
Ada 95 Reference
Manual Supplement

For mission-critical applications

www.xgc.com

Ada 95 Reference Manual
Supplement
For mission-critical applications

Order Number: XGC-ADA-RMS-081201

XGC Technology

 London
 UK

<Web: www.xgc.com>

Ada 95 Reference Manual Supplement: For mission-critical applications
by Chris Nettleton

Publication date December 1, 2008
© 2001, 2002, 2003, 2004, 2008 XGC Technology
© 1995, 1996, 1997 Ada Core Technologies, Inc.

License

XGC Ada is commercial open-source software distributed under the terms of the GNU Public license. Permission is granted to make and distribute
verbatim copies of this document provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to
copy and distribute modified versions of this document under the conditions for verbatim copying, provided that the entire resulting derived
work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this
document into another language, under the above conditions for modified versions.

Acknowledgements

XGC Ada is based on technology originally developed by the GNAT team at New York University and now maintained by Ada Core Technologies,
Inc., and includes software from the GNU C compiler, debugger and binary utilities developed by and on behalf of the Free Software Foundation,
Inc., Cambridge, Massachusetts.

In this manual, the chapters on advice, attributes, characteristics, compatibility, and pragmas are based on text from the GNAT Reference Manual,
Version 3.11 and later.

Contents

About This Manual ix
1 Audience ix
2 Related Documents ix
3 Reader's Comments x
4 Documentation Conventions x

Implementation-Defined Pragmas 1Chapter 1

pragma Ada_83 1
pragma Ada_95 2
pragma Annotate 3
pragma Assert 3
pragma C_Pass_By_Copy 4
pragma Common_Object 5
pragma Complex_Representation 6
pragma Component_Alignment 7
pragma Debug 8
pragma Export_Function 9
pragma Export_Object 10
pragma Export_Procedure 10
pragma Export_Valued_Procedure 11
pragma Ident 12
pragma Import_Function 13

iii

pragma Import_Object 14
pragma Import_Procedure 15
pragma Import_Valued_Procedure 16
pragma Interface_Name 17
pragma Linker_Alias 17
pragma Linker_Section 18
pragma Normalize_Scalars 18
pragma Machine_Attribute 20
pragma No_Return 20
pragma Profile 21
pragma Psect_Object 21
pragma Pure_Function 22
pragma Share_Generic 23
pragma Source_File_Name 23
pragma Source_Reference 24
pragma Subtitle 24
pragma Suppress_All 25
pragma Title 25
pragma Unchecked_Union 26
pragma Unimplemented_Unit 27
pragma Unsuppress 28
pragma Warnings 28
pragma Weak_External 29

Implementation-Defined Attributes 31Chapter 2

Implementation Advice 41Chapter 3

3.1 Section 1: General 41
3.2 Section 2: Lexical Elements 42
3.3 Section 3: Declarations and Types 44
3.4 Section 9: Tasking 46
3.5 Section 10: Program Structure and Compilation
Issues 47
3.6 Section 11: Exceptions 48
3.7 Section 13: Representation Issues 48
3.8 Annex A: Predefined Language Environment 61
3.9 Annex B: Interface to Other Languages 63
3.10 Annex C: Systems Programming 69
3.11 Annex D: Real-Time Systems 74
3.12 Annex E: Distributed Systems 76
3.13 Annex F: Information Systems 76
3.14 Annex G: Numerics 77

iv

Ada 95 Reference Manual Supplement

Machine Code Insertions 83Chapter 4

4.1 Constraints for Operands 86
4.1.1 Simple Constraints 87
4.1.2 Multiple Alternative Constraints 90
4.1.3 Constraint Modifier Characters 91

Compatibility Guide 93Chapter 5

5.1 Compatibility with Ada 83 93
5.2 Compatibility with Other Ada 95 Systems 95
5.3 Representation Clauses 96

Restrictions and Profiles 99Appendix A

The Predefined Library 103Appendix B

Index 107

v

Ada 95 Reference Manual Supplement

vi

Tables
A.1 Supported Profiles 100
A.2 Profiles and Restrictions 100
A.3 Profiles and Numerical Restrictions 102
B.1 Predefined Library Units 103

vii

viii

About This Manual

This supplement should be read in conjunction with the Ada 95
Reference Manual (RM). It describes the differences between the
complete Ada 95 programming language, and the mission-critical
subset supported by the XGC range of cross compilers. It also
includes information on implementation-dependent characteristics
of XGC Ada, including all the information required by Annex M
of the Reference Manual.

1. Audience

This supplement assumes that you are familiar with Ada 95
language, as described in the International Standard
ANSI/ISO/IEC-8652:1995, Jan 1995 .

2. Related Documents

See the following documents for further information on XGC Ada:

• The target Ada Technical Summary ,which includes
target-dependent information.

ix

• Getting Started with target Ada describes the steps required to
prepare and run a simple program.

• XGC Ada User's Guide, which provides information on how to
use the XGC Ada compiler system.

• Ada 95 Reference Manual, ANSI/ISO/IEC-8652:1995, which
contains all reference material for the Ada 95 programming
language.

• The XGC Libraries documents the library functions available
with all XGC compilers.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments as follows:

• Internet electronic mail: readers_comments@xgc.com

Please include the following information along with your
comments:

• The full title of the book and the order number. (The order
number is printed on the title page of this book.)

• The section numbers and page numbers of the information on
which you are commenting.

• The version of the software that you are using.

Technical support enquiries should be directed to the XGC web
site, http://www.xgc.com/ or by email to support@xgc.com.

4. Documentation Conventions

This guide uses the following typographic conventions:

$

A dollar sign represents the system prompt for the Bash shell.

x

About This Manual

readers_comments@xgc.com
http://www.xgc.com/
support@xgc.com

#

A number sign represents the superuser prompt.

$vi hello.c

Boldface type in interactive examples indicates typed user
input.

file

Italic or slanted type indicates variable values, place-holders,
and function argument names.

[|], { | }
In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

...
In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat(1)
A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mb/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

xi

Documentation Conventions

xii

Implementation-Defined
Pragmas

Chapter 1

The Ada 95 Reference Manual defines a set of pragmas that can
be used to supply additional information to the compiler. These
language-defined pragmas are implemented in XGC Ada and work
as defined.

In addition, the Ada 95 Reference Manual allows implementations
to define extra pragmas whose meaning is defined by the
implementation. XGC Ada provides a number of these
implementation-dependent pragmas, which can be used to extend
and enhance the functionality of the compiler. This chapter
describes these additional pragmas.

pragma Ada_83

Ada_83

Synopsis

pragma Ada_83;

1

Description

A configuration pragma that establishes Ada 83 mode for the unit
to which it applies, regardless of the mode set by the command
line switches. In Ada 83 mode, XGC Ada attempts to be as
compatible with the syntax and semantics of Ada 83, as defined in
the original Ada 83 Reference Manual as possible. In particular,
the new Ada 95 keywords are not recognized, optional package
bodies are allowed, and generics may name types with unknown
discriminants without using the (<>) notation. In addition, some
but not all of the additional restrictions of Ada 83 are enforced.

Ada 83 mode is intended for two purposes. Firstly, it allows existing
legacy Ada 83 code to be compiled and adapted to XGC Ada with
less effort. Secondly, it aids in keeping code backwards compatible
with Ada 83. However, there is no guarantee that code that is
processed correctly by XGC Ada in Ada 83 mode will in fact
compile and execute with an Ada 83 compiler, since XGC Ada
does not enforce all the additional checks required by Ada 83.

pragma Ada_95

Ada_95

Synopsis

pragma Ada_95;

Description

A configuration pragma that establishes Ada 95 mode for the unit
to which it applies, regardless of the mode set by the command
line switches. This mode is set automatically for the Ada and System
packages and their children, so you need not specify it in these
contexts. This pragma is useful when writing a reusable component
that itself uses Ada 95 features, but which is intended to be usable
from either Ada 83 or Ada 95 programs.

2

Chapter 1. Implementation-Defined Pragmas

pragma Annotate

Annotate

Synopsis

pragma Annotate (IDENTIFIER {, ARG});

 ARG ::= NAME | EXPRESSION

Description

This pragma is used to annotate programs. identifier identifies
the type of annotation. XGC Ada verifies this is an identifier, but
does not otherwise analyze it. The arg argument can be either a
string literal or an expression. String literals are assumed to be of
type Standard.String. Names of entities are simply analyzed as
entity names. All other expressions are analyzed as expressions,
and must be unambiguous.

The analyzed pragma is retained in the tree, but not otherwise
processed by any part of the XGC Ada compiler. This pragma is
intended for use by external tools, including ASIS.

pragma Assert

Assert

Synopsis

pragma Assert (
 boolean_EXPRESSION
 [, static_string_EXPRESSION])

3

Description

The effect of this pragma depends on whether the corresponding
command line switch is set to activate assertions. If assertions are
disabled, the pragma has no effect. If assertions are enabled, then
the semantics of the pragma is exactly equivalent to:

if not Boolean_EXPRESSION then
 System.Assertions.Raise_Assert_Failure (string_EXPRESSION);
 end if;

The effect of the call is to raise System.Assertions.Assert_Failure.
The string argument, if given, is the message associated with the
exception occurrence. If no second argument is given, the default
message is “ file:nnn ” , where file is the name of the source file
containing the assert, and nnn is the line number of the assert. A
pragma is not a statement, so if a statement sequence contains
nothing but a pragma assert, then a null statement is required in
addition, as in:

...
 if J > 3 then
 pragma Assert (K > 3, "Bad value for K");
 null;
 end if;

If the boolean expression has side effects, these side effects will
turn on and off with the setting of the assertions mode, resulting
in assertions that have an effect on the program. You should
generally avoid side effects in the expression of this pragma.

pragma C_Pass_By_Copy

C_Pass_By_Copy

4

Chapter 1. Implementation-Defined Pragmas

Synopsis

pragma C_Pass_By_Copy
 ([Max_Size =>] static_integer_EXPRESSION);

Description

Normally the default mechanism for passing C convention records
to C convention subprograms is to pass them by reference, as
suggested by RM B.3(69). Use the configuration pragma
C_Pass_By_Copy to change this default, by requiring that record
formal parameters be passed by copy if all of the following
conditions are met:

• The size of the record type does not exceed
static_integer_expression.

• The record type has Convention C.

• The formal parameter has this record type, and the subprogram
has a foreign (non-Ada) convention.

If these conditions are met the argument is passed by copy, that is
in a manner consistent with what C expects if the corresponding
formal in the C prototype is a struct (rather than a pointer to a
struct).

You can also pass records by copy by specifying the convention
C_Pass_By_Copy for the record type, or by using the extended Import
and Export pragmas, which allow specification of passing
mechanisms on a parameter by parameter basis.

pragma Common_Object

Common_Object

Synopsis

pragma Common_Object
 [Internal =>] LOCAL_NAME,

5

 [, [External =>] EXTERNAL_SYMBOL,
 [, [Size =>] EXTERNAL_SYMBOL]

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

Description

This pragma enables the shared use of variables stored in overlaid
linker areas corresponding to the use of COMMON in Fortran. The
single object local_name is assigned to the area designated by the
External argument. You may define a record to correspond to a
series of fields. The size argument is syntax checked in XGC Ada,
but otherwise ignored.

pragma Complex_Representation

Complex_Representation

Synopsis

pragma Complex_Representation ([Entity =>] LOCAL_NAME);

Description

The Entity argument must be the name of a record type which has
two fields of the same floating-point type. The effect of this pragma
is to force the compiler to use the special internal complex
representation form for this record, which may be more efficient.
Note that this may result in the code for this type not conforming
to standard ABI (application binary interface) requirements for the
handling of record types. For example, in some environments, there
is a requirement for passing records by pointer, and the use of this
pragma may result in passing this type in floating-point registers.

6

Chapter 1. Implementation-Defined Pragmas

pragma Component_Alignment

Component_Alignment

Synopsis

pragma Component_Alignment (
 [Form =>] ALIGNMENT_CHOICE
 [, [Name =>] type_LOCAL_NAME]);

 ALIGNMENT_CHOICE ::=
 Component_Size
 | Component_Size_4
 | Storage_Unit
 | Default

Description

Specifies the alignment of components in array or record types.
The meaning of the Form argument is as follows:

Component_Size

Aligns scalar components and subcomponents of the array or
record type on boundaries appropriate to their inherent size
(naturally aligned). For example, 1-byte components are aligned
on byte boundaries, 2-byte integer components are aligned on
2-byte boundaries, 4-byte integer components are aligned on
4-byte boundaries and so on.

Component_Size_4

Naturally aligns components with a size of four or fewer bytes.
Components that are larger than 4 bytes are placed on the next
4-byte boundary.

Storage_Unit

Specifies that array or record components are byte aligned,
that is aligned on boundaries determined by the value of the
constant System.Storage_Unit.

7

Default

Specifies that array or record components are aligned on default
boundaries, appropriate to the underlying hardware or operating
system or both.

If the Name parameter is present, type_local_name must refer to a
local record or array type, and the specified alignment choice
applies to the specified type. The use of Component_Alignment
together with a pragma Pack causes the Component_Alignment
pragma to be ignored. The use of Component_Alignment together
with a record representation clause is only effective for fields not
specified by the representation clause.

If the Name parameter is absent, the pragma can be used as either a
configuration pragma, in which case it applies to one or more units
in accordance with the normal rules for configuration pragmas, or
it can be used within a declarative part, in which case it applies to
types that are declared within this declarative part, or within any
nested scope within this declarative part. In either case it specifies
the alignment to be applied to any record or array type which has
otherwise standard representation.

If the alignment for a record or array type is not specified (using
pragma Pack, pragma Component_Alignment, or a record
representation clause), the XGC Ada uses the default alignment as
described previously.

pragma Debug

Debug

Synopsis

pragma Debug (PROCEDURE_CALL_STATEMENT);

Description

If assertions are not enabled on the command line, this pragma has
no effect. If assertions are enabled, the semantics of the pragma is
exactly equivalent to the procedure call. Pragmas are permitted in
sequences of declarations, so you can use pragma Debug to
intersperse calls to debug procedures in the middle of declarations.

8

Chapter 1. Implementation-Defined Pragmas

pragma Export_Function

Export_Function

Synopsis

pragma Export_Function (
 [Internal =>] LOCAL_NAME,
 [, [External =>] EXTERNAL_SYMBOL]
 [, [Parameter_Types =>] Parameter_TYPES]
 [, [Result_Type =>] result_SUBTYPE_MARK]
 [, [Mechanism =>] MECHANISM]
 [, [Result_Mechanism =>] MECHANISM_NAME]);

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

 Parameter_TYPES ::=
 null
 | SUBTYPE_MARK {, SUBTYPE_MARK}

 MECHANISM ::=
 MECHANISM_NAME
 | (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

 MECHANISM_ASSOCIATION ::=
 [formal_parameter_NAME =>] MECHANISM_NAME

 MECHANISM_NAME ::=
 Value
 | Reference

Description

Use this pragma to make a function externally callable and
optionally provide information on mechanisms to be used for
passing parameter and result values. We recommend, for the
purposes of improving portability, this pragma always be used in
conjunction with a separate pragma Export, which must precede
the pragma Export_Function. XGC Ada does not require a separate
pragma Export, but if none is present, it assumes Convention C.

