I
- 0000000
Ada 95 Reference
Manual Supplement

For mission-critical applications

WWW.Xgc.com

Ada 95 Reference Manual
Supplement

For mission-critical applications

Order Number: XGC-ADA-RMS-081201

XGC Technology

London
UK

<Wéb: www. xgc. conp

Ada 95 Reference Manual Supplement: For mission-critical applications
by Chris Nettleton

Publication date December 1, 2008
© 2001, 2002, 2003, 2004, 2008 X GC Technology
© 1995, 1996, 1997 Ada Core Technologies, Inc.

License

XGCAdaiscommercia open-source software distributed under the terms of the GNU Public license. Permission isgranted to make and distribute
verbatim copies of this document provided the copyright notice and this permission notice are preserved on al copies. Permission is granted to
copy and distribute modified versions of this document under the conditions for verbatim copying, provided that the entire resulting derived
work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this
document into another language, under the above conditions for modified versions.

Acknowledgements

XGCAdaisbased on technology originally developed by the GNAT team at New York University and now maintained by Ada Core Technologies,
Inc., and includes software from the GNU C compiler, debugger and binary utilities devel oped by and on behalf of the Free Software Foundation,
Inc., Cambridge, Massachusetts.

Inthismanual, the chapters on advice, attributes, characteristics, compatibility, and pragmas are based on text from the GNAT Reference Manual,
Version 3.11 and later.

Contents

About This Manual ix

Audience ix

Related Documents ix
Reader's Comments x
Documentation Conventions X

A WNPF

Chapter 1 Implementation-Defined Pragmas 1

pragmaAda 83 1

pragmaAda 95 2
pragmaAnnotate 3

pragmaAssert 3
pragmaC_Pass By Copy 4
pragma Common_Object 5
pragma Complex_Representation 6
pragma Component_Alignment 7
pragmaDebug 8

pragma Export_Function 9
pragma Export_Object 10
pragma Export_Procedure 10
pragma Export_Valued_Procedure 11
pragmaldent 12

pragma lmport_Function 13

Ada 95 Reference Manual Supplement

pragmalmport_Object 14
pragma lmport_Procedure 15
pragma lmport_Valued_Procedure 16
pragmalnterface Name 17
pragmalinker_Alias 17
pragmalinker_Section 18
pragmaNormalize_Scalars 18
pragmaMachine_Attribute 20
pragmaNo_Return 20
pragmaProfile 21

pragma Psect_Object 21
pragma Pure_Function 22
pragma Share_Generic 23
pragma Source_File Name 23
pragma Source_Reference 24
pragma Subtitle 24

pragma Suppress All 25
pragmaTitle 25

pragma Unchecked_Union 26
pragma Unimplemented_Unit 27
pragma Unsuppress 28
pragmaWarnings 28
pragmaWeak_External 29

Chapter 2 I mplementation-Defined Attributes 31

Chapter 3 Implementation Advice 41

3.1 Section1: General 41

3.2 Section 2: Lexical Elements 42

3.3 Section 3: Declarations and Types 44

3.4 Section 9: Tasking 46

3.5 Section 10: Program Structure and Compilation
Issues 47

3.6 Section 11: Exceptions 48

3.7 Section 13: Representation Issues 48

3.8 Annex A: Predefined Language Environment 61
3.9 Annex B: Interface to Other Languages 63
3.10 Annex C: Systems Programming 69

3.11 Annex D: Real-Time Systems 74

3.12 Annex E: Distributed Systems 76

3.13 Annex F: Information Systems 76

3.14 Annex G: Numerics 77

Ada 95 Reference Manual Supplement

Chapter 4

Chapter 5

Appendix A

Appendix B

Machine Code Insertions 83

4.1 Congtraints for Operands 86
411 SimpleConstraints 87
4.1.2 Multiple Alternative Constraints 90
4.1.3 Constraint Modifier Characters 91

Compatibility Guide 93
51 Compatibility withAda83 93

5.2 Compatibility with Other Ada 95 Systems 95
5.3 Representation Clauses 96

Restrictions and Profiles 99
The Predefined Library 103

Index 107

Vi

Tables

Al
A2
A.3
B.1

Supported Profiles 100

Profiles and Restrictions 100
Profiles and Numerical Restrictions 102
Predefined Library Units 103

Vii

viii

About This Manual

This supplement should be read in conjunction with the Ada 95
Reference Manual (RM). It describes the differences between the
complete Ada 95 programming language, and the mission-critical
subset supported by the XGC range of cross compilers. It also
includesinformation on implementation-dependent characteristics
of XGC Ada, including all the information required by Annex M
of the Reference Manual.

1. Audience

This supplement assumes that you are familiar with Ada 95
language, as described in the International Sandard
ANSI/ISO/IEC-8652:1995, Jan 1995 .

2. Related Documents

Seethefollowing documentsfor further information on XGC Ada:

e Thetarget Ada Technical Summary ,which includes
target-dependent information.

About This Manual

» Getting Started with t ar get Ada describes the steps required to
prepare and run a simple program.

* XGC Ada User's Guide, which provides information on how to
use the XGC Ada compiler system.

» Ada95 Reference Manual, ANSI/I SO/IEC-8652:1995, which
contains all reference material for the Ada 95 programming
language.

» The XGC Libraries documents the library functions available
with all XGC compilers.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments as follows:
* Internet electronic mail: readers_ comments@xgc.com

Please include the following information along with your
comments:

» Thefull title of the book and the order number. (The order
number is printed on the title page of this book.)

» The section numbers and page numbers of the information on
which you are commenting.

» Theversion of the software that you are using.

Technical support enquiries should be directed to the XGC web
site, http://www.xgc.com/ or by email to support@xgc.com.

4. Documentation Conventions
This guide uses the foll owing typographic conventions:

$
A dollar sign represents the system prompt for the Bash shell.

readers_comments@xgc.com
http://www.xgc.com/
support@xgc.com

Documentation Conventions

#
A number sign represents the superuser prompt.

$vi hello.c
Boldface type in interactive examples indicates typed user
input.

file

Italic or slanted type indicates variable values, place-holders,
and function argument names.

[IL{1}
In syntax definitions, brackets indicate items that are optional

and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

In syntax definitions, a horizontal ellipsisindicates that the
preceding item can be repeated one or more times.

cat(1)
A cross-reference to areference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mb/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

Xi

Xii

Chapter 1 | mplementation-Defined
Pragmas

The Ada 95 Reference Manual defines a set of pragmas that can
be used to supply additional information to the compiler. These
language-defined pragmas areimplemented in XGC Adaand work
as defined.

In addition, the Ada 95 Reference Manual alowsimplementations
to define extra pragmas whose meaning is defined by the
implementation. XGC Ada provides a number of these
implementation-dependent pragmas, which can be used to extend
and enhance the functionality of the compiler. This chapter
describes these additional pragmas.

pragma Ada 83
Ada 83

Synopsis

pragma Ada_83;

Chapter 1. Implementation-Defined Pragmas

Description

A configuration pragmathat establishes Ada 83 made for the unit
to which it applies, regardless of the mode set by the command
line switches. In Ada 83 mode, XGC Ada attempts to be as
compatible with the syntax and semantics of Ada 83, asdefined in
the original Ada 83 Reference Manual as possible. In particular,
the new Ada 95 keywords are not recognized, optional package
bodies are allowed, and generics may name types with unknown
discriminants without using the (<>) notation. In addition, some
but not all of the additional restrictions of Ada 83 are enforced.

Ada83 modeisintended for two purposes. Firstly, it allowsexisting
legacy Ada 83 code to be compiled and adapted to XGC Adawith
lesseffort. Secondly, it aidsin keeping code backwards compatible
with Ada 83. However, there is no guarantee that code that is
processed correctly by XGC Adain Ada 83 mode will in fact
compile and execute with an Ada 83 compiler, since XGC Ada
does not enforce all the additional checks required by Ada 83.

pragma Ada 95

Ada 95

pragma Ada_95;

Description

A configuration pragma that establishes Ada 95 maode for the unit
to which it applies, regardless of the mode set by the command
line switches. Thismodeis set automatically for the Ada and Syst em
packages and their children, so you need not specify it in these
contexts. Thispragmais useful when writing areusable component
that itself uses Ada 95 features, but which isintended to be usable
from either Ada 83 or Ada 95 programs.

pragma Annotate

Annotate

Synopsis

pragma Annotate (IDENTIFIER {, ARG);

ARG ::= NAME | EXPRESSI ON

Description

This pragmais used to annotate programs. i dent i fi er identifies
the type of annotation. XGC Ada verifiesthisis an identifier, but
does not otherwise analyze it. The ar g argument can be either a
string literal or an expression. String literals are assumed to be of
type St andar d. St ri ng. Names of entities are simply analyzed as
entity names. All other expressions are analyzed as expressions,
and must be unambiguous.

