
Interfaces, 35, 85
Internal trees

writing to file, 19

L
Latin-1, 77, 78
Latin-2, 79
Latin-3, 79
Latin-4, 79
Linker libraries, 44

Linker_Option, 91
linking, 37

M
Machine_Overflows, 13
Multiple units

syntax checking, 14

N
No code generated, 2

O
Order of elaboration, 99
Overflow checks, 13, 120

P
Parallel make, 41
pragma

Preelaborate, 104, 104, 104, 105, 105
Pragmas

configuration, 97
Preelaborate, 90, 104
Priority, 88
Pure, 90, 104

R
Re-compilation, by gnatmake, 45
Remote_Call_Interface, 90
Remote_Types, 90
RTL, 3, 3

S
Search paths, for gnatmake, 44
Shared_Passive, 90
Shift JIS Coding, 81
Source code

listing of generated, 19
Source file

end, 78
Source files

suppressing search, 44
use by binder, 26

Source_File_Name pragma, 83
Source_Reference, 51

125

Standard, 16, 87, 88
stderr, 7
stdout, 7
Stringt, 91
Style, 16
Subunits, 85
Suppress, 13, 120
Suppressing checks, 13
System, 35, 85
System.IO, 22

T
Time stamp errors

in binder, 31

U
Uname, 89
Unsuppress, 14, 120
Upper-Half Coding, 81

W
Warning messages, 10
Warnings, 31
Writing internal trees, 19

X
XGC Ada compilation model, 77
XGC Ada library, 95

126

Index