9

Pragma Export_Function (and Export, if present) must appear in
the same declarative region as the function to which they apply.

internal_name must uniquely designate the function to which the
pragma applies. If more than one function name exists of this name
in the declarative part you must use the Parameter_Types and
Result_Type parameters is mandatory to achieve the required unique
designation. subtype_ marks in these parameters must exactly match
the subtypes in the corresponding function specification, using
positional notation to match parameters with subtype marks.

pragma Export_Object

Export_Object

Synopsis

pragma Export_Object
 [Internal =>] LOCAL_NAME,
 [, [External =>] EXTERNAL_SYMBOL]
 [, [Size =>] EXTERNAL_SYMBOL]

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

Description

This pragma designates an object as exported, and apart from the
extended rules for external symbols, is identical in effect to the use
of the normal Export pragma applied to an object. You may use a
separate Export pragma (and you probably should from the point
of view of portability), but it is not required. Size is syntax checked,
but otherwise ignored by XGC Ada.

pragma Export_Procedure

Export_Procedure

10

Chapter 1. Implementation-Defined Pragmas

Synopsis

pragma Export_Procedure (
 [Internal =>] LOCAL_NAME
 [, [External =>] EXTERNAL_SYMBOL]
 [, [Parameter_Types =>] Parameter_TYPES]
 [, [Mechanism =>] MECHANISM]);

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

 Parameter_TYPES ::=
 null
 | SUBTYPE_MARK {, SUBTYPE_MARK}

 MECHANISM ::=
 MECHANISM_NAME
 | (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

 MECHANISM_ASSOCIATION ::=
 [formal_parameter_NAME =>] MECHANISM_NAME

 MECHANISM_NAME ::=
 Value
 | Reference

Description

This pragma is identical to Export_Function except that it applies
to a procedure rather than a function and the parameters
Result_Type and Result_Mechanism are not permitted.

pragma Export_Valued_Procedure

Export_Valued_Procedure

Synopsis

pragma Export_Valued_Procedure (
 [Internal =>] LOCAL_NAME
 [, [External =>] EXTERNAL_SYMBOL]

11

 [, [Parameter_Types =>] Parameter_TYPES]
 [, [Mechanism =>] MECHANISM]);

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

 Parameter_TYPES ::=
 null
 | SUBTYPE_MARK {, SUBTYPE_MARK}

 MECHANISM ::=
 MECHANISM_NAME
 | (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

 MECHANISM_ASSOCIATION ::=
 [formal_parameter_NAME =>] MECHANISM_NAME

 MECHANISM_NAME ::=
 Value
 | Reference

Description

This pragma is identical to Export_Procedure except that the first
parameter of local_name, which must be present, must be of mode
OUT, and externally the subprogram is treated as a function with
this parameter as the result of the function. XGC Ada provides for
this capability to allow the use of OUT and IN OUT parameters in
interfacing to external functions (which are not permitted in Ada
functions).

pragma Ident

Ident

Synopsis

pragma Ident (static_string_EXPRESSION);

12

Chapter 1. Implementation-Defined Pragmas

Description

This pragma provides a string identification in the generated object
file, if the system supports the concept of this kind of identification
string. The maximum permitted length of the string literal is 31
characters. This pragma is allowed only in the outermost declarative
part or declarative items of a compilation unit.

pragma Import_Function

Import_Function

Synopsis

pragma Import_Function (
 [Internal =>] LOCAL_NAME,
 [, [External =>] EXTERNAL_SYMBOL]
 [, [Parameter_Types =>] Parameter_TYPES]
 [, [Result_Type =>] SUBTYPE_MARK]
 [, [Mechanism =>] MECHANISM]
 [, [Result_Mechanism =>] MECHANISM_NAME]
 [, [First_Optional_Parameter =>] IDENTIFIER]);

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

 Parameter_TYPES ::=
 null
 | SUBTYPE_MARK {, SUBTYPE_MARK}

 MECHANISM ::=
 MECHANISM_NAME
 | (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

 MECHANISM_ASSOCIATION ::=
 [formal_parameter_NAME =>] MECHANISM_NAME

 MECHANISM_NAME ::=
 Value
 | Reference

13

Description

This pragma is used in conjunction with a pragma Import to specify
additional information for an imported function. The pragma Import
(or equivalent pragma Interface) must precede the
Import_Function pragma and both must appear in the same
declarative part as the function specification.

The Internal_Name argument must uniquely designate the function
to which the pragma applies. If more than one function name exists
of this name in the declarative part you must use the
Parameter_Types and Result_Type parameters to achieve the
required unique designation. Subtype marks in these parameters
must exactly match the subtypes in the corresponding function
specification, using positional notation to match parameters with
subtype marks.

You may optionally use the Mechanism and Result_Mechanism
parameters to specify passing mechanisms for the parameters and
result. If you specify a single mechanism name, it applies to all
parameters. Otherwise you may specify a mechanism on a
parameter by parameter basis using either positional or named
notation. If the mechanism is not specified, the default mechanism
is used.

pragma Import_Object

Import_Object

Synopsis

pragma Import_Object
 [Internal =>] LOCAL_NAME,
 [, [External =>] EXTERNAL_SYMBOL],
 [, [Size =>] EXTERNAL_SYMBOL])

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

14

Chapter 1. Implementation-Defined Pragmas

Description

This pragma designates an object as imported, and apart from the
extended rules for external symbols, is identical in effect to the use
of the normal Import pragma applied to an object. Unlike the
subprogram case, you need not use a separate Import pragma,
although you may do so (and probably should do so from a
portability point of view). size is syntax checked, but otherwise
ignored by XGC Ada.

pragma Import_Procedure

Import_Procedure

Synopsis

pragma Import_Procedure (
 [Internal =>] LOCAL_NAME,
 [, [External =>] EXTERNAL_SYMBOL]
 [, [Parameter_Types =>] Parameter_TYPES]
 [, [Mechanism =>] MECHANISM]
 [, [First_Optional_Parameter =>] IDENTIFIER]);

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

 Parameter_TYPES ::=
 null
 | SUBTYPE_MARK {, SUBTYPE_MARK}

 MECHANISM ::=
 MECHANISM_NAME
 | (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

 MECHANISM_ASSOCIATION ::=
 [formal_parameter_NAME =>] MECHANISM_NAME

 MECHANISM_NAME ::=
 Value
 | Reference

15

Description

This pragma is identical to Import_Function except that it applies
to a procedure rather than a function and the parameters
Result_Type and Result_Mechanism are not permitted.

pragma Import_Valued_Procedure

Import_Valued_Procedure

Synopsis

pragma Import_Valued_Procedure (
 [Internal =>] LOCAL_NAME,
 [, [External =>] EXTERNAL_SYMBOL]
 [, [Parameter_Types =>] Parameter_TYPES]
 [, [Mechanism =>] MECHANISM]
 [, [First_Optional_Parameter =>] IDENTIFIER]);

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

 Parameter_TYPES ::=
 null
 | SUBTYPE_MARK {, SUBTYPE_MARK}

 MECHANISM ::=
 MECHANISM_NAME
 | (MECHANISM_ASSOCIATION {, MECHANISM_ASSOCIATION})

 MECHANISM_ASSOCIATION ::=
 [formal_parameter_NAME =>] MECHANISM_NAME

 MECHANISM_NAME ::=
 Value
 | Reference

Description

This pragma is identical to Import_Procedure except that the first
parameter of local_name, which must be present, must be of mode

16

Chapter 1. Implementation-Defined Pragmas

OUT, and externally the subprogram is treated as a function with
this parameter as the result of the function. The purpose of this
capability is to allow the use of OUT and IN OUT parameters in
interfacing to external functions (which are not permitted in Ada
functions). You may optionally use the Mechanism parameters to
specify passing mechanisms for the parameters. If you specify a
single mechanism name, it applies to all parameters. Otherwise
you may specify a mechanism on a parameter by parameter basis
using either positional or named notation. If the mechanism is not
specified, the default mechanism is used.

pragma Interface_Name

Interface_Name

Synopsis

pragma Interface_Name (
 [Entity =>] LOCAL_NAME
 [, [External_Name =>] static_string_EXPRESSION]
 [, [Link_Name =>] static_string_EXPRESSION]);

Description

This pragma provides an alternative way of specifying the interface
name for an interfaced subprogram, and is provided for
compatibility with Ada 83 compilers that use the pragma for this
purpose. You must provide at least one of External_Name or
Link_Name.

pragma Linker_Alias

Linker_Alias

Synopsis

pragma Linker_Alias (
 [Entity =>] LOCAL_NAME

17

 [Alias =>] static_string_EXPRESSION);

Description

This pragma establishes a linker alias for the given named entity.
For further details on the exact effect, consult the Linker manual.

pragma Linker_Section

Linker_Section

Synopsis

pragma Linker_Section (
 [Entity =>] LOCAL_NAME
 [Section =>] static_string_EXPRESSION);

Description

This pragma specifies the name of the linker section for the given
entity. For further details on the exact effect, consult the Linker
manual.

pragma Normalize_Scalars

Normalize_Scalars

Synopsis

pragma Normalize_Scalars;

Description

This is a language defined pragma which is fully implemented in
XGC Ada. The effect is to cause all scalar objects that are not

18

Chapter 1. Implementation-Defined Pragmas

otherwise initialized to be initialized. The initial values are
implementation dependent and are as follows:

Standard.Character

Objects whose root type is Standard.Character are initialized
to Character'Last. This will be out of range of the subtype only
if the subtype range excludes this value.

Standard.Wide_Character

Objects whose root type is Standard.Wide_Character are
initialized to Wide_Character'Last. This will be out of range
of the subtype only if the subtype range excludes this value.

Integer types

Objects of an integer type are initialized to base_type'First,
where base_type is the base type of the object type. This will
be out of range of the subtype only if the subtype range
excludes this value. For example, if you declare the subtype:

subtype Ityp is integer range 1 .. 10;

then objects of type x will be initialized to Integer'First, a
negative number that is certainly outside the range of subtype
Ityp.

Real types

Objects of all real types (fixed and floating) are initialized to
base_type'First, where base_type is the base type of the object
type. This will be out of range of the subtype only if the subtype
range excludes this value.

Modular types

Objects of a modular type are initialized to type'Last. This will
be out of range of the subtype only if the subtype excludes this
value.

Enumeration types

Objects of an enumeration type are initialized to all one-bits,
that is to the value 2 ** typ'Size - 1. This will be out of range
of the enumeration subtype in all cases except where the
subtype contains exactly 2**8, 2**16, or 2**32.

19

pragma Machine_Attribute

Machine_Attribute

Synopsis

pragma Machine_Attribute (
 [Attribute_Name =>] string_EXPRESSION,
 [Entity =>] LOCAL_NAME);

Description

Machine dependent attributes can be specified for types and/or
declarations. Currently only subprogram entities are supported.
This pragma is semantically equivalent to
__attribute__((string_expression)) in GNU C, where
string_expression> is recognized by the GNU C macros
VALID_MACHINE_TYPE_ATTRIBUTE and VALID_MACHINE_DECL_ATTRIBUTE
which are defined in the configuration header file tm.h for each
machine. See the GCC manual for further information.

pragma No_Return

No_Return

Synopsis

pragma No_Return (procedure_Local_Name);

Description

procedure_Local_Name must refer to one or more procedure
declarations in the current declarative part. A procedure to which
this pragma is applied may not contain any explicit return
statements, and also may not contain any implicit return statements
from falling off the end of a statement sequence. One use of this
pragma is to identify procedures whose only purpose is to raise an
exception.

20

Chapter 1. Implementation-Defined Pragmas

Another use of this pragma is to suppress incorrect warnings about
missing returns in functions, where the last statement of a function
statement sequence is a call to such a procedure.

pragma Profile

Profile

Synopsis

pragma Profile ([Name =>] IDENTIFIER);

 IDENTIFIER ::=
 XGC | Ravenscar | Restricted_Run_Time | No_Run_Time

Description

This pragma specifies a restriction profile. It is a configuration
pragma, and so has the usual applicability of configuration pragmas
(that is it applies to either an entire partition, or to all units in a
compilation, or to a single unit, depending on how it is used. See
Appendix A, Restrictions and Profiles [99] .

pragma Psect_Object

Psect_Object

Synopsis

pragma Psect_Object
 [Internal =>] LOCAL_NAME,
 [, [External =>] EXTERNAL_SYMBOL]
 [, [Size =>] EXTERNAL_SYMBOL]

 EXTERNAL_SYMBOL ::=
 IDENTIFIER
 | static_string_EXPRESSION

21

Description

This pragma is identical in effect to pragma Common_Object.

pragma Pure_Function

Pure_Function

Synopsis

pragma Pure_Function ([Entity =>] function_LOCAL_NAME);

Description

This pragma appears in the same declarative part as a function
declaration (or a set of function declarations if more than one
overloaded declaration exists, in which case the pragma applies to
all entities). If specifies that the function Entity is to be considered
pure for the purposes of code generation. This means that the
compiler can assume that there are no side effects, and in particular
that two calls with identical arguments produce the same result. It
also means that the function can be used in an address clause.

Note that, quite deliberately, there are no static checks to try to
ensure that this promise is met, so Pure_Function can be used with
functions that are conceptually pure, even if they do modify global
variables. For example, a square root function that is instrumented
to count the number of times it is called is still conceptually pure,
and can still be optimized, even though it modifies a global variable
(the count). Memo functions are another example (where a table
of previous calls is kept and consulted to avoid re-computation).

Note: All functions in a Pure package are automatically pure, and
there is no need to use pragma Pure_Function in this case.

Note: If pragma Pure_Function is applied to a renamed function,
it applies to the underlying renamed function. This can be used to
disambiguate cases of overloading where some but not all functions
in a set of overloaded functions are to be designated as pure.

22

Chapter 1. Implementation-Defined Pragmas

pragma Share_Generic

Share_Generic

Synopsis

pragma Share_Generic (NAME {, NAME});

Description

This pragma is recognized for compatibility with other Ada
compilers but is ignored by XGC Ada. XGC Ada does not provide
the capability for sharing of generic code. All generic instantiations
result in making an in-lined copy of the template with appropriate
substitutions.

pragma Source_File_Name

Source_File_Name

Synopsis

pragma Source_File_Name (
 [Unit_Name =>] unit_NAME,
 [FNAME_DESIG =>] static_string_EXPRESSION);

 FNAME_DESIG => Body_File_Name | Spec_File_Name

Description

Use this to override the normal naming convention. It is a
configuration pragma, and so has the usual applicability of
configuration pragmas (that is it applies to either an entire partition,
or to all units in a compilation, or to a single unit, depending on
how it is used. unit_name is mapped to file_name_literal. The
identifier for the second argument is required, and indicates whether
this is the file name for the spec or for the body.

23

pragma Source_Reference

Source_Reference

Synopsis

pragma Source_Reference (INTEGER_Literal, STRING_Literal);

Description

This pragma typically appears as the first line of a source file.
integer_literal is the logical line number of the line following
the pragma line (for use in error messages and debugging
information). string_literal is a static string constant that
specifies the file name to be used in error messages and debugging
information. This is most notably used for the output of gnatchop
with the “-r” switch, to make sure that the original unchopped
source file is the one referred to.

The second argument must be a string literal, it cannot be a static
string expression other than a string literal. This is because its value
is needed for error messages issued by all phases of the compiler.

pragma Subtitle

Subtitle

Synopsis

pragma Subtitle ([Subtitle =>] STRING_Literal);

Description

This pragma is recognized for compatibility with other Ada
compilers but is ignored by XGC Ada.

24

Chapter 1. Implementation-Defined Pragmas

pragma Suppress_All

Suppress_All

Synopsis

pragma Suppress_All;

Description

This pragma can only appear immediately following a compilation
unit. The effect is to apply Suppress (All_Checks) to the unit which
it follows. This pragma is implemented for compatibility with DEC
Ada 83 usage. The use of pragma Suppress (All_Checks) as a
normal configuration pragma is the preferred usage in XGC Ada.

pragma Title

Title

Synopsis

pragma Title (TITLING_OPTION [, TITLING OPTION]);

 TITLING_OPTION ::=
 [Title =>] STRING_Literal,
 | [Subtitle =>] STRING_Literal

Description

Syntax checked but otherwise ignored by XGC Ada. This is a
listing control pragma used in DEC Ada 83 implementations to
provide a title and/or subtitle for the program listing. The program
listing generated by XGC Ada does not have titles or subtitles.

Unlike other pragmas, the full flexibility of named notation is
allowed for this pragma, that is the parameters may be given in
any order if named notation is used, and named and positional

25

notation can be mixed following the normal rules for procedure
calls in Ada.

pragma Unchecked_Union

Unchecked_Union

Synopsis

pragma Unchecked_Union (first_subtype_LOCAL_NAME)

Description

This pragma is used to declare that the specified type should be
represented in a manner equivalent to a C union type, and is
intended only for use in interfacing with C code that uses union
types. In Ada terms, the named type must obey the following rules:

• It is a non-tagged non-limited record type.

• It has a single discrete discriminant with a default value.

• The component list consists of a single variant part.

• Each variant has a component list with a single component.

• No nested variants are allowed.

• No component has an explicit default value.

• No component has a non-static constraint.

In addition, given a type that meets the above requirements, the
following restrictions apply to its use throughout the program:

• The discriminant name can be mentioned only in an aggregate.

• No subtypes may be created of this type.

• The type may not be constrained by giving a discriminant value.

• The type cannot be passed as the actual for a generic formal with
a discriminant.

26

Chapter 1. Implementation-Defined Pragmas

Equality and inequality operations on unchecked_unions are not
available, since there is no discriminant to compare and the
compiler does not even know how many bits to compare. It is
implementation dependent whether this is detected at compile time
as an illegality or whether it is undetected and considered to be an
erroneous construct. In XGC Ada, a direct comparison is illegal,
but XGC Ada does not attempt to catch the composite case (where
two composites are compared that contain an unchecked union
component), so such comparisons are simply considered erroneous.

The layout of the resulting type corresponds exactly to a C union,
where each branch of the union corresponds to a single variant in
the Ada record. The semantics of the Ada program is not changed
in any way by the pragma, that is provided the above restrictions
are followed, and no erroneous incorrect references to fields or
erroneous comparisons occur, the semantics is exactly as described
by the Ada reference manual. Pragma Suppress
(Discriminant_Check) applies implicitly to the type and the default
convention is C

pragma Unimplemented_Unit

Unimplemented_Unit

Synopsis

pragma Unimplemented_Unit;

Description

If this pragma occurs in a unit that is processed by the compiler,
XGC Ada aborts with the message “ xxx not implemented ” ,where
xxx is the name of the current compilation unit. This pragma is
intended to allow the compiler to handle unimplemented library
units in a clean manner.