The analyzed pragma s retained in the tree, but not otherwise
processed by any part of the XGC Ada compiler. Thispragmais
intended for use by external tools, including ASIS.

pragma Assert

Asseart

Synopsis

pragma Assert (
bool ean_EXPRESSI ON
[, static_string_EXPRESSI ON])

Chapter 1. Implementation-Defined Pragmas

Description

The effect of this pragma depends on whether the corresponding
command line switch is set to activate assertions. If assertions are
disabled, the pragma has no effect. If assertions are enabled, then
the semantics of the pragmais exactly equivalent to:

i f not Bool ean_EXPRESSI ON t hen
System Assertions. Rai se_Assert Failure (string EXPRES
end if;

Theeffect of thecall istoraiseSyst em Assertions. Assert _Fail ure.
The string argument, if given, is the message associated with the
exception occurrence. If no second argument is given, the default
messageis” file:nnn” ,wherefil e isthe name of the sourcefile
containing the assert, and nnn is the line number of the assert. A
pragma.is not a statement, so if a statement sequence contains
nothing but a pragma assert, then anull statement isrequired in
addition, asin:

if J>3then

pragma Assert (K > 3, "Bad value for K');
null;

end if;

If the boolean expression has side effects, these side effects will
turn on and off with the setting of the assertions mode, resulting
in assertions that have an effect on the program. You should
generally avoid side effects in the expression of this pragma.

pragma C_Pass By Copy
C_Pass By _Copy

Synopsis

pragma C Pass_By_ Copy

([Max_Size =>] static_integer EXPRESSION);

Description

Normally the default mechanism for passing C convention records
to C convention subprograms is to pass them by reference, as
suggested by RM B.3(69). Use the configuration pragma
C_Pass_By_Copy to change this default, by requiring that record
formal parameters be passed by copy if all of the following
conditions are met:

» The size of the record type does not exceed
static_integer_expression.

* The record type has Convention C.

» Theformal parameter has this record type, and the subprogram
has aforeign (non-Ada) convention.

If these conditions are met the argument is passed by copy, that is
in amanner consistent with what C expectsif the corresponding
formal in the C prototype is a struct (rather than a pointer to a
struct).

You can also pass records by copy by specifying the convention
C Pass_By_Copy for therecord type, or by using the extended | npor t
and Export pragmas, which allow specification of passing
mechanisms on a parameter by parameter basis.

pragma Common_Object

Common_Object

Synopsis

pragma Cormmon_Qbj ect

[Internal =>] LOCAL_NAME,

Chapter 1. Implementation-Defined Pragmas

[, [External =>] EXTERNAL_SYMBOL
[, [Size =>] EXTERNAL_SYMBOL]

EXTERNAL_SYMBOL :: =
| DENTI FI ER
| static_string_EXPRESSI ON

Description

This pragma enables the shared use of variables stored in overlaid
linker areas corresponding to the use of COWON in Fortran. The
single object | ocal _nane is assigned to the area designated by the
Ext ernal argument. You may define arecord to correspond to a
seriesof fields. Thesi ze argument is syntax checked in XGC Ada,
but otherwise ignored.

pragma Complex_Representation

Complex_Representation

Synopsis

pragma Conpl ex_Representation ([Entity =>] LOCAL_NAME);

Description

TheEnti ty argument must be the name of arecord type which has
two fields of the same floating-point type. The effect of this pragma
isto force the compiler to use the special internal complex
representation form for this record, which may be more efficient.
Note that this may result in the code for this type not conforming
to standard ABI (application binary interface) requirementsfor the
handling of record types. For example, in some environments, there
isarequirement for passing records by pointer, and the use of this
pragma may result in passing this type in floating-point registers.

pragma Component_Alignment

Component_Alignment

Synopsis

pragma Conponent Al i gnment (
[Form=>] ALI GNMENT_CHO CE
[, [Name =>] type LOCAL_NAME]);

ALI GNMENT_CHOI CE :: =
Conponent _Si ze

| Conponent _Size 4

| Storage Unit

| Default

Description

Specifies the alignment of components in array or record types.
The meaning of the For margument is as follows:

Component _Si ze

Aligns scalar components and subcomponents of the array or
record type on boundaries appropriate to their inherent size
(naturally aligned). For example, 1-byte componentsare aigned
on byte boundaries, 2-byte integer components are aligned on
2-byte boundaries, 4-byte integer components are aligned on
4-byte boundaries and so on.

Conponent _Size 4

Naturally aligns componentswith asize of four or fewer bytes.
Componentsthat are larger than 4 bytes are placed on the next
4-byte boundary.

Storage _Unit

Specifies that array or record components are byte aligned,
that is aligned on boundaries determined by the value of the
constant System Storage_Unit.

Chapter 1. Implementation-Defined Pragmas

Def aul t
Specifiesthat array or record components are aligned on default
boundaries, appropriate to the underlying hardware or operating
system or both.

If the Name parameter is present, t ype_| ocal _name must refer to a
local record or array type, and the specified alignment choice
applies to the specified type. The use of Conponent _Al i gnment
together with a pragma Pack causes the Conponent _Al i gnment
pragmato be ignored. The use of Conponent _Al i gnment together
with arecord representation clause is only effective for fields not
specified by the representation clause.

If the Nanme parameter is absent, the pragma can be used as either a
configuration pragma, in which caseit appliesto one or more units
in accordance with the normal rules for configuration pragmas, or
it can be used within a declarative part, in which case it appliesto
types that are declared within this declarative part, or within any
nested scope within this declarative part. In either case it specifies
the alignment to be applied to any record or array type which has
otherwise standard representation.

If the alignment for arecord or array typeis not specified (using
pragmaPack, pragma Conponent _Al i gnment , or arecord
representation clause), the XGC Ada uses the default alignment as
described previoudly.

pragma Debug

Debug

Synopsis

pragma Debug (PROCEDURE _CALL_STATEMENT);

Descripti

on

If assertions are not enabled on the command line, this pragmahas
no effect. If assertions are enabled, the semantics of the pragmais
exactly equivalent to the procedure call. Pragmas are permitted in
sequences of declarations, so you can use pragma Debug to

intersperse callsto debug proceduresin the middle of declarations.

pragma Export_Function

Export_Function

Synopsis

pragma Export Function (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBQOL]

[, [Paraneter Types =>] Parameter TYPES]

[, [Result_Type =>] result_SUBTYPE MARK]
[, [Mechanism =>] MECHANI SM

[,

[Resul t _Mechani sm =>] MECHANI SM NAME]) ;

EXTERNAL_SYMBQL : : =
| DENTI FI ER
| static_string EXPRESSI ON

Parameter TYPES ::=
nul |
| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANI SM : : =
MECHANI SM_NAMVE
| (MECHANI SM ASSQOCI ATI ON {, MECHANI SM ASSQCI ATl ON}

MECHANI SM_ASSOCI ATION : : =
[formal parameter NAME =>] MECHANI SM NAME

MECHANI SM_NAME : : =
Val ue
| Reference

Description

Use this pragmato make a function externally callable and
optionaly provide information on mechanisms to be used for
passing parameter and result values. We recommend, for the
purposes of improving portability, this pragma always be used in
conjunction with a separate pragma Expor t , which must precede
the pragmaExpor t _Functi on. XGC Adadoes not require aseparate
pragmaExport, but if noneis present, it assumes Convention C.