The abort only happens if code is being generated. Thus you can
use specs of unimplemented packages in syntax or semantic
checking mode.

27

pragma Unsuppress

Unsuppress

Synopsis

pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);

Description

This pragma undoes the effect of a previous pragma Suppress. If
there is no corresponding pragma Suppress in effect, it has no
effect. The range of the effect is the same as for pragma Suppress.
The meaning of the arguments is identical to that used in pragma
Suppress.

One important application is to ensure that checks are on in cases
where code depends on the checks for its correct functioning, so
that the code will compile correctly even if the compiler switches
are set to suppress checks.

pragma Warnings

Warnings

Synopsis

pragma Warnings (On | Off [, LOCAL_NAME]);

Description

Normally warnings are enabled, with the output being controlled
by the command line switch. Warnings (Off) turns off generation
of warnings until a Warnings (On) is encountered or the end of the
current unit. If generation of warnings is turned off using this
pragma, then no warning messages are output, regardless of the
setting of the command line switches.

The form with a single argument is a configuration pragma.

28

Chapter 1. Implementation-Defined Pragmas

If the local_name parameter is present, warnings are suppressed
for the specified entity. This suppression is effective from the point
where it occurs till the end of the extended scope of the variable
(similar to the scope of Suppress).

pragma Weak_External

Weak_External

Synopsis

pragma Weak_External ([Entity =>] LOCAL_NAME);

Description

This pragma specifies that the given entity should be marked as a
weak external (one that does not have to be resolved) for the linker.

29

30

Implementation-Defined
Attributes

Chapter 2

The Ada 95 Reference Manual defines a set of attributes that
provide useful additional functionality in all areas of the language.
These language defined attributes are implemented in XGC Ada
and work as described in the Manual.

In addition, Ada 95 allows implementations to define additional
attributes whose meaning is defined by the implementation. XGC
Ada provides a number of these implementation-dependent
attributes which can be used to extend and enhance the functionality
of the compiler. This section of the reference manual describes
these additional attributes.

Address_Size

Standard'Address_Size (Standard is the only allowed prefix)
is a static constant giving the number of bits in an Address. It
is used primarily for constructing the definition of Memory_Size
in package Standard, but may be freely used in user programs.

Bit

obj'Bit ,where obj is any object, yields the bit offset within
the storage unit (byte) that contains the first bit of storage
allocated for the object. The value of this attribute is of the

31

type Universal_Integer, and is always a non-negative number
not exceeding the value of System.Storage_Unit.

For an object that is a variable or a constant allocated in a
register, the value is zero. (The use of this attribute does not
force the allocation of a variable to memory).

For an object that is a formal parameter, this attribute applies
to either the matching actual parameter or to a copy of the
matching actual parameter.

For an access object the value is zero. Note that obj.all'Bit

is subject to an Access_Check for the designated object.
Similarly for a record component X.C'Bit is subject to a
discriminant check and X(I).Bit and X(I1..I2)'Bit are
subject to index checks.

Bit_Position

R.C'Bit , where R is a record object and C is one of the fields
of the record type, yields the bit offset within the record
contains the first bit of storage allocated for the object. The
value of this attribute is of the type Universal_Integer. The
value depends only on the field C and is independent of the
alignment of the containing record R.

Code_Address

The 'Address attribute may be applied to subprograms in Ada
95, but the intended effect from the Ada 95 Reference Manual
seems to be to provide an address value which can be used to
call the subprogram by means of an address clause as in the
following example:

procedure K is ...
 procedure L;
 for L'Address use K'Address;
 pragma Import (Ada, L);

A call to L is then expected to result in a call to K. In Ada 83,
where there were no access-to-subprogram values, this was a
common work around for getting the effect of an indirect call.
XGC Ada implements the above use of Address and the
technique illustrated by the example code works correctly.

32

Chapter 2. Implementation-Defined Attributes

However, for some purposes, it is useful to have the address
of the start of the generated code for the subprogram. On some
architectures, this is not necessarily the same as the Address
value described above. For example, the Address value may
reference a subprogram descriptor rather than the subprogram
itself.

The 'Code_Address attribute, which can only be applied to
subprogram entities, always returns the address of the start of
the generated code of the specified subprogram, which may or
may not be the same value as is returned by the corresponding
'Address attribute.

Default_Bit_Order

Standard'Default_Bit_Order (Standard is the only permissible
prefix), provides the value System.Default_Bit_Order as a Pos
value (0 for High_Order_First, 1 for Low_Order_First). This
is used to construct the definition of Default_Bit_Order in
package System.

Elaborated

The prefix of the 'Elaborated attribute must be a unit name.
The value is a Boolean which indicates whether or not the
given unit has been elaborated. This attribute is primarily
intended for internal use by the generated code for dynamic
elaboration checking, but it can also be used in user programs.
The value will always be True once elaboration of all units has
been completed.

Elab_Body

This attribute can only be applied to a program unit name. It
returns the entity for the corresponding elaboration procedure
for elaborating the body of the referenced unit. This is used in
the main generated elaboration procedure by the binder and is
not normally used in any other context. However, there may
be specialized situations in which it is useful to be able to call
this elaboration procedure from Ada code, for example if it is
necessary to do selective re-elaboration to fix some error.

Elab_Spec

This attribute can only be applied to a program unit name. It
returns the entity for the corresponding elaboration procedure

33

for elaborating the specification of the referenced unit. This is
used in the main generated elaboration procedure by the binder
and is not normally used in any other context. However, there
may be specialized situations in which it is useful to be able
to call this elaboration procedure from Ada code, for example
if it is necessary to do selective re-elaboration to fix some error.

Enum_Rep

For every enumeration subtype S, S'Enum_Rep denotes a
function with the following specification:

 function S'Enum_Rep (Arg : S'Base) return Universal_Integer;

The function returns the representation value for the given
enumeration value. This will be equal to value of the Pos
attribute in the absence of an enumeration representation clause.
This is a static attribute (that is the result is static if the
argument is static).

Fixed_Value

For every fixed-point type S, S'Fixed_Value denotes a
function with the following specification:

 function S'Fixed_Value (Arg : Universal_Integer) return S;

The value returned is the fixed-point value V such that

V = Arg * S'Small

The effect is thus equivalent to first converting the argument
to the integer type used to represent S, and then doing an
unchecked conversion to the fixed-point type. This attribute is
primarily intended for use in implementation of the input-output
functions for fixed-point values.

34

Chapter 2. Implementation-Defined Attributes

Has_Discriminants

The prefix of the Has_Disctriminants attribute is a type. The
result is a Boolean value which is True if the type has
discriminants, and False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the
attribute is applied to a generic private type, it indicates whether
or not the corresponding actual type has discriminants.

Integer_Value

For every integer type S, S'Integer_Value denotes a function
with the following specification:

 function S'Integer_Value (Arg : Universal_Fixed) return S;

The value returned is the integer value V, such that

 Arg = V * type'Small

The effect is thus equivalent to first doing an unchecked convert
from the fixed-point type to its corresponding implementation
type, and then converting the result to the target integer type.
This attribute is primarily intended for use in implementation
of the standard input-output functions for fixed-point values.

Machine_Size

This attribute is identical to the Object_Size attribute. It is
provided for compatibility with other Ada compilers.

Max_Interrupt_Priority

Standard'Max_Interrupt_Priority (Standard is the only
permissible prefix), provides the value
System.Max_Interrupt_Priority and is intended primarily for
constructing this definition in package System.

35

Max_Priority

Standard'Max_Priority (Standard is the only permissible
prefix) provides the value System.Max_Priority and is intended
primarily for constructing this definition in package System.

Maximum_Alignment

Standard'Maximum_Alignment (Standard is the only permissible
prefix) provides the maximum useful alignment value for the
target. This is a static value that can be used to specify the
alignment for an object, guaranteeing that it is properly aligned
in all cases. This is useful when an external object is imported
and its alignment requirements are unknown.

Mechanism_Code

function'Mechanism_Code yields an integer code for the
mechanism used for the result of function, and
subprogram'Mechanism_Code(n) yields the mechanism used
for formal parameter number n (a static integer value with 1
meaning the first parameter) of subprogram. The code returned
is 1 for by copy and 2 for by reference.

Null_Parameter

A reference T'Null_Parameter denotes an imaginary object
of type or subtype T allocated at machine address zero. The
attribute is allowed only as the default expression of a formal
parameter, or as an actual expression of a subporgram call. In
either case, the subprogram must be imported.

The identity of the object is represented by the address zero in
the argument list, independent of the passing mechanism
(explicit or default).

This capability is needed to specify that a zero address should
be passed for a record or other composite object passed by
reference. There is no way of indicating this without the
Null_Parameter attribute.

Object_Size

The size of an object is not necessarily the same as the size of
the type of an object. This is because by default object sizes
are increased to be a multiple of the alignment of the object.

36

Chapter 2. Implementation-Defined Attributes

For example, Natural'Size is 31, but by default objects of type
Natural will have a size of 32 bits. Similarly, a record
containing an integer and a character:

type Rec is record
 I : Integer;
 C : Character;
 end record;

will have a size of 40 (that is Rec'Size will be 40. The
alignment will be 4, because of the integer field, and so the
default size of record objects for this type will be 64 (8 bytes).

The type'Object_Size attribute has been added to XGC Ada
to allow the default object size of a type to be easily
determined. For example, Natural'Object_Size is 32, and
Rec'Object_Size (for the record type in the above example)
will be 64. Note also that, unlike the situation with the Size
attribute as defined in the Ada 95 Reference Manual, the
Object_Size attribute can be specified individually for different
subtypes. For example:

type R is new Integer;
 subtype R1 is R range 1 .. 10;
 subtype R2 is R range 1 .. 10;
 for R2'Object_Size use 8;

In this example, R'Object_Size and R1'Object_Size are both
32 since the default object size for a subtype is the same as the
object size for the parent subtype. This means that objects of
type R or R1 will by default be 32 bits (four bytes). But objects
of type R2 will be only 8 bits (one byte), since R2'Object_Size
has been set to 8.

Passed_By_Reference

type'Passed_By_Reference for any subtype type returns a
value of type Boolean value that is True if the type is normally
passed by reference and False if the type is normally passed
by copy in calls. For scalar types, the result is always False
and is static. For non-scalar types, the result is non-static.

37

Range_Length

type'Range_Length for any discrete type type yields the
number of values represented by the subtype (zero for a null
range). The result is static for static subtypes. Range_Length
applied to the index subtype of a one dimensional array always
gives the same result as Range applied to the array itself.

Storage_Unit

Standard'Storage_Unit (Standard is the only permissible
prefix) provides the value System.Storage_Unit and is intended
primarily for constructing this definition in package System.

Tick

Standard'Tick (Standard is the only permissible prefix)
provides the value of System.Tick and is intended primarily
for constructing this definition in package System.

Type_Class

type'Type_Class for any type or subtype type yields the value
of the type class for the full type of type. If type is a generic
formal type, the value is the value for the corresponding actual
subtype. The value of this attribute is of a type that has the
following definition:

type Type_Class is
 (Type_Class_Enumeration,
 Type_Class_Integer,
 Type_Class_Fixed_Point,
 Type_Class_Floating_Point,
 Type_Class_Array,
 Type_Class_Record,
 Type_Class_Access,
 Type_Class_Task,
 Type_Class_Address);

Protected types yield the value Type_Class_Task, which thus
applies to all concurrent types.

38

Chapter 2. Implementation-Defined Attributes

Unrestricted_Access

The Unrestricted_Access attribute is similar to Access except
that all accessibility and aliased view checks are omitted. This
is very much a user-beware attribute. It is very similar to
Address, for which it is a desirable replacement where the value
desired is an access type. In other words, its effect is identical
to first applying the Address attribute and then doing an
unchecked conversion to a desired access type. In XGC Ada,
but not necessarily in other implementations, the use of static
chains for inner level subprograms means that
Unrestricted_Access applied to a subprogram yields a value
that can be called as long as the subprogram is in scope (normal
Ada 95 accessibility rules restrict this usage).

Value_Size

type'Value_Size is the number of bits required to represent
a value of the given subtype. It is the same as type'Size ,but,
unlike Size, may be set for non-first subtypes.

Word_Size

Standard'Word_Size (Standard is the only permissible prefix)
provides the value System.Word_Size and is intended primarily
for constructing this definition in package System.

39

40

Implementation AdviceChapter 3

The main text of the Ada 95 Reference Manual describes the
required behavior of all Ada 95 compilers, and subject to the
restrictions described in Appendix A, Restrictions and Profiles [99]
,the XGC Ada compiler conforms to these requirements.

In addition, there are sections throughout the Ada 95 reference
manual headed by the phrase “implementation advice”. These
sections are not normative, that is they do not specify requirements
that compilers must follow. Rather they provide advice on generally
desirable behavior.

Using a question and answer format, this chapter gives the reference
manual section number, paragraph number and several keywords
for each piece of advice. Each entry consists of the text of the
advice followed by the XGC Ada interpretation of this advice.
Most often, this simply says “followed”, which means that XGC
Ada follows the advice. However, in a number of cases, XGC Ada
deliberately deviates from this advice, in which case the text
describes what XGC Ada does and why.

3.1. Section 1: General

1 . 1 . 3 (2 0) : E r r o r D e t e c t i o n

41

< p r i m a r y > E r r o r D e t e c t i o n < / p r i m a r y >
.. 42

1 . 1 . 3 (3 1) : C h i l d U n i t s
< p r i m a r y > C h i l d U n i t s < / p r i m a r y >

.. 42
1 . 1 . 5 (1 2) : B o u n d e d E r r o r s
< p r i m a r y > B o u n d e d e r r o r s < / p r i m a r y >

.. 42

1.1.3(20): Error
Detection

If an implementation detects the use of
an unsupported Specialized Needs Annex
feature at run time, it should raise
Program_Error if feasible.

A: Not relevant. All specialized needs annex
features are either supported, or
diagnosed at compile time.

1.1.3(31): Child Units If an implementation wishes to provide
implementation-defined extensions to the
functionality of a language-defined
library unit, it should normally do so by
adding children to the library unit.

A: Followed.

1.1.5(12): Bounded
Errors

If an implementation detects a bounded
error or erroneous execution, it should
raise Program_Error.

A: Followed in all cases in which the
implementation detects a bounded error
or erroneous execution. Not all such
situations are detected at runtime.

3.2. Section 2: Lexical Elements

2 . 8 (1 6) : P r a g m a s
< p r i m a r y > P r a g m a < / p r i m a r y >

.. 43
2.8(17-19): Pragmas Normally, an implementation should

not define pragmas that can make an illegal program
legal, except as follows: ... 43

42

Chapter 3. Implementation Advice

2.8(16): Pragmas Normally, implementation-defined
pragmas should have no semantic effect
for error-free programs; that is, if the
implementation-defined pragmas are
removed from a working program, the
program should still be legal, and should
still have the same semantics.

A: The following implementation defined
pragmas are exceptions to this rule:

Ada_83

Affects legality

Assert

Affects semantics

Debug

Affects semantics

Interface_Name

Affects semantics

Machine_Attribute

Affects semantics

Unimplemented_Unit

Affects legality

Unchecked_Union

Affects semantics

Not followed. In each of the above cases,
it is essential to the purpose of the pragma
that this advice not be followed. For details
see Chapter 1, Implementation-Defined
Pragmas [1] .

2.8(17-19): Pragmas Normally, an implementation should not
define pragmas that can make an illegal
program legal, except as follows:

• A pragma used to complete a
declaration, such as a pragma Import;

43

Section 2: Lexical Elements

• A pragma used to configure the
environment by adding, removing, or
replacing library_items.

A: See response to paragraph 16 of this same
section.

3.3. Section 3: Declarations and Types

3 . 5 . 2 (5) : A l t e r n a t i v e C h a r a c t e r S e t s
<primary>Alternative Character Sets</primary>

.. 44
3 . 5 . 4 (2 8) : I n t e g e r T y p e s
< p r i m a r y > I n t e g e r Ty p e s < / p r i m a r y >

.. 45
3.5.4(29): Integer Types An implementation for a two's

complement machine should support modular types
with a binary modulus up to System.Max_Int*2+2. An
implementation should support a non-binary modules
up to Integer'Last. ... 45

3 . 5 . 5 (8) : E n u m e r a t i o n V a l u e s
<primary>Enumeration Values</primary>

.. 45
3 . 5 . 7 (1 7) : F l o a t T y p e s
< p r i m a r y > F l o a t Ty p e s < / p r i m a r y >

.. 46
3 . 6 . 2 (1 1) : M u l t i d i m e n s i o n a l A r r a y s
<primary>multidimensional arrays</primary>

.. 46

3.5.2(5): Alternative
Character Sets

If an implementation supports a mode
with alternative interpretations for
Character and Wide_Character, the set of
graphic characters of Character should
nevertheless remain a proper subset of
the set of graphic characters of
Wide_Character. Any character set
localizations should be reflected in the
results of the subprograms defined in the
language-defined package
Characters.Handling (see A.3) available
in such a mode. In a mode with an
alternative interpretation of Character,

44

Chapter 3. Implementation Advice

the implementation should also support
a corresponding change in what is a legal
identifier_letter.

A: Not all wide character modes follow this
advice, in particular the JIS and IEC
modes reflect standard usage in Japan,
and in these encoding, the upper half of
the Latin-1 set is not part of the
wide-character subset, since the most
significant bit is used for wide character
encoding. However, this only applies to
the external forms. Internally there is no
such restriction.

3.5.4(28): Integer Types An implementation should support
Long_Integer in addition to Integer if
the target machine supports 32-bit (or
longer) arithmetic. No other named
integer subtypes are recommended for
package Standard. Instead, appropriate
named integer subtypes should be
provided in the library package
Interfaces (see B.2).

A: Long_Integer is supported. Other standard
integer types are supported so this advice
is not fully followed. These types are
supported for convenient interface to C,
and so that all hardware types of the
machine are easily available.

3.5.4(29): Integer Types An implementation for a two's
complement machine should support
modular types with a binary modulus up
to System.Max_Int*2+2. An
implementation should support a
non-binary modules up to Integer'Last.

A: Followed.

3.5.5(8): Enumeration
Values

For the evaluation of a call on S'Pos

for an enumeration subtype, if the value
of the operand does not correspond to the
internal code for any enumeration

45

Section 3: Declarations and Types

function of its type (perhaps due to an
un-initialized variable), then the
implementation should raise
Program_Error. This is particularly
important for enumeration types with
non-contiguous internal codes specified
by an enumeration_representation_clause.

A: Followed.

3.5.7(17): Float Types An implementation should support
Long_Float in addition to Float if the
target machine supports 11 or more digits
of precision. No other named floating
point subtypes are recommended for
package Standard. Instead, appropriate
named floating point subtypes should be
provided in the library package
Interfaces (see B.2).

A: Short_Float and Long_Long_Float are
also provided. The former provides
improved compatibility with other
implementations supporting this type. The
latter corresponds to the highest precision
floating-point type supported by the
hardware.

3.6.2(11):
Multidimensional
Arrays

An implementation should normally
represent multidimensional arrays in
row-major order, consistent with the
notation used for multidimensional array
aggregates (see 4.3.3). However, if a
pragma Convention (FORTRAN, ...) applies
to a multidimensional array type, then
column-major order should be used
instead (see B.5, Interfacing with
FORTRAN).

A: Followed.

3.4. Section 9: Tasking

9 . 6 (3 0 - 3 1) : D u r a t i o n ' S m a l l

46

Chapter 3. Implementation Advice

< p r i m a r y > D u r a t i o n < / p r i m a r y >
.. 47

(continued) The time base for delay_relative_statements
should be monotonic; it need not be the same time
base as used for Calendar.Clock. 47

9.6(30-31):
Duration'Small

Whenever possible in an implementation,
the value of Duration'Small should be
no greater than 100 microseconds.

A: Followed. Duration'Small is one
microsecond.

(continued) The time base for
delay_relative_statements should be
monotonic; it need not be the same time
base as used for Calendar.Clock.

A: Not applicable.
delay_relative_statements are
prohibited by the built-in restriction
No_Relative_Delay.

3.5. Section 10: Program Structure and Compilation Issues

10.2.1(12): Consistent Representation In an implementation,
a type declared in a pre-elaborated package should
have the same representation in every elaboration of
a given version of the package, whether the
elaborations occur in distinct executions of the same
program, or in executions of distinct programs or
partitions that include the given version. 47

10.2.1(12): Consistent
Representation

In an implementation, a type declared in
a pre-elaborated package should have the
same representation in every elaboration
of a given version of the package,
whether the elaborations occur in distinct
executions of the same program, or in
executions of distinct programs or
partitions that include the given version.

A: Followed.

47

Section 10: Program Structure and Compilation Issues

3.6. Section 11: Exceptions

1 1 . 4 . 1 (1 9) : E x c e p t i o n I n f o r m a t i o n
<primary>Exception Information</primary>

.. 48
1 1 . 5 (2 8) : S u p p r e s s i o n o f C h e c k s
< p r i m a r y > C h e c k s < / p r i m a r y >
<secondary>suppression of</secondary>

.. 48

11.4.1(19): Exception
Information

Exception_Message by default and
Exception_Information should produce
information useful for debugging.
Exception_Message should be short, about
one line. Exception_Information can be
long. Exception_Message should not
include the Exception_Name.
Exception_Information should include
both the Exception_Name and the
Exception_Message.

A: Followed for Exception_Message.
Exception_Information is not supported.

11.5(28): Suppression
of Checks

The implementation should minimize the
code executed for checks that have been
suppressed.

A: Followed.

3.7. Section 13: Representation Issues

1 3 . 1 (2 1 - 2 4) : R e p r e s e n t a t i o n C l a u s e s
<primary>Representation Clauses</primary>

.. 52
(continued) An implementation need not support a

specification for the Size for a given composite
subtype, nor the size or storage place for an object
(including a component) of a given composite
subtype, unless the constraints on the subtype and its
composite subcomponents (if any) are all static
constraints. ... 52

48

Chapter 3. Implementation Advice

(continued) An aliased component, or a component whose
type is by-reference, should always be allocated at an
addressable location. ... 52

1 3 . 2 (6 - 8) : P a c k e d T y p e s
< p r i m a r y > P a c k e d Ty p e s < / p r i m a r y >

.. 52
(continued) An implementation should support Address

clauses for imported subprograms. 53
1 3 . 3 (1 4 - 1 9) : A d d r e s s C l a u s e s
< p r i m a r y > A d d r e s s c l a u s e s < / p r i m a r y >

.. 53
(continued) An implementation should support Address

clauses for imported subprograms. 54
(continued) Objects (including subcomponents) that are

aliased or of a by-reference type should be allocated
on storage element boundaries. 54

(continued) If the Address of an object is specified, or it is
imported or exported, then the implementation should
not perform optimizations based on assumptions of
no aliases. ... 54

1 3 . 3 (2 9 - 3 5) : A l i g n m e n t C l a u s e s
<primary>Alignment clauses</primary>

.. 54
(continued) An implementation need not support specified

Alignments for combinations of Sizes and Alignments
that cannot be easily loaded and stored by available
machine instructions. ... 54

(continued) An implementation need not support specified
Alignments that are greater than the maximum
Alignment the implementation ever returns by default.
.. 54

(continued) Same as above, for subtypes, but in addition:
.. 55

(continued) For stand-alone library-level objects of statically
constrained subtypes, the implementation should
support all Alignments supported by the target linker.
For example, page alignment is likely to be supported
for such objects, but not for subtypes. 55

1 3 . 3 (4 2 - 4 3) : S i z e C l a u s e s
< p r i m a r y > S i z e C l a u s e s < / p r i m a r y >

.. 55
13.3(50-56): Size Clauses If the Size of a subtype is specified,

and allows for efficient independent addressability
(see 9.10) on the target architecture, then the Size of

49

Section 13: Representation Issues

the following objects of the subtype should equal the
Size of the subtype: ... 55

(continued) Size clause on a composite subtype should not
affect the internal layout of components. 55

(continued) The recommended level of support for the Size
attribute of subtypes is: .. 56

(continued) For a subtype implemented with levels of
indirection, the Size should include the size of the
pointers, but not the size of what they point at. 56

13 .3 (71 -73) : Componen t S i ze C lause s
< p r i m a r y > C o m m o n _ O b j e c t < / p r i m a r y >

.. 56
(continued) An implementation should support specified

Component_Sizes that are factors and multiples of the
word size. For such Component_Sizes, the array should
contain no gaps between components. For other
Component_Sizes (if supported), the array should
contain no gaps between components when packing
is also specified; the implementation should forbid
this combination in cases where it cannot support a
no-gaps representation. .. 56

13.4(9-10): Enumeration Representation Clauses The
recommended level of support for enumeration
representation clauses is: ... 57

13.5.1(17-22): Record Representation Clauses
<primary>Record representation clauses</primary>

.. 57
(continued) A storage place should be supported if its size is

equal to the Size of the component subtype, and it
starts and ends on a boundary that obeys the Alignment
of the component subtype. 57

(continued) If the default bit ordering applies to the
declaration of a given type, then for a component
whose subtype's Size is less than the word size, any
storage place that does not cross an aligned word
boundary should be supported. 57

(continued) An implementation may reserve a storage place
for the tag field of a tagged type, and disallow other
components from overlapping that place. 57

(continued) An implementation need not support a
component_clause for a component of an extension
part if the storage place is not after the storage places
of all components of the parent type, whether or not
those storage places had been specified. 58

50

Chapter 3. Implementation Advice

1 3 . 5 . 2 (5) : S t o r a g e P l a c e A t t r i b u t e s
< p r i m a r y > A t t r i b u t e s < / p r i m a r y >

.. 58
1 3 . 5 . 3 (7 - 8) : B i t O r d e r i n g
< p r i m a r y > B i t o r d e r i n g < / p r i m a r y >

.. 58
1 3 . 7 (3 7) : A d d r e s s a s P r i v a t e
<primary>Address, as private type</primary>

.. 58
1 3 . 7 . 1 (1 6) : A d d r e s s O p e r a t i o n s
< p r i m a r y > C o m p l e x _ R e p r e s e n t a t i o n < / p r i m a r y >

.. 58
13.9(14-17): Unchecked Conversion The Size of an array

object should not include its bounds; hence, the
bounds should not be part of the converted data.
.. 59

(continued) The implementation should not generate
unnecessary run-time checks to ensure that the
representation of S is a representation of the target
type. It should take advantage of the permission to
return by reference when possible. Restrictions on
unchecked conversions should be avoided unless
required by the target environment. 59

(continued) The recommended level of support for unchecked
conversions is: .. 59

1 3 . 1 1 (2 3 - 2 5) : I m p l i c i t H e a p U s a g e
<primary>Alignments of components</primary>

.. 60
(continued) A default (implementation-provided) storage pool

for an access-to- constant type should not have
overhead to support de-allocation of individual
objects. ... 60

(continued) A storage pool for an anonymous access type
should be created at the point of an allocator for the
type, and be reclaimed when the designated object
becomes inaccessible. .. 60

13 .11 .2 (17) : Unchecked De-a l loca t ion
<primary>Alignments of components</primary>

.. 60
13.13.2(17): Stream Oriented Attr ibutes
<primary>Alignments of components</primary>

.. 60

51

Section 13: Representation Issues

13.1 (21-24):
Representation Clauses

The recommended level of support for all
representation items is qualified as
follows:

An implementation need not support
representation items containing non-static
expressions, except that an
implementation should support a
representation item for a given entity if
each non-static expression in the
representation item is a name that
statically denotes a constant declared
before the entity.

A: Followed. XGC Ada does not support
non-static expressions in representation
clauses unless they are constants declared
before the entity.

(continued) An implementation need not support a
specification for the Size for a given
composite subtype, nor the size or storage
place for an object (including a
component) of a given composite
subtype, unless the constraints on the
subtype and its composite subcomponents
(if any) are all static constraints.

A: Followed. Size Clauses are not permitted
on non-static components, as described
above.

(continued) An aliased component, or a component
whose type is by-reference, should always
be allocated at an addressable location.

A: Followed.

13.2(6-8): Packed Types If a type is packed, then the
implementation should try to minimize
storage allocated to objects of the type,
possibly at the expense of speed of
accessing components, subject to
reasonable complexity in addressing
calculations.

52

Chapter 3. Implementation Advice

The recommended level of support
pragma Pack is:

For a packed record type, the components
should be packed as tightly as possible
subject to the Sizes of the component
subtypes, and subject to any
record_representation_clause that
applies to the type; the implementation
may, but need not, reorder components
or cross aligned word boundaries to
improve the packing. A component whose
Size is greater than the word size may be
allocated an integral number of words.

A: Partly followed. Tight packing of arrays
is supported for component sizes of 1, 2,
4, 8, 16 and 32 bits.

(continued) An implementation should support
Address clauses for imported
subprograms.

A: Followed.

13.3(14-19): Address
Clauses

For an array X, X'Address should point
at the first component of the array, and
not at the array bounds.

A: Followed.

The recommended level of support for
the Address attribute is:

X'Address should produce a useful result
if X is an object that is aliased or of a
by-reference type, or is an entity whose
Address has been specified.

Followed. A valid address will be
produced even if none of those conditions
have been met. If necessary, the object is
forced into memory to ensure the address
is valid.

53

Section 13: Representation Issues

(continued) An implementation should support
Address clauses for imported
subprograms.

A: Followed.

(continued) Objects (including subcomponents) that
are aliased or of a by-reference type
should be allocated on storage element
boundaries.

A: Followed.

(continued) If the Address of an object is specified,
or it is imported or exported, then the
implementation should not perform
optimizations based on assumptions of
no aliases.

A: Followed.

13.3(29-35): Alignment
Clauses

The recommended level of support for
the Alignment attribute for subtypes is:

An implementation should support
specified Alignments that are factors and
multiples of the number of storage
elements per word, subject to the
following:

A: Followed.

(continued) An implementation need not support
specified Alignments for combinations of
Sizes and Alignments that cannot be
easily loaded and stored by available
machine instructions.

A: Followed.

(continued) An implementation need not support
specified Alignments that are greater than
the maximum Alignment the
implementation ever returns by default.

A: Followed.

54

Chapter 3. Implementation Advice

The recommended level of support for
the Alignment attribute for objects is:

(continued) Same as above, for subtypes, but in
addition:

A: Followed.

(continued) For stand-alone library-level objects of
statically constrained subtypes, the
implementation should support all
Alignments supported by the target linker.
For example, page alignment is likely to
be supported for such objects, but not for
subtypes.

A: Followed.

13.3(42-43): Size
Clauses

The recommended level of support for
the Size attribute of objects is:

A Size clause should be supported for an
object if the specified Size is at least as
large as its subtype's Size, and
corresponds to a size in storage elements
that is a multiple of the object's Alignment
(if the Alignment is nonzero).

A: Followed.

13.3(50-56): Size
Clauses

If the Size of a subtype is specified, and
allows for efficient independent
addressability (see 9.10) on the target
architecture, then the Size of the
following objects of the subtype should
equal the Size of the subtype:

Aliased objects (including components).

A: Followed.

(continued) Size clause on a composite subtype
should not affect the internal layout of
components.

A: Followed.

55

Section 13: Representation Issues

(continued) The recommended level of support for
the Size attribute of subtypes is:

The Size (if not specified) of a static
discrete or fixed point subtype should be
the number of bits needed to represent
each value belonging to the subtype using
an unbiased representation, leaving space
for a sign bit only if the subtype contains
negative values. If such a subtype is a first
subtype, then an implementation should
support a specified Size for it that reflects
this representation.

A: Followed.

(continued) For a subtype implemented with levels
of indirection, the Size should include the
size of the pointers, but not the size of
what they point at.

A: Followed.

13.3(71-73):
Component Size
Clauses

The recommended level of support for
the Component_Size attribute is:

An implementation need not support
specified Component_Sizes that are less
than the Size of the component subtype.

A: Followed.

(continued) An implementation should support
specified Component_Sizes that are factors
and multiples of the word size. For such
Component_Sizes, the array should contain
no gaps between components. For other
Component_Sizes (if supported), the array
should contain no gaps between
components when packing is also
specified; the implementation should
forbid this combination in cases where it
cannot support a no-gaps representation.

A: Followed.

56

Chapter 3. Implementation Advice

13.4(9-10):
Enumeration
Representation Clauses

The recommended level of support for
enumeration representation clauses is:

An implementation need not support
enumeration representation clauses for
boolean types, but should at minimum
support the internal codes in the range
System.Min_Int.System.Max_Int.

A: Followed.

13.5.1(17-22): Record
Representation Clauses

The recommended level of support for
record_representation_clauses is:

An implementation should support
storage places that can be extracted with
a load, mask, shift sequence of machine
code, and set with a load, shift, mask,
store sequence, given the available
machine instructions and run-time model.

A: Followed.

(continued) A storage place should be supported if its
size is equal to the Size of the component
subtype, and it starts and ends on a
boundary that obeys the Alignment of the
component subtype.

A: Followed.

(continued) If the default bit ordering applies to the
declaration of a given type, then for a
component whose subtype's Size is less
than the word size, any storage place that
does not cross an aligned word boundary
should be supported.