Chapter 1. Implementation-Defined Pragmas

Pragma Export _Function (and Export, if present) must appear in
the same declarative region as the function to which they apply.

i nternal _name must uniquely designate the function to which the
pragmaapplies. If more than one function name exists of thisname
in the declarative part you must use the Par anet er _Types and
Resul t_Type parametersis mandatory to achievethe required unique
designation. subt ype_ mar ksin these parameters must exactly match
the subtypes in the corresponding function specification, using
positional notation to match parameters with subtype marks.

pragma Export_Object

Export_Object

Synopsis

pragma Export_Obj ect
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_ SYNMBQL]
[, [Size =>] EXTERNAL_SYMBQOL]

EXTERNAL_SYMBQL :: =

| DENTI FI ER

| static_string EXPRESSI ON

Description

This pragma designates an object as exported, and apart from the
extended rulesfor external symbols, isidentical in effect to the use
of the normal Export pragma applied to an object. You may use a
separate Export pragma (and you probably should from the point

of view of portahility), but itisnot required. Si ze is syntax checked,
but otherwise ignored by XGC Ada.

pragma Export_Procedure

Export_Procedure

10

Synopsis

pragma Export_Procedure (

[Internal =>] LOCAL_NAME

[, [External =>] EXTERNAL_SYMBOL]
[, [Paraneter_Types =>] Paraneter_TYPES
[, [Mechanism =>] MECHANI SM) ;

EXTERNAL_SYMBOL :: =
| DENTI FI ER
| static_string_EXPRESSI ON

Paraneter TYPES ::=
nul |
| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANI SM @ : =
MECHANI SM_NAME
| (MECHANI SM ASSOCI ATI ON {, MECHANI SM _ASSOCI ATI ON}

MECHANI SM ASSOCI ATION : : =
[formal _parameter NAME =>] MECHANI SM _NAME

MECHANI SM _NAME : : =
Val ue
| Reference

Description

This pragmaisidentical to Export _Functi on except that it applies
to a procedure rather than a function and the parameters
Resul t_Type and Resul t _Mechani smare not permitted.

pragma Export_Valued Procedure

Export_Valued Procedure

Synopsis

pragma Export Val ued_Procedure (

[Internal =>] LOCAL_NAME
[, [External =>] EXTERNAL_SYMBQOL]

11

Chapter 1. Implementation-Defined Pragmas

[, [Paraneter_Types =>] Paraneter_TYPES
[, [Mechanism =>] MECHANI SM) ;

EXTERNAL_SYMBOL :: =
| DENTI FI ER
| static_string_EXPRESSI ON

Paraneter TYPES ::=
nul |
| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANI SM @ : =
MECHANI SM_NAME
| (MECHANI SM_ASSOCI ATI ON {, MECHANI SM_ASSOCI ATI ON}

MECHANI SM_ASSOCI ATION :: =
[formal _paranmeter_NAVE =>] MECHANI SM_NAVE

MECHANI SM_NAME : : =
Val ue
| Reference

Description

This pragmaisidentical to Export _Procedur e except that the first
parameter of | ocal _nane, which must be present, must be of mode
QUT, and externally the subprogram is treated as a function with

this parameter as the result of the function. XGC Ada provides for
this capability to allow the use of QUT and I N OUT parametersin

interfacing to external functions (which are not permitted in Ada
functions).

pragma | dent

Synopsis

pragma |dent (static_string EXPRESSI ON);

12

Description

Thispragma provides astring identification in the generated object
file, if the system supportsthe concept of thiskind of identification
string. The maximum permitted length of the string literal is 31
characters. Thispragmaisallowed only in the outermost declarative
part or declarative items of a compilation unit.

pragma Import_Function

Import_Function

Synopsis

pragma | nport Function (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBQL]
[, [Paraneter Types =>] Paraneter_ TYPES]
[, [Result_Type =>] SUBTYPE_MARK]

[, [Mechanism =>] MECHANI SM

[, [Result_Mechani sm =>] MECHANI SM_NAME]
[

[First _Optional Paraneter =>] |DENTIFIER]);

EXTERNAL_SYMBQL :: =
| DENTI FI ER
| static_string EXPRESSI ON

Parameter TYPES ::=
nul |
| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANI SM : : =
MECHANI SM_NAMVE
| (MECHANI SM ASSQOCI ATI ON {, MECHANI SM ASSQCI ATl ON}

MECHANI SM_ASSOCI ATION : : =
[formal parameter NAME =>] MECHANI SM NAME

MECHANI SM_NAME : : =
Val ue
| Reference

13

Chapter 1. Implementation-Defined Pragmas

Description

Thispragmaisused in conjunction with apragmal npor t to specify
additional information for animported function. The pragmal npor t
(or equivalent pragmal nt er f ace) must precede the

I mpor t _Funct i on pragmaand both must appear in the same
declarative part as the function specification.

Thel nt ernal _Name argument must uniquely designate the function
to which the pragmaapplies. If more than onefunction name exists
of thisname in the declarative part you must use the

Paramet er _Types and Resul t _Type parametersto achieve the
reguired unique designation. Subtype marksin these parameters
must exactly match the subtypesin the corresponding function
specification, using positional notation to match parameters with
subtype marks.

You may optionally use the Mechani smand Resul t _Mechani sm
parameters to specify passing mechanisms for the parameters and
result. If you specify a single mechanism name, it appliesto all
parameters. Otherwise you may specify amechanism on a
parameter by parameter basis using either positional or named
notation. If the mechanism is not specified, the default mechanism
isused.

pragma Import_Object

Import_Object

Synopsis

pragma | nport_(bj ect

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_ SYMBQL],
[, [Size =>] EXTERNAL_SYMBQOL])
EXTERNAL_SYMBOL :: =

| DENTI FI ER

| static_string_ EXPRESSI ON

14

Description

This pragma designates an object as imported, and apart from the
extended rulesfor external symbols, isidentical in effect to the use
of the normal | nport pragma applied to an object. Unlike the
subprogram case, you need not use a separate | nport pragma,
although you may do so (and probably should do so from a
portability point of view). si ze is syntax checked, but otherwise
ignored by XGC Ada.

pragma Import_Procedure

Import_Procedure

Synopsis

pragma | nport Procedure (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBQL]
[, [Paraneter_Types =>] Paraneter_ TYPES]
[, [Mechanism =>] MECHANI SM

[

[First _Optional Paraneter =>] |DENTIFIER]);

EXTERNAL_SYMBQL :: =
| DENTI FI ER
| static_string EXPRESSI ON

Parameter TYPES ::=
nul |
| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANI SM : : =
MECHANI SM_NAMVE
| (MECHANI SM ASSOCI ATI ON {, MECHANI SM ASSQCI ATl ON}

MECHANI SM_ASSOCI ATION : : =
[formal parameter NAME =>] MECHANI SM NAME

MECHANI SM_NAME : : =
Val ue
| Reference

15

Chapter 1. Implementation-Defined Pragmas

Description

This pragmaisidentical to | nport _Functi on except that it applies
to a procedure rather than afunction and the parameters
Resul t _Type and Resul t _Mechani smare not permitted.

pragma Import_Valued Procedure

Import_Valued Procedure

Synopsis

pragma | nport_Val ued_Procedure (

[Internal =>] LOCAL_NAME,

[, [External =>] EXTERNAL_SYMBQL]
[, [Paraneter_Types =>] Paraneter_ TYPES]
[, [Mechanism =>] MECHANI SM

[

[First _Optional Paraneter =>] |DENTIFIER]);

EXTERNAL_SYMBQL :: =
| DENTI FI ER
| static_string EXPRESSI ON

Parameter TYPES ::=
nul |
| SUBTYPE_MARK {, SUBTYPE_MARK}

MECHANI SM : : =
MECHANI SM_NAMVE
| (MECHANI SM ASSQOCI ATI ON {, MECHANI SM ASSQCI ATl ON}

MECHANI SM_ASSOCI ATION : : =
[formal parameter NAME =>] MECHANI SM NAME

MECHANI SM_NAME : : =
Val ue
| Reference

Description

Thispragmaisidentical to | mport _Procedur e except that the first
parameter of | ocal _nane, which must be present, must be of mode

16

QUT, and externally the subprogram is treated as a function with
this parameter as the result of the function. The purpose of this
capability isto allow the use of QUT and I N QUT parametersin
interfacing to external functions (which are not permitted in Ada
functions). You may optionally use the Mechani smparameters to
specify passing mechanisms for the parameters. If you specify a
single mechanism name, it appliesto all parameters. Otherwise
you may specify a mechanism on a parameter by parameter basis
using either positional or named notation. If the mechanism is not
specified, the default mechanism is used.

pragma Interface Name

Interface Name

Synopsis

pragma Interface Name (

[Entity =>] LOCAL_NAME
[, [External Name =>] static_string EXPRESSI ON|
[, [Link_Nane =>] static_string EXPRESSI QN);

Description

Thispragmaprovides an alternative way of specifying theinterface
name for an interfaced subprogram, and is provided for
compatibility with Ada 83 compilersthat use the pragmafor this
purpose. You must provide at least one of Ext ernal _Name or

Li nk_Nare.

pragma Linker_Alias

Linker_Alias

Synopsis

pragnma Linker_Alias (

[Entity =>] LOCAL_NAME

17

Chapter 1. Implementation-Defined Pragmas

[Alias =>] static_string_EXPRESSIQN);

Description

This pragma establishes alinker alias for the given named entity.
For further details on the exact effect, consult the Linker manual.

pragma Linker Section

Linker_Section

Synopsis

pragma Linker Section (
[Entity =>] LOCAL_NAME
[Section =>] static_string EXPRESSION);

Description

This pragma specifies the name of the linker section for the given
entity. For further details on the exact effect, consult the Linker
manual .

pragma Normalize Scalars

Normalize Scalars

Synopsis

pragnma Normal i ze_Scal ars;

Description

Thisis alanguage defined pragmawhich isfully implemented in
XGC Ada Theeffect isto cause all scalar objects that are not

18

otherwise initialized to be initialized. Theinitia values are
implementation dependent and are as follows:

St andar d. Char act er
Objects whose root type is Standard.Character areinitialized
to Character'Last. Thiswill be out of range of the subtype only
if the subtype range excludes this value.

St andard. W de_Char act er
Objects whose root type is Standard.Wide _Character are
initialized to Wide_Character'Last. Thiswill be out of range
of the subtype only if the subtype range excludes this value.

I nteger types
Objects of an integer type areinitialized to base_typeFirst,
where base_typeisthe base type of the object type. Thiswill
be out of range of the subtype only if the subtype range
excludes this value. For example, if you declare the subtype:

subtype Ityp is integer range 1 .. 10;

then objects of type x will be initialized to Integer'First, a
negative number that is certainly outside the range of subtype

Ityp.

Real types
Objects of al real types (fixed and floating) are initialized to
base typeFirst, where base_type isthe base type of the object
type. Thiswill be out of range of the subtype only if the subtype
range excludes this value.

Modul ar types
Objectsof amodular type areinitialized to type'L ast. Thiswill
be out of range of the subtype only if the subtype excludesthis
value.

Enuneration types
Objects of an enumeration type are initialized to all one-bits,
that isto thevalue 2 ** typ'Size - 1. Thiswill be out of range
of the enumeration subtype in all cases except where the
subtype contains exactly 2** 8, 2** 16, or 2**32.

19

Chapter 1. Implementation-Defined Pragmas

pragma Machine_Attribute

Machine Attribute

Synopsis

pragma Machine Attribute (
[Attribute Name =>] string EXPRESSI ON,
[Entity =>] LOCAL_NAME);

Description

M achine dependent attributes can be specified for types and/or
declarations. Currently only subprogram entities are supported.
This pragmais semantically equivalent to

__attribute_ ((string_expression)) inGNU C, where
string_expressi on> isrecognized by the GNU C macros

VALI D MACH NE_TYPE_ATTRI BUTE and VALI D MACH NE_DECL_ATTRI BUTE
which are defined in the configuration header filet m h for each
machine. See the GCC manual for further information.

pragma No_Return

No_Return

Synopsis

pragma No_Return (procedure_Local Nane);

Description

procedure_Local _Name must refer to one or more procedure
declarations in the current declarative part. A procedure to which
this pragmais applied may not contain any explicit return
statements, and al so may not contain any implicit return statements
from falling off the end of a statement sequence. One use of this
pragmaisto identify procedures whose only purposeisto raise an
exception.

20

Another use of thispragmaisto suppressincorrect warnings about
missing returnsin functions, where the |l ast statement of afunction
statement sequence is acall to such a procedure.

pragma Profile

Profile

Synopsis

pragma Profile ([Name =>] |DENTIFIER);

|DENTIFIER :: =
XG&C | Ravenscar | Restricted Run_Tinme | No_Run_Tin

Description

This pragma specifies arestriction profile. It is a configuration
pragma, and so hasthe usual applicability of configuration pragmas
(that isit applies to either an entire partition, or to all unitsina
compilation, or to asingle unit, depending on how it is used. See
Appendix A, Restrictions and Profiles [99] .

pragma Psect_Object

Psect_Object

Synopsis

pragma Psect (bj ect
[Internal =>] LOCAL_NAME,
[, [External =>] EXTERNAL_ SYNMBQL]
[, [Size =>] EXTERNAL_ SYMBOL]

EXTERNAL_SYMBQL :: =

| DENTI FI ER

| static_string EXPRESSI ON

21

Chapter 1. Implementation-Defined Pragmas

Description

This pragmaisidentical in effect to pragma Conmon_j ect .

pragma Pure_Function

Pure Function

Synopsis

pragma Pure_Function ([Entity =>] function_LOCAL_ NAME);

Description

This pragma appears in the same declarative part as a function
declaration (or a set of function declarations if more than one
overloaded declaration exists, in which case the pragmaappliesto
al entities). If specifiesthat thefunctionEnti ty isto be considered
pure for the purposes of code generation. This means that the
compiler can assumethat there are no side effects, and in particular
that two callswith identical arguments produce the same result. It
also means that the function can be used in an address clause.

Note that, quite deliberately, there are no static checksto try to
ensurethat this promiseismet, so Pure_Funct i on can be used with
functionsthat are conceptually pure, evenif they do modify global
variables. For example, asguareroot function that isinstrumented
to count the number of timesit iscalled is till conceptually pure,
and can till be optimized, even though it modifiesaglobal variable
(the count). Memo functions are another example (where atable
of previous callsis kept and consulted to avoid re-computation).

Note: All functionsin aPur e package are automatically pure, and
thereis no need to use pragmaPur e_Functi on in this case.

Note: If pragmaPure_Functi on is applied to arenamed function,
it appliesto the underlying renamed function. This can be used to
disambiguate cases of overloading where some but not al functions
in a set of overloaded functions are to be designated as pure.

22

pragma Share_Generic

Share_Generic

Synopsis

pragma Share_Generic (NAME {, NAME});

Description

This pragmais recognized for compatibility with other Ada
compilersbut isignored by XGC Ada. XGC Adadoes not provide
the capability for sharing of generic code. All generic instantiations
result in making an in-lined copy of the template with appropriate
substitutions.

pragma Source File Name

Source File Name

Synopsis

pragma Source File Name (

[Unit _Name =>] unit_NAME,
[FNAME_DESI G =>] static_string_EXPRESSI ON);

FNAVE _DESI G => Body_File Nane | Spec_File_ Name

Description

Use thisto override the normal naming convention. Itisa
configuration pragma, and so has the usual applicability of
configuration pragmas (that isit appliesto either an entire partition,
or to all unitsin acompilation, or to asingle unit, depending on
how itisused. unit_nanme ismappedtofile_name_literal . The
identifier for the second argument isrequired, and indicates whether
thisisthe file name for the spec or for the body.

23

Chapter 1. Implementation-Defined Pragmas

pragma Source Reference

Source_Reference

Synopsis

pragma Source Reference (INTEGER Literal, STRING Literal);

Description

This pragmatypically appears asthe first line of a sourcefile.
integer literal isthelogical line number of theline following
the pragmaline (for use in error messages and debugging
information). string literal isastatic string constant that
specifiesthefile nameto be used in error messages and debugging
information. Thisis most notably used for the output of gnat chop
with the “-r” switch, to make sure that the original unchopped
source file isthe one referred to.

The second argument must be a string literal, it cannot be a static
string expression other than astring literal. Thisis becauseitsvalue
is needed for error messages issued by all phases of the compiler.

pragma Subtitle

Subtitle

Synopsis

pragma Subtitle ([Subtitle =>] STRING Literal);

Description

This pragmais recognized for compatibility with other Ada
compilers but isignored by XGC Ada.