A: Followed.

(continued) An implementation may reserve a storage
place for the tag field of a tagged type,
and disallow other components from
overlapping that place.

A: Followed.

57

Section 13: Representation Issues

(continued) An implementation need not support a
component_clause for a component of an
extension part if the storage place is not
after the storage places of all components
of the parent type, whether or not those
storage places had been specified.

A: Followed. The above advice on record
representation clauses is followed, and
all mentioned features are implemented.

13.5.2(5): Storage Place
Attributes

If a component is represented using some
form of pointer (such as an offset) to the
actual data of the component, and this
data is contiguous with the rest of the
object, then the storage place attributes
should reflect the place of the actual data,
not the pointer. If a component is
allocated discontinuously from the rest
of the object, then a warning should be
generated upon reference to one of its
storage place attributes.

A: Followed. There are no such components
in XGC Ada.

13.5.3(7-8): Bit
Ordering

The recommended level of support for
the non-default bit ordering is:

If Word_Size = Storage_Unit, then the
implementation should support the
non-default bit ordering in addition to the
default bit ordering.

A: Followed. Word size does not equal
storage size in this implementation. Thus
non-default bit ordering is not supported.

13.7(37): Address as
Private

Address should be of a private type.

A: Not Followed. The type Address is
visible.

13.7.1(16): Address
Operations

Operations in System and its children
should reflect the target environment

58

Chapter 3. Implementation Advice

semantics as closely as is reasonable. For
example, on most machines, it makes
sense for address arithmetic to wrap
around. Operations that do not make
sense should raise Program_Error.

A: Followed. Address arithmetic is modular
arithmetic that wraps around. No
operation raises Program_Error, since all
operations make sense.

13.9(14-17): Unchecked
Conversion

The Size of an array object should not
include its bounds; hence, the bounds
should not be part of the converted data.

A: Followed.

(continued) The implementation should not generate
unnecessary run-time checks to ensure
that the representation of S is a
representation of the target type. It should
take advantage of the permission to return
by reference when possible. Restrictions
on unchecked conversions should be
avoided unless required by the target
environment.

A: Followed. There are no restrictions on
unchecked conversion. A warning is
generated if the source and target types
do not have the same size since the
semantics in this case may be target
dependent.

(continued) The recommended level of support for
unchecked conversions is:

Unchecked conversions should be
supported and should be reversible in the
cases where this clause defines the result.
To enable meaningful use of unchecked
conversion, a contiguous representation
should be used for elementary subtypes,
for statically constrained array subtypes
whose component subtype is one of the

59

Section 13: Representation Issues

subtypes described in this paragraph, and
for record subtypes without discriminants
whose component subtypes are described
in this paragraph.

A: Followed.

13.11(23-25): Implicit
Heap Usage

An implementation should document any
cases in which it dynamically allocates
heap storage for a purpose other than the
evaluation of an allocator.

A: Followed, the only other points at which
heap storage is dynamically allocated are
as follows:

• To allocate space for a task when a task
is created.

(continued) A default (implementation-provided)
storage pool for an access-to- constant
type should not have overhead to support
de-allocation of individual objects.

A: Not applicable.

(continued) A storage pool for an anonymous access
type should be created at the point of an
allocator for the type, and be reclaimed
when the designated object becomes
inaccessible.

A: Followed.

13.11.2(17): Unchecked
De-allocation

For a standard storage pool, Free should
actually reclaim the storage.

A: Not supported.

13.13.2(17): Stream
Oriented Attributes

If a stream element is the same size as a
storage element, then the normal
in-memory representation should be used
by Read and Write for scalar objects.
Otherwise, Read and Write should use the
smallest number of stream elements

60

Chapter 3. Implementation Advice

needed to represent all values in the base
range of the scalar type.

A: Not supported.

3.8. Annex A: Predefined Language Environment

A.1(52): Implementation Advice If an implementation
provides additional named predefined integer types,
then the names should end with Integer as in
Long_Integer. If an implementation provides
additional named predefined floating point types, then
the names should end with Float as in Long_Float.
.. 61

A . 3 . 2 (4 9) : A d a . C h a r a c t e r s . H a n d l i n g
< p r i m a r y > A d a . C h a r a c t e r s . H a n d l i n g < / p r i m a r y >

.. 62
A.4.5(106): Bounded-Length String Handling
<primary>Alignments of components</primary>

.. 62
A.5.2(46-47): Random Number Generation
<primary>Random Number Generation</primary>

.. 62
(continued) If the generator period is sufficiently long in

relation to the number of distinct initiator values, then
each possible value of Initiator passed to Reset
should initiate a sequence of random numbers that
does not, in a practical sense, overlap the sequence
initiated by any other value. If this is not possible,
then the mapping between initiator values and
generator states should be a rapidly varying function
of the initiator value. ... 62

A . 1 0 . 7 (2 3) : G e t _ I m m e d i a t e
< p r i m a r y > G e t _ I m m e d i a t e < / p r i m a r y >

.. 62

A.1(52):
Implementation Advice

If an implementation provides additional
named predefined integer types, then the
names should end with Integer as in
Long_Integer. If an implementation
provides additional named predefined
floating point types, then the names
should end with Float as in Long_Float.

61

Annex A: Predefined Language Environment

A: Followed.

A.3.2(49):
Ada.Characters.Handling

If an implementation provides a localized
definition of Character or
Wide_Character, then the effects of the
subprograms in Characters.Handling
should reflect the localizations. See also
3.5.2.

A: Followed. XGC Ada provides no such
localized definitions.

A.4.5(106):
Bounded-Length String
Handling

Bounded string objects should not be
implemented by implicit pointers and
dynamic allocation.

A: Followed. No implicit pointers or
dynamic allocation are used.

A.5.2(46-47): Random
Number Generation

Any storage associated with an object of
type Generator should be reclaimed on
exit from the scope of the object.

A: Followed.

(continued) If the generator period is sufficiently long
in relation to the number of distinct
initiator values, then each possible value
of Initiator passed to Reset should
initiate a sequence of random numbers
that does not, in a practical sense, overlap
the sequence initiated by any other value.
If this is not possible, then the mapping
between initiator values and generator
states should be a rapidly varying
function of the initiator value.

A: Followed. The generator period is
sufficiently long for the first condition
here to hold true.

A.10.7(23):
Get_Immediate

The Get_Immediate procedures should be
implemented with unbuffered input. For
a device such as a keyboard, input should
be available if a key has already been
typed, whereas for a disk file, input

62

Chapter 3. Implementation Advice

should always be available except at end
of file. For a file associated with a
keyboard-like device, any line-editing
features of the underlying operating
system should be disabled during the
execution of Get_Immediate.

A: Followed.

3.9. Annex B: Interface to Other Languages

B . 1 (3 9 - 4 1) : P r a g m a E x p o r t
< p r i m a r y > p r a g m a E x p o r t < / p r i m a r y >

.. 65
(continued) Automatic elaboration of pre-elaborated packages

should be provided when pragma Export is supported.
.. 65

(continued) For each supported convention L other than
Intrinsic, an implementation should support Import
and Export pragmas for objects of L-compatible types
and for subprograms, and pragma Convention for
L-eligible types and for subprograms, presuming the
other language has corresponding features. Pragma
Convention need not be supported for scalar types.
.. 65

B . 2 (1 2 - 1 3) : P a c k a g e I n t e r f a c e s
< p r i m a r y > I n t e r f a c e s < / p r i m a r y >

.. 66
(continued) An implementation supporting an interface to C,

COBOL, or FORTRAN should provide the
corresponding package or packages described in the
following clauses. ... 66

B . 3 (6 3 - 7 1) : I n t e r f a c i n g w i t h C
<primary>C, interfacing with</primary>

.. 66
(continued) An Ada procedure corresponds to a void-returning

C function. .. 66
(continued) An Ada function corresponds to a non-void C

function. ... 66
(continued) An Ada in scalar parameter is passed as a scalar

argument to a C function. ... 66
(continued) An Ada in parameter of an access-to-object type

with designated type T is passed as a t* argument

63

Annex B: Interface to Other Languages

to a C function, where t is the C type corresponding
to the Ada type T. .. 66

(continued) An Ada access T parameter, or an Ada out or in
out parameter of an elementary type T, is passed as a
t* argument to a C function, where t is the C type
corresponding to the Ada type T. In the case of an
elementary out or in out parameter, a pointer to a
temporary copy is used to preserve by-copy semantics.
.. 67

(continued) An Ada parameter of a record type T, of any
mode, is passed as a t* argument to a C function,
where t is the C structure corresponding to the Ada
type T. .. 67

(continued) An Ada parameter of an array type with
component type T, of any mode, is passed as a t*

argument to a C function, where t is the C type
corresponding to the Ada type T. 67

(continued) An Ada parameter of an access-to-subprogram
type is passed as a pointer to a C function whose
prototype corresponds to the designated subprogram's
specification. ... 67

B . 4 (9 5 - 9 8) : I n t e r f a c i n g w i t h C O B O L
< p r i m a r y > C O B O L < / p r i m a r y >
<secondary>interfacing with</secondary>

.. 68
(continued) An Ada access T parameter is passed as a BY

REFERENCE data item of the COBOL type
corresponding to T. .. 68

B.5(22-26): Interfacing with FORTRAN
< p r i m a r y > F O R T R A N < / p r i m a r y >

.. 68
(continued) An Ada function corresponds to a FORTRAN

function. ... 68
(continued) An Ada parameter of an elementary, array, or

record type T is passed as a T argument to a
FORTRAN procedure, where T is the FORTRAN type
corresponding to the Ada type T, and where the
INTENT attribute of the corresponding dummy
argument matches the Ada formal parameter mode;
the FORTRAN implementation's parameter passing
conventions are used. For elementary types, a local
copy is used if necessary to ensure by-copy semantics.
.. 68

64

Chapter 3. Implementation Advice

(continued) An Ada parameter of an access-to-subprogram
type is passed as a reference to a FORTRAN
procedure whose interface corresponds to the
designated subprogram's specification. 69

B.1(39-41): Pragma
Export

If an implementation supports pragma
Export to a given language, then it should
also allow the main subprogram to be
written in that language. It should support
some mechanism for invoking the
elaboration of the Ada library units
included in the system, and for invoking
the finalization of the environment task.
On typical systems, the recommended
mechanism is to provide two subprograms
whose link names are adainit and
adafinal. adainit should contain the
elaboration code for library units.
adafinal should contain the finalization
code. These subprograms should have no
effect the second and subsequent time
they are called.

A: Followed.

(continued) Automatic elaboration of pre-elaborated
packages should be provided when
pragma Export is supported.

A: Followed.

(continued) For each supported convention L other
than Intrinsic, an implementation should
support Import and Export pragmas for
objects of L-compatible types and for
subprograms, and pragma Convention for
L-eligible types and for subprograms,
presuming the other language has
corresponding features. Pragma
Convention need not be supported for
scalar types.

A: Followed.

65

Annex B: Interface to Other Languages

B.2(12-13): Package
Interfaces

For each implementation-defined
convention identifier, there should be a
child package of package Interfaces with
the corresponding name. This package
should contain any declarations that
would be useful for interfacing to the
language (implementation) represented
by the convention. Any declarations
useful for interfacing to any language on
the given hardware architecture should
be provided directly in Interfaces.

A: Followed.

(continued) An implementation supporting an
interface to C, COBOL, or FORTRAN
should provide the corresponding package
or packages described in the following
clauses.

A: Not Followed.

B.3(63-71): Interfacing
with C

An implementation should support the
following interface correspondences
between Ada and C.

A: Followed.

(continued) An Ada procedure corresponds to a
void-returning C function.

A: Followed.

(continued) An Ada function corresponds to a
non-void C function.

A: Followed.

(continued) An Ada in scalar parameter is passed as
a scalar argument to a C function.

A: Followed.

(continued) An Ada in parameter of an
access-to-object type with designated type
T is passed as a t* argument to a C

66

Chapter 3. Implementation Advice

function, where t is the C type
corresponding to the Ada type T.

A: Followed.

(continued) An Ada access T parameter, or an Ada
out or in out parameter of an elementary
type T, is passed as a t* argument to a
C function, where t is the C type
corresponding to the Ada type T. In the
case of an elementary out or in out
parameter, a pointer to a temporary copy
is used to preserve by-copy semantics.

A: Followed.

(continued) An Ada parameter of a record type T, of
any mode, is passed as a t* argument
to a C function, where t is the C structure
corresponding to the Ada type T.

A: Followed. This convention may be
overridden by the use of the
C_Pass_By_Copy pragma, or
Convention, or by explicitly specifying
the mechanism for a given call using an
extended import or export pragma.

(continued) An Ada parameter of an array type with
component type T, of any mode, is passed
as a t* argument to a C function, where
t is the C type corresponding to the Ada
type T.

A: Followed.

(continued) An Ada parameter of an
access-to-subprogram type is passed as a
pointer to a C function whose prototype
corresponds to the designated
subprogram's specification.

A: Followed.

67

Annex B: Interface to Other Languages

B.4(95-98): Interfacing
with COBOL

An Ada implementation should support
the following interface correspondences
between Ada and COBOL.

A: Not Followed. COBOL is not supported
by XGC Ada.

(continued) An Ada access T parameter is passed as
a BY REFERENCE data item of the
COBOL type corresponding to T.

An Ada in scalar parameter is passed as
a BY CONTENT data item of the
corresponding COBOL type.

Any other Ada parameter is passed as a
BY REFERENCE data item of the
COBOL type corresponding to the Ada
parameter type; for scalars, a local copy
is used if necessary to ensure by-copy
semantics.

A: Not applicable. COBOL is not supported
by XGC Ada.

B.5(22-26): Interfacing
with FORTRAN

An Ada implementation should support
the following interface correspondences
between Ada and FORTRAN: Followed.

An Ada procedure corresponds to a
FORTRAN subroutine.

A: Followed.

(continued) An Ada function corresponds to a
FORTRAN function.

A: Followed.

(continued) An Ada parameter of an elementary,
array, or record type T is passed as a T
argument to a FORTRAN procedure,
where T is the FORTRAN type
corresponding to the Ada type T, and
where the INTENT attribute of the
corresponding dummy argument matches

68

Chapter 3. Implementation Advice

the Ada formal parameter mode; the
FORTRAN implementation's parameter
passing conventions are used. For
elementary types, a local copy is used if
necessary to ensure by-copy semantics.

A: Followed.

(continued) An Ada parameter of an
access-to-subprogram type is passed as a
reference to a FORTRAN procedure
whose interface corresponds to the
designated subprogram's specification.

A: Followed.

3.10. Annex C: Systems Programming

C.1(3-5): Access to Machine Operations
< p r i m a r y > M a c h i n e C o d e < / p r i m a r y >

.. 70
(continued) The interfacing pragmas (see Annex B) should

support interface to assembler; the default assembler
should be associated with the convention identifier
Assembler. .. 70

(continued) If an entity is exported to assembly language,
then the implementation should allocate it at an
addressable location, and should ensure that it is
retained by the linking process, even if not otherwise
referenced from the Ada code. The implementation
should assume that any call to a machine code or
assembler subprogram is allowed to read or update
every object that is specified as exported. 71

C.1(10-16): Access to Machine Operations The
implementation should ensure that little or no
overhead is associated with calling intrinsic and
machine-code subprograms. 71

(continued) It is recommended that intrinsic subprograms be
provided for convenient access to any machine
operations that provide special capabilities or
efficiency and that are not otherwise available through
the language constructs. ... 71

69

Annex C: Systems Programming

(continued) Atomic read-modify-write operations -- e.g., test
and set, compare and swap, decrement and test,
enqueue/dequeue. .. 71

(continued) Standard numeric functions -- e.g., sin, log. 71
(continued) String manipulation operations -- e.g., translate

and test. .. 72
(continued) Vector operations -- e.g., compare vector against

thresholds. .. 72
(continued) Direct operations on I/O ports. 72
C . 3 (2 8) : I n t e r r u p t S u p p o r t
< p r i m a r y > I n t e r r u p t s < / p r i m a r y >

.. 72
C.3.1(20-21): Protected Procedure Handlers
<primary>Protected Procedure Handlers</primary>

.. 72
(continued) Whenever practical, violations of any

implementation-defined restrictions should be detected
before run time. ... 72

C . 3 . 2 (2 5) : P a c k a g e I n t e r r u p t s
< p r i m a r y > I n t e r r u p t s < / p r i m a r y >

.. 72
C.4(14) : Pre-e labora t ion Requi rements
< p r i m a r y > C o m p o n e n t _ A l i g n m e n t < / p r i m a r y >

.. 73
C.5(8): Pragma Discard_Names If the pragma applies to an

entity, then the implementation should reduce the
amount of storage used for storing names associated
with that entity. ... 73

C.7.2(30): The Package Task_Attr ibutes
< p r i m a r y > Ta s k a t t r i b u t e s < / p r i m a r y >

.. 73

C.1(3-5): Access to
Machine Operations

The machine code or intrinsic support
should allow access to all operations
normally available to assembly language
programmers for the target environment,
including privileged instructions, if any.