24

pragma Suppress_All

Suppress All

Synopsis

pragma Suppress All;

Description

Thispragmacan only appear immediately following acompilation
unit. The effect isto apply Suppress (A | _Checks) totheunit which
it follows. Thispragmaisimplemented for compatibility with DEC
Ada83 usage. The use of pragma Suppress (A | _Checks) asa

normal configuration pragmais the preferred usage in XGC Ada.

pragma Title

Title

Synopsis

pragma Title (TITLING OPTION [, TITLING OPTION]);

TITLING OPTION :: =
[Title =>] STRING Literal,
| [Subtitle =>] STRING Literal

Description

Syntax checked but otherwise ignored by XGC Ada. Thisisa
listing control pragma used in DEC Ada 83 implementations to
provide atitle and/or subtitle for the program listing. The program
listing generated by X GC Ada does not have titles or subtitles.

Unlike other pragmas, the full flexibility of named notation is
allowed for this pragma, that is the parameters may be givenin
any order if named notation is used, and named and positional

25

Chapter 1. Implementation-Defined Pragmas

notation can be mixed following the normal rules for procedure
calsinAda

pragma Unchecked Union

Unchecked Union

Synopsis

pragma Unchecked Union (first subtype LOCAL NAME)

Description

This pragmais used to declare that the specified type should be
represented in amanner equivalent to a C union type, and is
intended only for use in interfacing with C code that uses union
types. InAdaterms, the named type must obey thefollowing rules:

* Itisanon-tagged non-limited record type.

* It hasasingle discrete discriminant with a default value.

» The component list consists of asingle variant part.

» Each variant has a component list with a single component.
* No nested variants are allowed.

* No component has an explicit default value.

» No component has a non-static constraint.

In addition, given atype that meets the above requirements, the
following restrictions apply to its use throughout the program:

» The discriminant name can be mentioned only in an aggregate.
» No subtypes may be created of this type.
» Thetypemay not be constrained by giving adiscriminant value.

» Thetype cannot be passed asthe actual for ageneric formal with
adiscriminant.

26

Equality and inequality operations on unchecked_uni ons are not
available, since there is no discriminant to compare and the
compiler does not even know how many bitsto compare. Itis
implementation dependent whether thisis detected at compiletime
asanillegality or whether it is undetected and considered to be an
erroneous construct. In XGC Ada, adirect comparisonisillegal,
but XGC Ada does not attempt to catch the composite case (where
two composites are compared that contain an unchecked union
component), so such comparisonsare simply considered erroneous.

The layout of the resulting type corresponds exactly to a C union,
where each branch of the union correspondsto asingle variant in
the Adarecord. The semantics of the Ada program is not changed
in any way by the pragma, that is provided the above restrictions
are followed, and no erroneous incorrect references to fields or
€rroneous comparisons occur, the semanticsis exactly as described
by the Ada reference manual. Pragma Suppr ess

(Di scriminant _Check) appliesimplicitly to thetype and the default
conventionisC

pragma Unimplemented Unit

Unimplemented Unit

Synopsis

pragnma Uni npl ement ed_Uni t;

Description

If this pragma occursin a unit that is processed by the compiler,
XGC Adaabortswith the message“ xxx not implemented” ,where
xxx isthe name of the current compilation unit. This pragmais
intended to allow the compiler to handle unimplemented library
unitsin a clean manner.

The abort only happensif code is being generated. Thus you can
use specs of unimplemented packages in syntax or semantic
checking mode.

27

Chapter 1. Implementation-Defined Pragmas

pragma Unsuppress

Unsuppress

Synopsis

pragma Unsuppress (IDENTIFIER [, [On =>] NAME]);

Description

This pragma undoes the effect of a previous pragma Suppr ess. If
thereis no corresponding pragma Suppr ess in effect, it has no
effect. The range of the effect isthe same asfor pragma Suppr ess.
The meaning of the argumentsisidentical to that used in pragma
Suppr ess.

One important application isto ensure that checks are on in cases
where code depends on the checks for its correct functioning, so
that the code will compile correctly even if the compiler switches
are set to suppress checks.

pragma \Warnings

Warnings

Synopsis

pragma \Var

nings (On | Of [, LOCAL_NAME]);

Description

Normally warnings are enabled, with the output being controlled
by the command line switch. Warnings (O f) turns off generation
of warnings until aWarnings (On) is encountered or the end of the
current unit. If generation of warningsis turned off using this
pragma, then no warning messages are output, regardless of the
setting of the command line switches.

The form with asingle argument is a configuration pragma.

28

If thel ocal _name parameter is present, warnings are suppressed
for the specified entity. This suppression is effective from the point
whereit occurstill the end of the extended scope of the variable

(similar to the scope of Suppr ess).

pragma Weak External
Weak External

Synopsis

pragma Weak External ([Entity =>] LOCAL_NAME);

Description

This pragma specifies that the given entity should be marked as a
weak external (onethat does not haveto beresolved) for thelinker.

29

30

Chapter 2 | mplementation-Defined
Attributes

The Ada 95 Reference Manual defines a set of attributes that
provide useful additional functionality in all areas of the language.
These language defined attributes are implemented in XGC Ada
and work as described in the Manual.

In addition, Ada 95 allows implementations to define additional
attributes whose meaning is defined by the implementation. XGC
Ada provides a number of these implementati on-dependent
attributes which can be used to extend and enhance the functionality
of the compiler. This section of the reference manual describes
these additional attributes.

Address_Si ze

St andar d' Addr ess_Si ze (St andar d isthe only allowed prefix)
isastatic constant giving the number of bitsin an Addr ess. It
isused primarily for constructing the definition of Menory_Si ze
in package St andar d, but may befreely used in user programs.

Bi t
obj'Bit ,whereobj isany object, yieldsthe bit offset within

the storage unit (byte) that contains the first bit of storage
alocated for the object. The value of this attribute is of the

31

Chapter 2. Implementation-Defined Attributes

typeUni ver sal _I nt eger , and isalways anon-negative number
not exceeding the value of System Storage_Unit.

For an object that is a variable or a constant allocated in a
register, the value is zero. (The use of this attribute does not
force the allocation of a variable to memory).

For an object that isaformal parameter, this attribute applies
to either the matching actual parameter or to a copy of the
matching actual parameter.

For an access object the value is zero. Note that obj . al | ' Bit
is subject to an Access_Check for the designated object.
Similarly for arecord component X. C Bit issubjecttoa
discriminant check and X(1).Bit and X(11..12)'Bit are
subject to index checks.

Bit Position

R CBit ,whereRisarecordobject and Cisone of the fields
of the record type, yields the bit offset within the record
containsthe first bit of storage allocated for the object. The
value of this attribute is of the type Uni versal _I nteger. The
value depends only on the field C and is independent of the
alignment of the containing record R.

Code_Address

The' Addr ess attribute may be applied to subprogramsin Ada
95, but the intended effect from the Ada 95 Reference Manual
seems to be to provide an address value which can be used to
call the subprogram by means of an address clause asin the
following example:

procedure Kis ...

procedure L;
for L' Address use K Address;
pragma |nport (Ada, L);

A call to L isthen expected to result inacall to K. InAda 83,
where there were no access-to-subprogram values, thiswas a
common work around for getting the effect of an indirect call.
XGC Adaimplements the above use of Address and the
technique illustrated by the example code works correctly.

32

However, for some purposes, it is useful to have the address
of the start of the generated code for the subprogram. On some
architectures, thisis not necessarily the same as the Address
value described above. For example, the Address value may
reference a subprogram descriptor rather than the subprogram
itself.

The' Code_Addr ess attribute, which can only be applied to
subprogram entities, always returns the address of the start of
the generated code of the specified subprogram, which may or
may not be the same value asis returned by the corresponding
' Addr ess attribute.

Default _Bit_Order

Standard' Default _Bit_Order (Standardistheonly permissible
prefix), providesthevalue Syst em Defaul t _Bit_Order asaPos
value (0 for H gh_Order_First, 1for Low Order_First). This
is used to construct the definition of Default _Bit _Order in
package Syst em

El abor at ed

The prefix of the' El abor at ed attribute must be a unit name.
The value is a Boolean which indicates whether or not the
given unit has been elaborated. This attribute is primarily
intended for internal use by the generated code for dynamic
elaboration checking, but it can also be used in user programs.
Thevaluewill awaysbe True once elaboration of all unitshas
been completed.