A: Followed.

(continued) The interfacing pragmas (see Annex B)
should support interface to assembler; the
default assembler should be associated
with the convention identifier Assembler.

70

Chapter 3. Implementation Advice

A: Followed.

(continued) If an entity is exported to assembly
language, then the implementation should
allocate it at an addressable location, and
should ensure that it is retained by the
linking process, even if not otherwise
referenced from the Ada code. The
implementation should assume that any
call to a machine code or assembler
subprogram is allowed to read or update
every object that is specified as exported.

A: Followed.

C.1(10-16): Access to
Machine Operations

The implementation should ensure that
little or no overhead is associated with
calling intrinsic and machine-code
subprograms.

A: Followed for both intrinsics and
machine-code subprograms.

(continued) It is recommended that intrinsic
subprograms be provided for convenient
access to any machine operations that
provide special capabilities or efficiency
and that are not otherwise available
through the language constructs.

A: Followed. A full set of machine operation
intrinsic subprograms is provided.

(continued) Atomic read-modify-write operations --
e.g., test and set, compare and swap,
decrement and test, enqueue/dequeue.

A: Followed on any target supporting such
operations.

(continued) Standard numeric functions -- e.g., sin,
log.

A: Followed on any target supporting such
operations.

71

Annex C: Systems Programming

(continued) String manipulation operations -- e.g.,
translate and test.

A: Followed on any target supporting such
operations.

(continued) Vector operations -- e.g., compare vector
against thresholds.

A: Followed on any target supporting such
operations.

(continued) Direct operations on I/O ports.

A: Followed on any target supporting such
operations.

C.3(28): Interrupt
Support

If the Ceiling_Locking policy is not in
effect, the implementation should provide
means for the application to specify
which interrupts are to be blocked during
protected actions, if the underlying
system allows for a finer-grain control of
interrupt blocking.

A: Followed. The underlying system does
not allow for finer-grain control of
interrupt blocking.

C.3.1(20-21): Protected
Procedure Handlers

Whenever possible, the implementation
should allow interrupt handlers to be
called directly by the hardware.

A: Followed on any target where the
underlying operating system permits such
direct calls.

(continued) Whenever practical, violations of any
implementation-defined restrictions
should be detected before run time.

A: Followed. Compile time warnings are
given when possible.

C.3.2(25): Package
Interrupts

If implementation-defined forms of
interrupt handler procedures are

72

Chapter 3. Implementation Advice

supported, such as protected procedures
with parameters, then for each such form
of a handler, a type analogous to
Parameterless_Handler should be
specified in a child package of
Interrupts, with the same operations as
in the predefined package Interrupts.

A: Followed.

C.4(14):
Pre-elaboration
Requirements

It is recommended that pre-elaborated
packages be implemented in such a way
that there should be little or no code
executed at run time for the elaboration
of entities not already covered by the
Implementation Requirements.

A: Followed. Executable code is generated
in some cases, e.g. loops to initialize large
arrays.

C.5(8): Pragma
Discard_Names

If the pragma applies to an entity, then
the implementation should reduce the
amount of storage used for storing names
associated with that entity.

A: Followed.

C.7.2(30): The Package
Task_Attributes

Some implementations are targeted to
domains in which memory use at run time
must be completely deterministic. For
such implementations, it is recommended
that the storage for task attributes will be
pre-allocated statically and not from the
heap. This can be accomplished by either
placing restrictions on the number and
the size of the task's attributes, or by using
the pre-allocated storage for the first N
attribute objects, and the heap for the
others. In the latter case, N should be
documented.

A: Not followed. This implementation is not
targeted to such a domain.

73

Annex C: Systems Programming

3.11. Annex D: Real-Time Systems

D . 3 (1 7) : L o c k i n g P o l i c i e s
< p r i m a r y > L o c k i n g < / p r i m a r y >

.. 74
D . 4 (1 6) : E n t r y Q u e u i n g P o l i c i e s
< p r i m a r y > E n t r y Q u e u i n g < / p r i m a r y >

.. 74
D . 6 (9 - 1 0) : P r e e m p t i v e A b o r t
< p r i m a r y > A b o r t < / p r i m a r y >

.. 75
(continued) On a multi-processor, the delay associated with

aborting a task on another processor should be
bounded; the implementation should use periodic
polling, if necessary, to achieve this. 75

D . 7 (2 1) : T a s k i n g R e s t r i c t i o n s
< p r i m a r y > R e s t r i c t i o n s < / p r i m a r y >

.. 75
D . 8 (4 7 - 4 9) : M o n o t o n i c T i m e
< p r i m a r y > T i m e < / p r i m a r y >

.. 75
(continued) It is recommended that Calendar.Clock and

Real_Time.Clock be implemented as transformations
of the same time base. ... 75

(continued) It is recommended that the best time base which
exists in the underlying system be available to the
application through Clock. Best may mean highest
accuracy or largest range. ... 75

D.3(17): Locking
Policies

The implementation should use names
that end with _Locking for locking
policies defined by the implementation.

A: Followed. No such
implementation-defined locking policies
exist.

D.4(16): Entry Queuing
Policies

Names that end with _Queuing should be
used for all implementation-defined
queuing policies.

A: Followed. No such
implementation-defined queuing policies
exist.

74

Chapter 3. Implementation Advice

D.6(9-10): Preemptive
Abort

Even though the abort_statement is
included in the list of potentially blocking
operations (see 9.5.1), it is recommended
that this statement be implemented in a
way that never requires the task executing
the abort_statement to block.

A: Not applicable.

(continued) On a multi-processor, the delay associated
with aborting a task on another processor
should be bounded; the implementation
should use periodic polling, if necessary,
to achieve this.

A: Not applicable.

D.7(21): Tasking
Restrictions

When feasible, the implementation should
take advantage of the specified
restrictions to produce a more efficient
implementation.

A: Followed.

D.8(47-49): Monotonic
Time

When appropriate, implementations
should provide configuration mechanisms
to change the value of Tick.

A: Not Followed.

(continued) It is recommended that Calendar.Clock
and Real_Time.Clock be implemented as
transformations of the same time base.

A: Not Followed. Package Calendar is
prohibited by the built-in restriction
No_Calendar.

(continued) It is recommended that the best time base
which exists in the underlying system be
available to the application through Clock.
Best may mean highest accuracy or
largest range.

A: Followed.

75

Annex D: Real-Time Systems

3.12. Annex E: Distributed Systems

E.5(28-29): Partition Communication Subsystem
< p r i m a r y > P a r t i t i o n s < / p r i m a r y >

.. 76
(continued) The Write operation on a stream of type

Params_Stream_Type should raise Storage_Error if it
runs out of space trying to write the Item into the
stream. ... 76

E.5(28-29): Partition
Communication
Subsystem

Whenever possible, the PCS on the called
partition should allow for multiple tasks
to call the RPC-receiver with different
messages and should allow them to block
until the corresponding subprogram body
returns.

A: Not applicable.

(continued) The Write operation on a stream of type
Params_Stream_Type should raise
Storage_Error if it runs out of space
trying to write the Item into the stream.

A: Not applicable.

3.13. Annex F: Information Systems

F (7) : C O B O L S u p p o r t
< p r i m a r y > C O B O L s u p p o r t < / p r i m a r y >

.. 76
F . 1 (2) : D e c i m a l R a d i x S u p p o r t
< p r i m a r y > D e c i m a l R a d i x < / p r i m a r y >

.. 77

F(7): COBOL Support If COBOL (respectively, C) is widely
supported in the target environment,
implementations supporting the
Information Systems Annex should
provide the child package
Interfaces.COBOL (respectively,
Interfaces.C) specified in Annex B and
should support a convention_identifier

76

Chapter 3. Implementation Advice

of COBOL (respectively, C) in the
interfacing pragmas (see Annex B), thus
allowing Ada programs to interface with
programs written in that language.

A: Not applicable. COBOL is not supported
by XGC Ada.

F.1(2): Decimal Radix
Support

Packed decimal should be used as the
internal representation for objects of
subtype S when S'Machine_Radix = 10.

A: Not followed. XGC Ada ignores
S'Machine_Radix and always uses binary
representations.

3.14. Annex G: Numerics

G: Numerics If FORTRAN (respectively, C) is widely
supported in the target environment, implementations
supporting the Numerics Annex should provide the
child package Interfaces.Fortran (respectively,
Interfaces.C) specified in Annex B and should
support a convention_identifier of FORTRAN
(respectively, C) in the interfacing pragmas (see
Annex B), thus allowing Ada programs to interface
with programs written in that language. 78

G . 1 . 1 (5 6 - 5 8) : C o m p l e x T y p e s
< p r i m a r y > C o m p l e x t y p e s < / p r i m a r y >

.. 78
(continued) Similarly, because the usual mathematical

meaning of addition of a complex operand and a real
operand is that the imaginary operand remains
unchanged, an implementation should not perform
this operation by first promoting the real operand to
complex type and then performing a full complex
addition. In implementations in which the
Signed_Zeros attribute of the component type is True
(and which therefore conform to IEC 559:1989 in
regard to the handling of the sign of zero in predefined
arithmetic operations), the latter technique will not
generate the required result when the imaginary
component of the complex operand is a negatively
signed zero. (Explicit addition of the negative zero to

77

Annex G: Numerics

the zero obtained during promotion yields a positive
zero.) Analogous advice applies in the case of addition
of a complex operand and a pure-imaginary operand,
and in the case of subtraction of a complex operand
and a real or pure-imaginary operand. 79

(continued) Implementations in which Real'Signed_Zeros is
True should attempt to provide a rational treatment
of the signs of zero results and result components. As
one example, the result of the Argument function
should have the sign of the imaginary component of
the parameter X when the point represented by that
parameter lies on the positive real axis; as another,
the sign of the imaginary component of the
Compose_From_Polar function should be the same as
(respectively, the opposite of) that of the Argument
parameter when that parameter has a value of zero
and the Modulus parameter has a nonnegative
(respectively, negative) value. 80

G.1.2(49): Complex Elementary Functions
<primary>Complex elementary functions</primary>

.. 80
G . 2 . 4 (1 9) : A c c u r a c y R e q u i r e m e n t s
<primary>Accuracy requirements</primary>

.. 81
G.2.6(15): Complex Arithmetic Accuracy
<primary>Complex arithmetic accuracy</primary>

.. 81

G: Numerics If FORTRAN (respectively, C) is widely
supported in the target environment,
implementations supporting the Numerics
Annex should provide the child package
Interfaces.Fortran (respectively,
Interfaces.C) specified in Annex B and
should support a convention_identifier
of FORTRAN (respectively, C) in the
interfacing pragmas (see Annex B), thus
allowing Ada programs to interface with
programs written in that language.

A: Not applicable.

G.1.1(56-58): Complex
Types

Because the usual mathematical meaning
of multiplication of a complex operand
and a real operand is that of the scaling

78

Chapter 3. Implementation Advice

of both components of the former by the
latter, an implementation should not
perform this operation by first promoting
the real operand to complex type and then
performing a full complex multiplication.
In systems that, in the future, support an
Ada binding to IEC 559:1989, the latter
technique will not generate the required
result when one of the components of the
complex operand is infinite. (Explicit
multiplication of the infinite component
by the zero component obtained during
promotion yields a NaN that propagates
into the final result.) Analogous advice
applies in the case of multiplication of a
complex operand and a pure-imaginary
operand, and in the case of division of a
complex operand by a real or
pure-imaginary operand.

A: Not followed.

(continued) Similarly, because the usual mathematical
meaning of addition of a complex
operand and a real operand is that the
imaginary operand remains unchanged,
an implementation should not perform
this operation by first promoting the real
operand to complex type and then
performing a full complex addition. In
implementations in which the
Signed_Zeros attribute of the component
type is True (and which therefore conform
to IEC 559:1989 in regard to the handling
of the sign of zero in predefined
arithmetic operations), the latter technique
will not generate the required result when
the imaginary component of the complex
operand is a negatively signed zero.
(Explicit addition of the negative zero to
the zero obtained during promotion yields
a positive zero.) Analogous advice applies
in the case of addition of a complex
operand and a pure-imaginary operand,

79

Annex G: Numerics

and in the case of subtraction of a
complex operand and a real or
pure-imaginary operand.

A: Not followed.

(continued) Implementations in which
Real'Signed_Zeros is True should attempt
to provide a rational treatment of the signs
of zero results and result components. As
one example, the result of the Argument
function should have the sign of the
imaginary component of the parameter X
when the point represented by that
parameter lies on the positive real axis;
as another, the sign of the imaginary
component of the Compose_From_Polar
function should be the same as
(respectively, the opposite of) that of the
Argument parameter when that parameter
has a value of zero and the Modulus
parameter has a nonnegative
(respectively, negative) value.

A: Not applicable.

G.1.2(49): Complex
Elementary Functions

Implementations in which
Complex_Types.Real'Signed_Zeros is
True should attempt to provide a rational
treatment of the signs of zero results and
result components. For example, many
of the complex elementary functions have
components that are odd functions of one
of the parameter components; in these
cases, the result component should have
the sign of the parameter component at
the origin. Other complex elementary
functions have zero components whose
sign is opposite that of a parameter
component at the origin, or is always
positive or always negative.

A: Not applicable.

80

Chapter 3. Implementation Advice

G.2.4(19): Accuracy
Requirements

The versions of the forward trigonometric
functions without a Cycle parameter
should not be implemented by calling the
corresponding version with a Cycle
parameter of 2.0*Numerics.Pi, since this
will not provide the required accuracy in
some portions of the domain. For the
same reason, the version of Log without
a Base parameter should not be
implemented by calling the corresponding
version with a Base parameter of
Numerics.e.

A: Not applicable.

G.2.6(15): Complex
Arithmetic Accuracy

The version of the Compose_From_Polar
function without a Cycle parameter
should not be implemented by calling the
corresponding version with a Cycle
parameter of 2.0*Numerics.Pi, since this
will not provide the required accuracy in
some portions of the domain.

A: Not applicable.

81

Annex G: Numerics

82

Machine Code InsertionsChapter 4

Package Machine_Code provides machine code support as
described in the Ada 95 Reference Manual in two separate forms:

• Machine code statements, consisting of qualified expressions
that fit the requirements of RM section 13.8.

• An intrinsic callable procedure, providing an alternative
mechanism of including machine instructions in a subprogram.

The two features are similar, and both closely related to the
mechanism provided by the asm instruction in the GNU C compiler.
Full understanding and use of the facilities in this package requires
understanding the asm instruction as described in Using and Porting
GNU CC by Richard Stallman .Calls to the function Asm and the
procedure Asm have identical semantic restrictions and effects as
described below. Both are provided so that the procedure call can
be used as a statement, and the function call can be used to form
a code_statement.

The first example given in the GNU CC documentation is the C
asm instruction:

83

 asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The equivalent can be written in Ada as:

 Asm ("fsinx %1,%0",
 My_Float'Asm_Output ("=f", result),
 My_Float'Asm_Input ("f", angle));

The first argument to Asm is the assembler template, and is
identical to what is used in GNU CC. This string must be a static
expression. The second argument is the output operand list. It is
either a single Asm_Output attribute reference, or a list of such
references enclosed in parentheses (technically an array aggregate
of such references).

The Asm_Output attribute denotes a function that takes two
parameters. The first is a string, the second is the name of a variable
of the type designated by the attribute prefix. The first (string)
argument is required to be a static expression and designates the
constraint for the parameter (e.g. what kind of register is required).
The second argument is the variable to be updated with the result.
The possible values for constraint are the same as those used in the
RTL, and are dependent on the configuration file used to build the
GCC back end. If there are no output operands, then this argument
may either be omitted, or explicitly given as No_Output_Operands.

The second argument of My_Float'Asm_Output functions as though
it were an out parameter, which is a little curious, but all names
have the form of expressions, so there is no syntactic irregularity,
even though normally functions would not be permitted out
parameters. The third argument is the list of input operands. It is
either a single Asm_Input attribute reference, or a list of such
references enclosed in parentheses (technically an array aggregate
of such references).

The Asm_Input attribute denotes a function that takes two
parameters. The first is a string, the second is an expression of the
type designated by the prefix. The first (string) argument is required
to be a static expression, and is the constraint for the parameter,
(e.g. what kind of register is required). The second argument is the

84

Chapter 4. Machine Code Insertions

value to be used as the input argument. The possible values for the
constraint are the same as those used in the RTL, and are dependent
on the configuration file used to built the GCC back end.

If there are no input operands, this argument may either be omitted,
or explicitly given as No_Input_Operands. The fourth argument,
not present in the above example, is a list of register names, called
the clobber argument. This argument, if given, must be a static
string expression, and is a space or comma separated list of names
of registers that must be considered destroyed as a result of the
Asm call. If this argument is the null string (the default value), then
the code generator assumes that no additional registers are
destroyed.

The fifth argument, not present in the above example, called the
volatile argument, is by default False. It can be set to the literal
value True to indicate to the code generator that all optimizations
with respect to the instruction specified should be suppressed, and
that in particular, for an instruction that has outputs, the instruction
will still be generated, even if none of the outputs are used. See
the full description in the GCC manual for further details.

The Asm subprograms may be used in two ways. First the
procedure forms can be used anywhere a procedure call would be
valid, and correspond to what the RM calls “intrinsic” routines.
Such calls can be used to intersperse machine instructions with
other Ada statements. Second, the function forms, which return a
dummy value of the limited private type Asm_Insn, can be used
in code statements, and indeed this is the only context where such
calls are allowed. Code statements appear as aggregates of the
form:

 Asm_Insn'(Asm (...));
 Asm_Insn'(Asm_Volatile (...));

In accordance with RM rules, such code statements are allowed
only within subprograms whose entire body consists of such
statements. It is not permissible to intermix such statements with
other Ada statements.

Typically the form using intrinsic procedure calls is more
convenient and more flexible. The code statement form is provided

85

to meet the RM suggestion that such a facility should be made
available. The following is the exact syntax of the call to Asm (of
course if named notation is used, the arguments may be given in
arbitrary order, following the normal rules for use of positional
and named arguments)

 ASM_CALL ::= Asm (
 [Template =>] static_string_EXPRESSION
 [,[Outputs =>] OUTPUT_OPERAND_LIST]
 [,[Inputs =>] INPUT_OPERAND_LIST]
 [,[Clobber =>] static_string_EXPRESSION]
 [,[Volatile =>] static_boolean_EXPRESSION])

 OUTPUT_OPERAND_LIST ::=
 No_Output_Operands
 | OUTPUT_OPERAND_ATTRIBUTE
 | (OUTPUT_OPERAND_ATTRIBUTE {,OUTPUT_OPERAND_ATTRIBUTE})

 OUTPUT_OPERAND_ATTRIBUTE ::=
 SUBTYPE_MARK'Asm_Output (static_string_EXPRESSION, NAME)

 INPUT_OPERAND_LIST ::=
 No_Input_Operands
 | INPUT_OPERAND_ATTRIBUTE
 | (INPUT_OPERAND_ATTRIBUTE {,INPUT_OPERAND_ATTRIBUTE})

 INPUT_OPERAND_ATTRIBUTE ::=
 SUBTYPE_MARK'Asm_Input (static_string_EXPRESSION, EXPRESSION)

4.1. Constraints for Operands

Here are specific details on what constraint letters you can use with
Asm statement operands. Constraints can say whether an operand
may be in a register, and which kinds of register; whether the
operand can be a memory reference, and which kinds of address;
whether the operand may be an immediate constant, and which
possible values it may have. Constraints can also require two
operands to match.

86

Chapter 4. Machine Code Insertions

4.1.1. Simple Constraints

The simplest kind of constraint is a string full of letters, each of
which describes one kind of operand that is permitted. Here are
the letters that are allowed:

“ m ”

A memory operand is allowed, with any kind of address that
the target computer supports in general.

“ o ”

A memory operand is allowed, but only if the address is
offsettable. This means that adding a small integer (actually,
the width in bytes of the operand, as determined by its machine
mode) may be added to the address and the result is also a valid
memory address.

For example, an address which is constant is offsettable; so is
an address that is the sum of a register and a constant (as long
as a slightly larger constant is also within the range of
address-offsets supported by the machine); but an
auto-increment or auto-decrement address is not offsettable.
More complicated indirect/indexed addresses may or may not
be offsettable depending on the other addressing modes that
the machine supports.

Note that in an output operand which can be matched by
another operand, the constraint letter “ o ” is valid only when
accompanied by both “ < ” (if the target machine has
pre-decrement addressing) and “ > ” (if the target machine has
pre-increment addressing).

“ V ”

A memory operand that is not offsettable. In other words,
anything that would fit the “ m ” constraint but not the “ o ”
constraint.

“ < ”

A memory operand with auto-decrement addressing (either
pre-decrement or post-decrement) is allowed.

87

Simple Constraints

“ > ”

A memory operand with auto-increment addressing (either
pre-increment or post-increment) is allowed.

“ r ”

A register operand is allowed provided that it is in a general
register.

“ d ” , “ a ” , “ f ” ,...
Other letters can be defined in machine-dependent fashion to
stand for particular classes of registers. “ d ” , “ a ” and “ f ”
are defined on the 68000/68020 to stand for data, address and
floating point registers.

“ i ”

An immediate integer operand (one with constant value) is
allowed. This includes symbolic constants whose values will
be known only at assembly time.

“ n ”

An immediate integer operand with a known numeric value is
allowed. Many systems cannot support assembly-time constants
for operands less than a word wide. Constraints for these
operands should use “ n ” rather than “ i ” .

“ I ” , “ J ” , “ K ” ,... “ P ”

Other letters in the range “ I ” through “ P ” may be defined in
a machine-dependent fashion to permit immediate integer
operands with explicit integer values in specified ranges. For
example, on the 68000, “ I ” is defined to stand for the range
of values 1 to 8. This is the range permitted as a shift count in
the shift instructions.

“ E ”

An immediate floating operand (expression code const_double)
is allowed, but only if the target floating point format is the
same as that of the host machine (on which the compiler is
running).

88

Chapter 4. Machine Code Insertions

“ F ”

An immediate floating operand (expression code const_double)
is allowed.

“ G ” , “ H ”

“ G ” and “ H ” may be defined in a machine-dependent fashion
to permit immediate floating operands in particular ranges of
values.

“ s ”

An immediate integer operand whose value is not an explicit
integer is allowed.

This might appear strange; if an insn allows a constant operand
with a value not known at compile time, it certainly must allow
any known value. So why use “ s ” instead of “ i ” ?Sometimes
it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is
possible to use an immediate operand; but if the immediate
value is between -128 and 127, better code results from loading
the value into a register and using the register. This is because
the load into the register can be done with a “ moveq ”
instruction. We arrange for this to happen by defining the letter
“ K ” to mean “any integer outside the range -128 to 127 ” ,and
then specifying “ Ks ” in the operand constraints.

“ g ”

Any register, memory or immediate integer operand is allowed,
except for registers that are not general registers.

“ X ”

Any operand whatsoever is allowed.

“ 0 ” , “ 1 ” , “ 2 ” ,... “ 9 ”

An operand that matches the specified operand number is
allowed. If a digit is used together with letters within the same
alternative, the digit should come last.

89

Simple Constraints

This is called a matching constraint and what it really means
is that the assembler has only a single operand that fills two
roles which asm distinguishes. For example, an add instruction
uses two input operands and an output operand, but on most
CISC machines an add instruction really has only two operands,
one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More
precisely, the two operands that match must include one
input-only operand and one output-only operand. Moreover,
the digit must be a smaller number than the number of the
operand that uses it in the constraint.

“ p ”

An operand that is a valid memory address is allowed. This is
for “load address” and “push address” instructions.

“ p ” in the constraint must be accompanied by address_operand
as the predicate in the match_operand. This predicate interprets
the mode specified in the match_operand as the mode of the
memory reference for which the address would be valid.

“ Q ” , “ R ” , “ S ” ,... “ U ”

Letters in the range “ Q ” through “ U ” may be defined in a
machine-dependent fashion to stand for arbitrary operand types.

4.1.2. Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of
possible operands. For example, on the 68000, a logical-or
instruction can combine register or an immediate value into
memory, or it can combine any kind of operand into a register; but
it cannot combine one memory location into another.

These constraints are represented as multiple alternatives. An
alternative can be described by a series of letters for each operand.
The overall constraint for an operand is made from the letters for
this operand from the first alternative, a comma, the letters for this
operand from the second alternative, a comma, and so on until the
last alternative.

90

Chapter 4. Machine Code Insertions

If all the operands fit any one alternative, the instruction is valid.
Otherwise, for each alternative, the compiler counts how many
instructions must be added to copy the operands so that that
alternative applies. The alternative requiring the least copying is
chosen. If two alternatives need the same amount of copying, the
one that comes first is chosen. These choices can be altered with
the “ ? ” and “ ! ” characters:

?

Disparage slightly the alternative that the “ ? ” appears in, as
a choice when no alternative applies exactly. The compiler
regards this alternative as one unit more costly for each “ ? ”
that appears in it.

!

Disparage severely the alternative that the “ ! ” appears in.
This alternative can still be used if it fits without reloading,
but if reloading is needed, some other alternative will be used.

4.1.3. Constraint Modifier Characters

Here are constraint modifier characters.

“ = ”

Means that this operand is write-only for this instruction: the
previous value is discarded and replaced by output data.

“ + ”

Means that this operand is both read and written by the
instruction.

When the compiler fixes up the operands to satisfy the
constraints, it needs to know which operands are inputs to the
instruction and which are outputs from it. “ = ” identifies an
output; “ + ” identifies an operand that is both input and output;
all other operands are assumed to be input only.

“ & ”

Means (in a particular alternative) that this operand is an
earlyclobber operand, which is modified before the instruction

91

Constraint Modifier Characters

is finished using the input operands. Therefore, this operand
may not lie in a register that is used as an input operand or as
part of any memory address.

“ & ” applies only to the alternative in which it is written. In
constraints with multiple alternatives, sometimes one alternative
requires “ & ” while others do not. See, for example, the “ movdf
” insn of the 68000.

An input operand can be tied to an earlyclobber operand if its
only use as an input occurs before the early result is written.
Adding alternatives of this form often allows the compiler to
produce better code when only some of the inputs can be
affected by the earlyclobber.

“ & ” does not obviate the need to write “ = ” .

“ % ”

Declares the instruction to be commutative for this operand
and the following operand. This means that the compiler may
interchange the two operands if that is the cheapest way to
make all operands fit the constraints.

“ # ”

Says that all following characters, up to the next comma, are
to be ignored as a constraint. They are significant only for
choosing register preferences.

92

Chapter 4. Machine Code Insertions

Compatibility GuideChapter 5

This chapter contains sections that describe compatibility issues
between XGC Ada and other Ada 83 and Ada 95 compilation
systems, to aid in porting applications developed in other Ada
environments.

5.1. Compatibility with Ada 83

Ada 95 is designed to be highly upwards compatible with Ada 83.
In particular, the design intention is that the difficulties associated
with moving from Ada 83 to Ada 95 should be no greater than
those that occur when moving from one Ada 83 system to another.

However, there are a number of points at which there are minor
incompatibilities. The Ada 95 Annotated Reference Manual
contains full details of these issues, and should be consulted for a
complete treatment. In practice the following are the most likely
issues to be encountered.

Character range
The range of Standard.Character is now the full 256 characters
of Latin-1, whereas in most Ada 83 implementations it was
restricted to 128 characters. This may show up as compile time
or runtime errors. The desirable fix is to adapt the program to

93

accommodate the full character set, but in some cases it may
be convenient to define a subtype or derived type of Character
that covers only the restricted range.

New reserved words
The identifiers abstract, aliased, protected, requeue, tagged,
and until are reserved in Ada 95. Existing Ada 83 code using
any of these identifiers must be edited to use some alternative
name.

Freezing rules
The rules in Ada 95 are slightly different with regard to the
point at which entities are frozen, and representation pragmas
and clauses are not permitted past the freeze point. This shows
up most typically in the form of an error message complaining
that a representation item appears too late, and the appropriate
corrective action is to move the item nearer to the declaration
of the entity to which it refers.

A particular case is that representation pragmas (including the
extended DEC Ada 83 compatibility pragmas such as
Export_Procedure), cannot be applied to a subprogram body.
If necessary, a separate subprogram declaration must be
introduced to which the pragma can be applied.

Optional bodies for library packages
In Ada 83, a package that did not require a package body was
nevertheless allowed to have one. This lead to certain surprises
in compiling large systems (situations in which the body could
be unexpectedly ignored). In Ada 95, if a package does not
require a body then it is not permitted to have a body. To fix
this problem, simply remove a redundant body if it is empty,
or, if it is non-empty, introduce a dummy declaration into the
spec that makes the body required. One approach is to add a
private part to the package declaration (if necessary), and define
a parameterless procedure called Requires_Body, which must
then be given a dummy procedure body in the package body,
which then becomes required.

Numeric_Error is now the same as Constraint_Error
In Ada 95, the exception Numeric_Error is a renaming of
Constraint_Error. This means that it is illegal to have separate
exception handlers for the two exceptions. The fix is simply
to remove the handler for the Numeric_Error case (since even

94

Chapter 5. Compatibility Guide

in Ada 83, a compiler was free to raise Constraint_Error in
place of Numeric_Error in all cases).

Indefinite subtypes in generics
In Ada 83, it was permissible to pass an indefinite type (e.g.
String) as the actual for a generic formal private type, but then
the instantiation would be illegal if there were any instances
of declarations of variables of this type in the generic body. In
Ada 95, to avoid this clear violation of the contract model, the
generic declaration clearly indicates whether or not such
instantiations are permitted. If a generic formal parameter has
explicit unknown discriminants, indicated by using (<>) after
the type name, then it can be instantiated with indefinite types,
but no variables can be declared of this type. Any attempt to
declare a variable will result in an illegality at the time the
generic is declared. If the (<>) notation is not used, then it is
illegal to instantiate the generic with an indefinite type. This
will show up as a compile time error, and the fix is usually
simply to add the (<>) to the generic declaration.

The compiler provides a switch that causes XGC Ada to operate
in Ada 83 mode. In this mode, some but not all compatibility
problems of the type described above are handled automatically.
For example, the new Ada 95 protected keywords are not
recognized in this mode. However, in practice, it is usually
advisable to make the necessary modifications to the program to
remove the need for using this switch.

5.2. Compatibility with Other Ada 95 Systems

Providing that programs avoid the use of restricted, implementation
dependent and implementation defined features of XGC Ada, there
should be a high degree of portability between XGC Ada and other
Ada 95 systems. The following are specific items which have
proved troublesome in moving XGC Ada programs to other Ada
95 compilers, but do not affect porting code to XGC Ada.

Ada 83 Pragmas and Attributes
Ada 95 compilers are allowed, but not required, to implement
the missing Ada 83 pragmas and attributes that are no longer
defined in Ada 95. XGC Ada implements all such pragmas
and attributes, eliminating this as a compatibility concern, but
some other Ada 95 compilers reject these pragmas and
attributes.

95

Compatibility with Other Ada 95 Systems

Special-needs Annexes
XGC Ada implements the a restricted set of special needs
annexes. Other Ada compilers may support a different set and
that means that use of these features may not be portable to
other Ada 95 compilation systems.

Representation Clauses
Some other Ada 95 compilers implement only the minimal set
of representation clauses required by the Ada 95 reference
manual. XGC Ada goes far beyond this minimal set, as
described in the next section.

5.3. Representation Clauses

The Ada 83 reference manual was quite vague in describing both
the minimal required implementation of representation clauses,
and also their precise effects. The Ada 95 reference manual is much
more explicit, but the minimal set of capabilities required in Ada
95 is quite limited.

XGC Ada implements the full required set of capabilities described
in the Ada 95 reference manual, but also goes much beyond this,
and in particular an effort has been made to be compatible with
existing Ada 83 usage to the greatest extent possible.

A few cases exist in which Ada 83 compiler behavior is
incompatible with requirements in the Ada 95 reference manual.
These are instances of intentional or accidental dependence on
specific implementation dependent characteristics of these Ada 83
compilers. The following is a list of the cases most likely to arise
in existing legacy Ada 83 code.

Implicit Packing
Some Ada 83 compilers allowed a Size specification to cause
implicit packing of an array or record. This is specifically
disallowed by implementation advice in the Ada 83 reference
manual (for good reason, this usage can cause expensive
implicit conversions to occur in the code). The problem will
show up as an error message rejecting the size clause. The fix
is simply to provide the explicit pragma Pack.

Meaning of Size Attribute
The Size attribute in Ada 95 for discrete types is defined as
being the minimal number of bits required to hold values of

96

Chapter 5. Compatibility Guide

the type. For example, on a 32-bit machine, the size of Natural
will typically be 31 and not 32 (since no sign bit is required).
Some Ada 83 compilers gave 31, and some 32 in this situation.
This problem will usually show up as a compile time error, but
not always. It is a good idea to check all uses of the 'Size
attribute when porting Ada 83 code. The XGC Ada specific
attribute Object_Size can provide a useful way of duplicating
the behavior of some Ada 83 compiler systems.