El ab_Body

This attribute can only be applied to a program unit name. It
returns the entity for the corresponding elaboration procedure
for elaborating the body of the referenced unit. Thisisused in
the main generated elaboration procedure by the binder and is
not normally used in any other context. However, there may
be specialized situationsin which it is useful to be able to call
this elaboration procedure from Ada code, for exampleif it is
necessary to do selective re-elaboration to fix some error.

El ab_Spec

This attribute can only be applied to a program unit name. It
returns the entity for the corresponding elaboration procedure

33

Chapter 2. Implementation-Defined Attributes

for elaborating the specification of the referenced unit. Thisis
used in the main generated el aboration procedure by the binder
and is not normally used in any other context. However, there
may be specialized situations in which it is useful to be able

to call this elaboration procedure from Ada code, for example
if itisnecessary to do selective re-elaboration to fix someerror.

Enum Rep

For every enumeration subtype S, S Enum Rep denotesa
function with the following specification:

function S EnumRep (Arg : S Base) return|Univers

The function returns the representation value for the given
enumeration value. Thiswill be equal to value of the Pos
attribute in the absence of an enumeration representation clause.
Thisisastatic attribute (that isthe result is static if the
argument is static).

Fi xed_Val ue

For every fixed-point type S, S' Fi xed_Val ue denotesa
function with the following specification:

function S Fixed_Value (Arg : Universal _Integer)

The value returned is the fixed-point value V such that

V=A~Ag* S Smll

The effect is thus equivalent to first converting the argument
to the integer type used to represent S, and then doing an
unchecked conversion to the fixed-point type. This attributeis
primarily intended for useinimplementation of theinput-output
functions for fixed-point values.

Has_Discrimnants

The prefix of the Has_Di sctri ni nants attributeisatype. The
result is a Boolean value which is True if the type has
discriminants, and False otherwise. The intended use of this
attribute is in conjunction with generic definitions. If the
attributeis applied to ageneric private type, it indicateswhether
or not the corresponding actual type has discriminants.

I nteger Val ue

For every integer typeS, S Integer_Val ue denotesafunction
with the following specification:

function S Integer Value (Arg : Universal |[Fixed) retur

The value returned is the integer value V, such that

Arg =V * type' Smal |

The effect isthus equivalent to first doing an unchecked convert
from the fixed-point type to its corresponding implementation
type, and then converting the result to the target integer type.
This attribute is primarily intended for use in implementation
of the standard input-output functions for fixed-point values.

Machi ne_Si ze

This attribute isidentical to the Obj ect _Si ze attribute. It is
provided for compatibility with other Ada compilers.

Max_Interrupt _Priority

Standard' Max_I nterrupt _Priority (Standard istheonly
permissible prefix), provides the value

System Max_I nterrupt _Priority andisintended primarily for
constructing this definition in package Syst em

35

Chapter 2. Implementation-Defined Attributes

Max_Priority

Standard' Max_Priority (Standard isthe only permissible
prefix) providesthevalue Syst em Max_Pri ori ty andisintended
primarily for constructing this definition in package Syst em

Maxi mum Al i gnment

St andar d' Maxi mum Al i gnnent (St andar d isthe only permissible
prefix) provides the maximum useful alignment value for the
target. Thisis astatic value that can be used to specify the
alignment for an object, guaranteeing that it is properly aigned
inal cases. Thisisuseful when an external object isimported
and its alignment requirements are unknown.

Mechani sm Code

function' Mechani sm Code Yyields an integer code for the
mechanism used for the result of f uncti on, and

subpr ogr am Mechani sm Code(n) Yyields the mechanism used
for formal parameter number n (a static integer value with 1
meaning thefirst parameter) of subpr ogr am The code returned
is1for by copy and 2 for by reference.

Nul | _Paranet er

A reference T Nul | _Parameter denotesanimaginary object
of type or subtype T allocated at machine address zero. The
attribute is allowed only as the default expression of aformal
parameter, or as an actual expression of a subporgram call. In
either case, the subprogram must be imported.

Theidentity of the object isrepresented by the address zero in
the argument list, independent of the passing mechanism
(explicit or default).

This capability is needed to specify that a zero address should
be passed for arecord or other composite object passed by
reference. There is no way of indicating this without the

Nul | _Paranet er attribute.

bj ect _Size

The size of an object is not necessarily the same as the size of
the type of an object. Thisis because by default object sizes
are increased to be amultiple of the alignment of the object.

36

For example, Nat ur al ' Si ze is31, but by default objects of type
Nat ural will have asize of 32 bits. Similarly, arecord
containing an integer and a character:

type Rec is record

| . Integer;
C : Character;
end record;

will have asize of 40 (that isRec' Si ze will be 40. The
alignment will be 4, because of the integer field, and so the
default size of record objectsfor thistype will be 64 (8 bytes).

The type' Obj ect _Size attribute hasbeen addedto XGCAda
to alow the default object size of atypeto be easily
determined. For example, Nat ural ' Qbj ect _Si ze is 32, and
Rec' Obj ect _Si ze (for the record type in the above example)
will be 64. Note also that, unlike the situation with the Si ze
attribute as defined in the Ada 95 Reference Manual, the

Obj ect _Si ze attribute can be specified individually for different
subtypes. For example:

type Ris new Integer;
subtype Rl is Rrange 1 .. 10;
subtype R2 is Rrange 1 .. 10;
for R2' Cbject _Size use 8;

In this example, R Obj ect _Si ze and R1' (hj ect _Si ze are both
32 since the default object size for asubtype isthe same asthe
object size for the parent subtype. This means that objects of
typeR or R1 will by default be 32 bits (four bytes). But objects
of type R2 will be only 8 hits (one byte), since R2' Coj ect _Si ze
has been set to 8.

Passed By Reference

type' Passed_By_Reference for any subtypetype returnsa
value of type Bool ean valuethat isTr ue if thetypeisnormally
passed by reference and Fal se if the typeis normally passed
by copy in cals. For scalar types, the result is always Fal se
and is static. For non-scalar types, the result is non-static.

37

Chapter 2. Implementation-Defined Attributes

Range_Length

type' Range_Length for any discrete typet ype yieldsthe
number of values represented by the subtype (zero for anull
range). The result is static for static subtypes. Range_Lengt h
applied to theindex subtype of aonedimensional array always
gives the same result as Range applied to the array itself.

Storage_Unit

Standard' Storage_Unit (Standard isthe only permissible
prefix) providesthevalue Syst em St orage_Uni t andisintended
primarily for constructing this definition in package Syst em

Ti ck

Standard' Ti ck (St andard isthe only permissible prefix)
provides the value of Syst em Ti ck and is intended primarily
for constructing this definition in package Syst em

Type_C ass

type' Type_QO ass for any typeor subtypet ype yieldsthe value
of the type class for the full type of t ype. If t ype isageneric
formal type, the valueisthe valuefor the corresponding actual
subtype. The value of this attribute is of atype that has the
following definition:

type Type Cass is
(Type_C ass_Enunerati on,
Type_C ass_I nteger,
Type_C ass_Fi xed_Poi nt,
Type_C ass_Fl oating_Point,
Type_C ass_Array,
Type_C ass_Record,
Type_C ass_Access,
Type_C ass_Task,
Type_Cl ass_Address);

Protected typesyield the value Type_C ass_Task, which thus
appliesto all concurrent types.

38

Unrestricted_Access

TheUnrestricted_Access attributeissimilar to Access except
that all accessibility and aliased view checks are omitted. This
is very much a user-beware attribute. It is very similar to

Addr ess, for whichit isadesirable replacement wherethevalue
desired isan accesstype. In other words, its effect is identical
to first applying the Addr ess attribute and then doing an
unchecked conversion to a desired access type. In XGC Ada,
but not necessarily in other implementations, the use of static
chainsfor inner level subprograms means that
Unrestricted_Access applied to asubprogram yields avalue
that can be called aslong asthe subprogram isin scope (normal
Ada 95 accessibility rules restrict this usage).