Size of Access Types
A common assumption in Ada 83 code is that an access type
is in fact a pointer, and that therefore it will be the same size
as a System.Address value. This assumption is true for XGC
Ada in most cases with one exception. For the case of a pointer
to an unconstrained array type (where the bounds may vary
from one value of the access type to another), the default is to
use a fat pointer, which is represented as two separate pointers,
one to the bounds, and one to the array. This representation
has a number of advantages, including improved efficiency.
However, it may cause some difficulties in porting existing
Ada 83 code which makes the assumption that, for example,
pointers fit in 32 bits on a machine with 32-bit addressing.

To get around this problem, XGC Ada also permits the use of
thin pointers for access types in this case (where the designated
type is an unconstrained array type). These thin pointers are
indeed the same size as a System.Address value. To specify a
thin pointer, use a size clause for the type, for example:

type X is access all String;
 for X'Size use System.Address'Size;

which will cause the type X to be represented using a single
pointer. When using this representation, the bounds are right
behind the array. This representation is slightly less efficient,
and does not allow quite such flexibility in the use of foreign
pointers or in using the Unrestricted_Access attribute to create
pointers to non-aliased objects. But for any standard portable
use of the access type it will work in a functionally correct
manner and allow porting of existing code. Note that another
way of forcing a thin pointer representation is to use a
component size clause for the element size in an array, or a
record representation clause for an access field in a record.

97

Representation Clauses

98

Restrictions and ProfilesAppendix A

This Appendix defines how the Ada 95 restrictions, accessible
through the pragma Restrictions, are supported. Unsafe features
such as run-time dispatching and heap management are not
supported in the run-time system, so all the restrictions that are
relevant for these features are set to True by default.

The following restrictions are built in. That is, they cannot be turned
off and are exploited by the compiler to offer better-quality
generated code than would otherwise be possible.

• No_Abort_Statements

• No_Dispatch

• No_Local_Protected_Objects

• No_Requeue

• No_Task_Attributes

• No_Task_Hierarchy

• No_Terminate_Alternatives

99

The implementation-defined pragma Profile may also be used to
set and unset restrictions that correspond to a certain application
area. The profiles supported are as follows:

Table A.1. Supported Profiles

DescriptionProfile Name

This is the default profile and offers the least
restrictions.

XGC

This allows a limited form of tasking that
includes static tasks, protected objects, the
delay until statement and interrupts.

Ravenscar

This severely restricts the use of
non-deterministic language features

Restricted_Run_Time

(including tasking) and is suitable for
general avionics applications.

This profile prohibits all calls to the
predefined Ada library and is useful for

No_Run_Time

safety-critical applications. Calls to the
compiler support library are not restricted.

Table A.2, “Profiles and Restrictions” [100] gives the individual
restrictions for each profile. Note that the built-in restrictions apply
to all profiles.

Table A.2. Profiles and Restrictions

Restricted_
Run_Time

RavenscarDefaultAda 95 Reference
Manual Section

Restriction

TrueTrueFalseXGC (Ravenscar)Boolean_Entry_Barriers

FalseFalseFalseRM H.4(10)Immediate_Reclamation

TrueTrueTrueRM D.7(5), H.4(3)No_Abort_Statements

TrueTrueFalseRM H.4(17)No_Access_Subprograms

TrueFalseFalseRM H.4(7)No_Allocators

TrueTrueFalseRM D.9(10)No_Asynchronous_Control

TrueTrueFalseXGCNo_Calendar

TrueFalseFalseRM H.4(21)No_Delay

TrueTrueTrueRM H.4(19)No_Dispatch

TrueTrueTrueXGCNo_Dynamic_Interrupts

TrueTrueFalseRM D.9(9)No_Dynamic_Priorities

100

Appendix A. Restrictions and Profiles

Restricted_
Run_Time

RavenscarDefaultAda 95 Reference
Manual Section

Restriction

TrueFalseFalseXGCNo_Elaboration_Code

TrueTrueFalseXGCNo_Entry_Calls_In_Elaboration_Code

TrueTrueTrueXGCNo_Entry_Queue

TrueFalseFalseXGCNo_Enumeration_Maps

TrueFalseFalseXGCNo_Exception_Handlers

FalseFalseFalseRM H.4(12)No_Exceptions

FalseFalseFalseRM H.4(15)No_Fixed_Point

FalseFalseFalseRM H.4(14)No_Floating_Point

TrueFalseFalseXGCNo_Implementation_Attributes

TrueFalseFalseXGCNo_Implementation_Pragmas

TrueFalseFalseXGCNo_Implementation_Restrictions

TrueFalseFalseXGCNo_Implicit_Conditionals

TrueTrueFalseRM D.8(8), H.4(3)No_Implicit_Heap_Allocations

FalseFalseFalseXGCNo_Implicit_Loops

TrueTrueFalseRM H.4(20)No_IO

TrueTrueFalseRM H.4(8)No_Local_Allocators

TrueTrueTrueXGCNo_Local_Protected_Objects

TrueTrueTrueRM D.7(4)No_Nested_Finalization

TrueTrueTrueXGCNo_Protected_Type_Allocators

TrueFalseFalseRM H.4(5)No_Protected_Types

TrueTrueFalseRM H.4(22)No_Recursion

FalseFalseFalseRM H.4(23)No_Reentrancy

TrueTrueFalseXGCNo_Relative_Delay

TrueTrueTrueXGCNo_Requeue

TrueTrueFalseXGC (Ravenscar)No_Select_Statements

TrueTrueTrueXGCNo_Standard_Storage_Pools

TrueTrueTrueXGCNo_Streams

TrueTrueFalseRM D.7(7)No_Task_Allocators

TrueTrueTrueXGCNo_Task_Attributes

TrueTrueTrueRM D.7(3), H.4(3)No_Task_Hierarchy

TrueTrueTrueXGCNo_Task_Termination

TrueTrueTrueRM D.7(6)No_Terminate_Alternatives

101

Restricted_
Run_Time

RavenscarDefaultAda 95 Reference
Manual Section

Restriction

TrueTrueFalseRM H.4(18)No_Unchecked_Access

TrueFalseFalseRM H.4(16)No_Unchecked_Conversion

TrueTrueTrueRM H.4(9)No_Unchecked_Deallocation

TrueTrueFalseXGCNo_Wide_Characters

TrueTrueFalseXGCStatic_Priorities

TrueTrueFalseXGCStatic_Storage_Size

Table A.3, “Profiles and Numerical Restrictions” [102] gives the
restrictions concerning numerical limits.

Table A.3. Profiles and Numerical Restrictions

Restricted_
Run_Time

RavenscarDefaultAda 95 Reference
Manual Section

Restriction

000RM D.7(18),
H.4(2)

Max_Asynchronous_Select_Nesting

111RM D.7(14)Max_Protected_Entries

00UndefinedRM D.7(12)Max_Select_Alternatives

000RM D.7(17)Max_Storage_At_Blocking

00UndefinedRM D.7(13),
H.4(2)

Max_Task_Entries

UndefinedUndefinedUndefinedRM D.7(19),
H.4(2)

Max_Tasks

111Ravenscar specificMax_Entry_Queue_Depth

Violation of the restriction Max_Entry_Queue_Depth is detected
at run time and raises the predefined exception Program_Error.

102

Appendix A. Restrictions and Profiles

The Predefined LibraryAppendix B

This appendix lists the units in the Ada 95 predefined library, and
indicates whether a unit is supported or not. The answer “Yes”
means the unit is supported in the default profile, and maybe in the
other profiles. The answer “Restricted...” means the unit is not
supported in any profile because of a built-in restriction.

Table B.1. Predefined Library Units

Supported?Unit Name

YesAda

YesAda.Asynchronous_Task_Control

Yes a bAda.Calendar

YesAda.Characters

YesAda.Characters.Handling

YesAda.Characters.Latin_1

YesAda.Characters.Wide_Latin_1

YesAda.Command_Line

YesAda.Decimal

YesbAda.Direct_IO

YesAda.Dynamic_Priorities

103

Supported?Unit Name

YesAda.Exceptions

Restricted
No_Implicit_Heap_Allocations

Ada.Finalization

YesAda.Interrupts

YesAda.Interrupts.Names

YesAda.IO_Exceptions

YesAda.Numerics

YesAda.Numerics.Complex_Elementary_Functions

YesAda.Numerics.Complex_Types

YesAda.Numerics.Discrete_Random

YesAda.Numerics.Elementary_Functions

YesAda.Numerics.Float_Random

YesAda.Numerics.Generic_Complex_Elementary_Functions

YesAda.Numerics.Generic_Complex_Types

YesAda.Numerics.Generic_Elementary_Functions

YesAda.Real_Time

YesbAda.Sequential_IO

YesAda.Storage_IO

Restricted No_DispatchAda.Streams

Restricted No_DispatchAda.Streams.Stream_IO

YesAda.Strings

YesAda.Strings.Bounded

YesAda.Strings.Fixed

YesAda.Strings.Maps

YesAda.Strings.Maps.Constants

Not availableAda.Strings.Unbounded

Restricted
No_Implicit_Heap_Allocations

Ada.Strings.Wide_Bounded

Restricted
No_Implicit_Heap_Allocations

Ada.Strings.Wide_Fixed

Restricted
No_Implicit_Heap_Allocations

Ada.Strings.Wide_Maps

Restricted
No_Implicit_Heap_Allocations

Ada.Strings.Wide_Maps.Wide_Constants

104

Appendix B. The Predefined Library

Supported?Unit Name

Restricted
No_Implicit_Heap_Allocations

Ada.Strings.Wide_Unbounded

YesAda.Synchronous_Task_Control

Restricted No_DispatchAda.Tags

NoAda.Task_Attributes

YesAda.Task_Identification

YesbAda.Text_IO

Not applicableAda.Text_IO.Complex_IO

Not applicableAda.Text_IO.Editing

Not applicableAda.Text_IO.Text_Streams

YesAda.Unchecked_Conversion

Restricted
No_Unchecked_Deallocation

Ada.Unchecked_Deallocation

Not applicableAda.Wide_Text_IO

Not applicableAda.Wide_Text_IO.Complex_IO

Not applicableAda.Wide_Text_IO.Editing

Not applicableAda.Wide_Text_IO.Text_Streams

YesabCalendar

YesbDirect_IO

YesIO_Exceptions

YesInterfaces

YesInterfaces.C

YesInterfaces.C.Pointers

YesInterfaces.C.Strings

Not applicableInterfaces.COBOL

Not applicableInterfaces.FORTRAN

YesMachine_Code

YesbSequential_IO

YesSystem

YesSystem.Address_to_Access_Conversions

YesSystem.Machine_Code

Not available (depends on
Ada.Streams)

System.RPC

105

Supported?Unit Name

YesSystem.Storage_Elements

Not available (depends on
Ada.Finalization)

System.Storage_Pools

YesText_IO

YesUnchecked_Conversion

Restricted
No_Unchecked_Deallocation

Unchecked_Deallocation

aRestricted to POSIX date range, which is Jan 1, 1970 to Jan 19, 2038
bWhen supported by appropriate system calls

106

Appendix B. The Predefined Library

Symbols
! in constraint , 91
in constraint , 92
% in constraint , 92
& in constraint , 91
+ in constraint , 91
0 in constraint , 89
< in constraint , 87
= in constraint , 91
> in constraint , 88
? in constraint , 91

A
Abort, 75
Access, unrestricted , 39
Accuracy requirements, 81
Accuracy, complex arithmetic, 81
Ada 95 ISO/ANSI Standard, ix
Ada.Characters.Handling, 62
Ada_83, 1
Ada_95, 2
Address clauses, 53
address constraints, 90
Address of subprogram code, 32

Address, as private type, 58
Address, operations of, 58
address_operand, 90
Address_Size, 31
Alignment clauses, 54
Alignment, maximum, 36
Alignments of components, 7, 60,
60, 60, 62
Alternative Character Sets, 44
Annotate, 3, 33
arrays

multidimensional, 46
Asm constraints, 86
Assert, 3
Attributes, 58
auto-increment/decrement addressing,
87

B
Big endian, 33
Bit, 31
Bit ordering, 58
Bit_Position, 32
Bounded errors, 42

Index

107

C
C, interfacing with, 66
C_Pass_By_Copy, 4
Checks

suppression of, 48
Child Units, 42
COBOL

interfacing with, 68
COBOL support, 76
Code_Address, 32
Common_Object, 5, 56
Complex arithmetic accuracy, 81
Complex elementary functions, 80
Complex types, 78
Complex_Representation, 6, 58
Component_Alignment, 7, 73
Component_Size, 7, 7
constants in constraints, 88
constraint modifier characters, 91
constraint, matching, 89
constraints

Asm, 86

D
d in constraint , 88
Debug, 8
Decimal Radix, 77
Default_Bit_Order, 33
digits in constraint, 89
Duration, 47

E
E in constraint , 88
earlyclobber operand, 91
Elab_Body, 33
Elab_Spec, 33
Entry Queuing, 74
Enum_Rep, 34
Enumeration Values, 45
Error Detection, 42
Error detection, 42
Exception Information, 48
exclamation point, 91
Export_Function, 9

Export_Object, 10
Export_Procedure, 10
Export_Valued_Procedure, 11
extensible constraints, 90

F
F in constraint , 89
Fixed_Value, 34
Float Types, 46
FORTRAN, 68

G
G in constraint , 89
g in constraint , 89
Get_Immediate, 62

H
H in constraint , 89
Has_Discriminants, 35

I
i in constraint , 88
I in constraint , 88
Ident, 12
Implementation-dependent features,
1
Import_Function, 13
Import_Object, 14
Import_Procedure, 15
Import_Valued_Procedure, 16
Integer Types, 45
Integer_Value, 35
Interface_Name, 17
Interfaces, 66
Interrupt priority, maximum, 35
Interrupts, 72, 72

L
Linker_Alias, 17
Linker_Section, 18
Little endian, 33
load address instruction, 90
Locking, 74

108

Index

M
m in constraint , 87
Machine Code, 70
Machine_Attribute, 20
Machine_Size, 35
matching constraint, 89
Max_Interrupt_Priority, 35
Max_Priority, 36
Maximum_Alignment, 36
Mechanism_Code, 36
memory references in constraints, 87
modifiers in constraints, 91
multidimensional arrays, 46
multiple alternative constraints, 90

N
n in constraint , 88
No_Return, 20
Normalize_Scalars, 18
Null_Parameter, 36

O
o in constraint , 87
Object_Size, 36
offsettable address, 87
operand constraints

Asm, 86

P
p in constraint , 90
Packed Types, 52
Parameters, passing mechanism, 36
Parameters, when passed by
reference, 37
Partitions, 76
Passed_By_Reference, 37
Policies

Entry Queueing, 74
Locking, 74

Portability, 7
Pragma, 43

Ada_83, 1
Ada_95, 2
Annotate, 3

Assert, 3
C_Pass_By_Copy, 4
Common_Object, 5
Complex_Representation, 6
Component_Alignment, 7
Debug, 8
Export_Function, 9
Export_Object, 10
Export_Procedure, 10
Export_Valued_Procedure, 11
Ident, 12
Import_Function, 13
Import_Object, 14
Import_Procedure, 15
Import_Valued_Procedure, 16
Interface_Name, 17
Linker_Alias, 17
Linker_Section, 18
Machine_Attribute, 20
No_Return, 20
Normalize_Scalars, 18
Profile, 21
Psect_Object, 21
Pure_Function, 22
Share_Generic, 23
Source_File_Name, 23
Source_Reference, 24
Subtitle, 24
Suppress_All, 25
Title, 25
Unchecked_Union, 26
Unchecked_Unit, 27
Unsuppress, 28
Warnings, 28
Weak_External, 29

pragma Export, 65
Priority, maximum, 36
Profile, 21
Protected Procedure Handlers, 72
Psect_Object, 21
Pure, 22
Pure_Function, 22
push address instruction, 90

109

Q
Q ,in constraint , 90
question mark, 91

R
r in constraint , 88
Random Number Generation, 62
Range_Length, 38
Record representation clauses, 57
registers in constraints, 88
Representation Clauses, 52
Representation of enums, 34
Restrictions, 75
Return values, passing mechanism,
36

S
s in constraint , 89
Share_Generic, 23
simple constraints, 87
Size Clauses, 55
Size of Address , 31
Size, setting for not-first subtype , 39
Size, used for objects, 36
Source_File_Name, 23
Source_Reference, 24
Storage_Unit, 38
Subtitle, 24
Suppress_All, 25

T
Task attributes, 73
Tick, 38
Time, 75
Title, 25
Type_Class, 38

U
Unchecked_Union, 26
Unchecked_Unit, 27
Unrestricted_Access, 39
Unsuppress, 28

V
V in constraint , 87
Value_Size, 39

W
Warnings, 28
Weak_External, 29
Word_Size, 39

X
X in constraint , 89

Z
Zero address, passing, 36

110

Index