Val ue_Si ze

type' Val ue_Si ze isthe number of bits required to represent
avalue of the given subtype. Itisthesameas type' Si ze ,but,
unlike Si ze, may be set for non-first subtypes.

Wrd_Size

Standar d' Wr d_Si ze (St andar d is the only permissible prefix)
providesthe value Syst em Wr d_Si ze and isintended primarily
for constructing this definition in package Syst em

39

40

Chapter 3 | mplementation Advice

The main text of the Ada 95 Reference Manual describes the
required behavior of all Ada 95 compilers, and subject to the
restrictionsdescribed in Appendix A, Restrictionsand Profiles[99]
,the XGC Ada compiler conforms to these requirements.

In addition, there are sections throughout the Ada 95 reference
manual headed by the phrase “implementation advice”. These
sectionsare not normative, that isthey do not specify requirements
that compilers must follow. Rather they provide advice on generally
desirable behavior.

Using aquestion and answer format, this chapter givesthereference
manual section number, paragraph number and several keywords
for each piece of advice. Each entry consists of the text of the
advice followed by the XGC Ada interpretation of this advice.
Most often, this simply says “followed”, which means that XGC
Adafollowsthe advice. However, in anumber of cases, XGC Ada
deliberately deviates from this advice, in which case the text
describes what X GC Ada does and why.

3.1. Section 1: General

1.1.3(20): Error Detection

41

Chapter 3. Implementation Advice

<primary>Error

1.1.3(31):
<primary>Child

1.1.5(12):

<primary>Bounded

1.1.3(20): Error
Detection

1.1.3(31): Child Units

A:

1.1.5(12): Bounded
Errors

Detection</primary>

.. 42
Child Units
Units</primary>
.. 42
Bounded Errors

errors</primary>

.. 42

If an implementation detects the use of
an unsupported Specialized NeedsAnnex
feature at run time, it should raise
Program Error if feasible.

Not relevant. All specialized needs annex
features are either supported, or
diagnosed at compile time.

If an implementation wishes to provide
implementation-defined extensionsto the
functionality of alanguage-defined
library unit, it should normally do so by
adding children to the library unit.

Followed.

If an implementation detects a bounded
€rror or erroneous execution, it should
raise Program Error.

Followed in all casesin which the
implementation detects a bounded error
or erroneous execution. Not all such
situations are detected at runtime.

3.2. Section 2: Lexical Elements

2.8 (16):

Pragmas

<primary>Pragmac</primary>

.. 43
2.8(17-19): Pragmas Normally, an implementation should

not define pragmas that can make an illegal program

legal, except asfolloWS.c.cooevviiiiiiiiiecceieeeee 43

42

Section 2: Lexical Elements

2.8(16): Pragmas

2.8(17-19): Pragmas

Normally, implementati on-defined
pragmas should have no semantic effect
for error-free programs; that is, if the
implementation-defined pragmas are
removed from aworking program, the
program should still be legal, and should
still have the same semantics.

The following implementation defined
pragmas are exceptionsto thisrule:

Ada_83
Affects legality

Assert
Affects semantics

Debug
Affects semantics

Interface Nane
Affects semantics

Machi ne_Attribute
Affects semantics

Uni npl ement ed_Uni t
Affectslegality

Unchecked_Uni on
Affects semantics

Not followed. In each of the above cases,
itisessential to the purpose of the pragma
that thisadvice not be followed. For details
see Chapter 1, Implementation-Defined
Pragmas([1] .

Normally, an implementation should not
define pragmas that can make an illegal
program legal, except as follows:

» A pragmaused to complete a
declaration, such asapragmal nport ;

43

Chapter 3. Implementation Advice

» A pragma used to configure the
environment by adding, removing, or
replacinglibrary_itens.

A: See response to paragraph 16 of this same
section.

3.3. Section 3: Declarations and Types

3.5.2(5): Alternative Character Sets
<primary>Alternative Character Sets</primary>
.. 44
3.5.4(28): Integer Types
<primary>lnteger Types</primary>
.. 45

3.5.4(29): Integer Types An implementation for atwo's
complement machine should support modular types
with abinary modulusup to Syst em Max_I nt *2+2. An
implementation should support anon-binary modules

Uptolnteger' Last. ..ooveeeeeeeoiieeeereeeiiiin e eeeeeeeeennnanns 45
3.5.5(8): Enumeration Values
<primary>Enumeration Values</primary>

.. 45
3.5.7(17): Float Types
<primary>Float Types</primary>

.. 46
3.6.2(11): Multidimensional Arrays
<primary>multidimensional arrays</primary>

.. 46

3.5.2(5): Alternative If an implementation supports amode
Character Sets with alternative interpretations for
Char act er and W de_Char act er , the set of
graphic characters of Char act er should
nevertheless remain a proper subset of
the set of graphic characters of
W de_Char act er . Any character set
localizations should be reflected in the
results of the subprograms defined in the
language-defined package
Char act ers. Handl i ng (seeA.3) available
in such amode. In amode with an
aternative interpretation of Character,

Section 3: Declarations and Types

the implementation should also support
acorresponding changeinwhat isalegal
identifier letter.

Not all wide character modes follow this
advice, in particular the JISand IEC
modes reflect standard usage in Japan,
and in these encoding, the upper half of
the Latin-1 set isnot part of the
wide-character subset, since the most
significant bit is used for wide character
encoding. However, this only applies to
the external forms. Internally thereisno
such restriction.

3.5.4(28): I nteger Types An implementation should support

Long_I nteger inadditionto | nteger if
the target machine supports 32-bit (or
longer) arithmetic. No other named
integer subtypes are recommended for
package St andar d. Instead, appropriate
named integer subtypes should be
provided in the library package
Interfaces (seeB.2).

Long_I nt eger issupported. Other standard
integer types are supported so thisadvice
isnot fully followed. These types are
supported for convenient interfaceto C,
and so that all hardware types of the
machine are easily available.

3.5.4(29): Integer Types An implementation for atwo's

A:

3.5.5(8): Enumeration
Values

complement machine should support
modular types with a binary modulus up
to System Max_I nt*2+2. An
implementation should support a
non-binary modulesup to | nt eger' Last .

Followed.

For the evaluation of acall on S Pos
for an enumeration subtype, if the value
of the operand does not correspond to the
internal code for any enumeration

45

Chapter 3. Implementation Advice

A:

3.5.7(17): Float Types

3.6.2(11):
Multidimensional
Arrays

function of its type (perhaps due to an
un-initialized variable), then the
implementation should raise

Program Error. Thisis particularly
important for enumeration types with
non-contiguous internal codes specified
by an enumeration_representation_clause.

Followed.

An implementation should support
Long_Fl oat in addition to Fl oat if the
target machine supports 11 or moredigits
of precision. No other named floating
point subtypes are recommended for
package St andar d. Instead, appropriate
named floating point subtypes should be
provided in the library package
Interfaces (seeB.2).

Short Fl oat and Long_Long_Fl oat are
also provided. The former provides
improved compatibility with other
implementations supporting thistype. The
latter correspondsto the highest precision
floating-point type supported by the
hardware.

An implementation should normally
represent multidimensional arraysin
row-major order, consistent with the
notation used for multidimensional array
aggregates (see 4.3.3). However, if a
pragma Convent i on (FORTRAN, ...) applies
to amultidimensional array type, then
column-magjor order should be used
instead (see B.5, Interfacing with
FORTRAN).

Followed.

3.4. Section 9: Tasking

9.6(30-31):

Duration'Small

46

Section 10: Program Structure and Compilation Issues

<primary>Duration</primary>

.. 47
(continued) The time base for del ay_rel ative_statenents
should be monotonic; it need not be the same time
base asused for Cal endar. G 0CK.ceevveeeereeevivnnnnnnnn. 47
9.6(30-31): Whenever possiblein animplementation,
Duration'Small the value of Duration' Smal | should be
no greater than 100 microseconds.
A: Followed. Durati on' Smal | isone
microsecond.
(continued) The time base for
del ay _rel ative_statenents should be
monotonic; it need not be the same time
base as used for Cal endar. d ock.
A: Not applicable.

delay _relative_statenents are
prohibited by the built-in restriction
No_Rel ative Del ay.

3.5. Section 10: Program Structure and Compilation Issues

10.2.1(12): Consistent Representation In an implementation,
atype declared in a pre-elaborated package should
have the same representation in every elaboration of
agiven version of the package, whether the
elaborations occur in distinct executions of the same
program, or in executions of distinct programs or
partitions that include the given version. 47

10.2.1(12): Consistent In an implementation, atype declared in

Representation

apre-elaborated package should havethe
same representation in every elaboration
of agiven version of the package,
whether the elaborations occur in distinct
executions of the same program, or in
executions of distinct programs or
partitions that include the given version.

Followed.

47

Chapter 3. Implementation Advice

3.6. Section 11: Exceptions

11.4.1(19): Exception Information
<primary>Exception I nformation</primary>

.. 48
11.5(28): Suppression of Checks
<primary>Checks</primary>
<secondary>suppression of</secondary>

.. 48

11.4.1(19): Exception Exception_Message by default and

Information Exception_I nf or mat i on should produce
information useful for debugging.
Except i on_Message should be short, about
oneline. Exception_I nf or mati on can be
long. Except i on_Message should not
include the Except i on_Nane.
Exception_I nf or mat i on should include
both the Except i on_Nanme and the
Exception_Message.

A: Followed for Exception Message.
Exception_Information is not supported.

11.5(28): Suppression Theimplementation should minimizethe

of Checks code executed for checks that have been
suppressed.
A: Followed.

3.7. Section 13: Representation |ssues

13.1 (21-24): Representation Clauses
<primary>Representation Clauses</primary>
.. 52

(continued) An implementation need not support a
specification for the Si ze for a given composite
subtype, nor the size or storage place for an object
(including a component) of a given composite
subtype, unless the constraints on the subtype and its
composite subcomponents (if any) are all static
(00015 1 = 11 | £ SRR 52

48

Section 13: Representation Issues

(continued) An aliased component, or a component whose
typeisby-reference, should always be alocated at an

addressable [0CatTioN.coccvvveeiiiiieieeee e 52
13.2(6-8): Packed Types
<primary>Packed Types</primary>

.. 52
(continued) An implementation should support Address

clauses for imported subprograms.cccoccveeene 53
13.3(14-19): Address Clauses
<primary>Address clauses</primary>

.. 53

(continued) An implementation should support Addr ess

clauses for imported subprograms.cccoccvveeene 54
(continued) Objects (including subcomponents) that are

aliased or of a by-reference type should be allocated

on storage element boundaries.cccccceeeiiiiinnnen. 54
(continued) If the Addr ess of an object is specified, or it is

imported or exported, then the implementation should

not perform optimizations based on assumptions of

NO @lIBSES. ..vvviiiiieeeieiiiieie e 54
13.3(29-35): Alignment Clauses
<primary>Alignment clauses</primary>

.. 54

(continued) An implementation need not support specified
Al'i gnrent sfor combinationsof Si zesand Al i gnent S
that cannot be easily loaded and stored by available
Machine iNStrUCtiONS.coovveviiiiiiiieieee e 54
(continued) An implementation need not support specified
Al'i gnnent sthat are greater than the maximum
Al'i gnment theimplementation ever returns by defauilt.

.. Y]
(continued) Same as above, for subtypes, but in addition:

.. 55
(continued) For stand-alone library-level objects of statically

constrained subtypes, the implementation should

support all Al'i gnnent s supported by the target linker.

For example, pagealignment islikely to be supported

for such objects, but not for subtypes.cccc...e. 55
13.3(42-43): Size Clauses
<primary>Size Clauses</primary>

.. 55

13.3(50-56): Size Clauses|f the Si ze of asubtypeis specified,
and allows for efficient independent addressability
(see 9.10) on the target architecture, then the Si ze of

49

Chapter 3. Implementation Advice

the following objects of the subtype should equal the

Si ze Of the SUBLYPE: ..oooiiiiee e 55
(continued) Si ze clause on a composite subtype should not

affect the internal layout of components. 55
(continued) The recommended level of support for the Si ze

attribute of SUBtYPES IS ...ovvvviiiiiieeeeee e 56

(continued) For a subtype implemented with levels of
indirection, the Si ze should include the size of the

pointers, but not the size of what they point at. 56
13.3(71-73): Component Size Clauses
<primary>Common_Object</primary>

.. 56

(continued) An implementation should support specified
Conponent _Si zesthat are factors and multiples of the
word size. For such Conponent _Si zes, thearray should
contain no gaps between components. For other
Conponent _Si zes (if supported), the array should
contain no gaps between components when packing
is also specified; the implementation should forbid
this combination in cases where it cannot support a
NO-QapS repreSentation.ecevveeeeeiniieeee e 56

13.4(9-10): Enumeration Representation Clauses The
recommended level of support for enumeration

representation ClaUSES iS.ccoovveveeriiieiee e 57
13.5.1(17-22): Record Representation Clauses
<primary>Record representation clauses</primary>

.. 57

(continued) A storage place should be supported if itssizeis
equal to the Si ze of the component subtype, and it
startsand ends on aboundary that obeysthe Al i gnment
of the component subtype.cccoccvveeriiiieeiiiiieeene 57

(continued) If the default bit ordering applies to the
declaration of a given type, then for a component
whose subtype's Si ze is less than the word size, any
storage place that does not cross an aligned word
boundary should be supported.ccocovveiiiiiinennne 57

(continued) An implementation may reserve a storage place
for the tag field of atagged type, and disallow other
components from overlapping that place. 57

(continued) An implementation need not support a
conponent _cl ause for acomponent of an extension
part if the storage placeis not after the storage places
of all components of the parent type, whether or not
those storage places had been specified. 58

50

Section 13: Representation Issues

13.5.2(5): Storage Place Attributes
<primary>Attributes</primary>
.. 58
13.5.3(7-8): Bit Ordering
<primary>Bit ordering</primary>
.. 58
13.7(37): Address as Private
<primary>Address, as private type</primary>
.. 58
13.7.1(16): Address Operations
<primary>Complex_Representation</primary>
.. 58

13.9(14-17): Unchecked Conversion The Si ze of an array
object should not include its bounds; hence, the
bounds should not be part of the converted data.

.. 59
(continued) The implementation should not generate

unnecessary run-time checks to ensure that the

representation of S is arepresentation of the target

type. It should take advantage of the permission to

return by reference when possible. Restrictions on

unchecked conversions should be avoided unless

required by the target environment.ccccceeeee. 59
(continued) The recommended level of support for unchecked

(00177 £ o] 0 S 1= 59
13.11(23-25): Implicit Heap Usage
<primary>Alignments of components</primary>

.. 60

(continued) A default (implementati on-provided) storage pool

for an access-to- constant type should not have

overhead to support de-allocation of individual

ODJECTES. oiieiiiie et 60
(continued) A storage pool for an anonymous access type

should be created at the point of an alocator for the

type, and be reclaimed when the designated object

becomesinaccessible. ... 60
13.11.2(17): Unchecked De-allocation
<primary>Alignments of components</primary>

.. 60
13.13.2(17): Stream Oriented Attributes
<primary>Alignments of components</primary>

.. 60

51

Chapter 3. Implementation Advice

13.1 (21-24): The recommended level of support for all
Representation Clausesrepresentation itemsis qualified as
follows:

An implementation need not support
representation items containing non-static
expressions, except that an
implementation should support a
representation item for a given entity if
each non-static expression in the
representation item is a name that
statically denotes a constant declared
before the entity.

A: Followed. XGC Ada does not support
non-static expressions in representation
clauses unlessthey are constants declared
before the entity.

(continued) An implementation need not support a
specification for the Si ze for agiven
composite subtype, nor the size or storage
place for an object (including a
component) of a given composite
subtype, unless the constraints on the
subtype and its composite subcomponents
(if any) are al static constraints.

A: Followed. Size Clauses are not permitted
onh non-static components, as described
above.

(continued) An aliased component, or a component

whosetypeisby-reference, should always
be allocated at an addressabl e location.

A: Followed.

13.2(6-8): Packed TypesIf atype is packed, then the
implementation should try to minimize
storage allocated to objects of the type,
possibly at the expense of speed of
accessing components, subject to
reasonable complexity in addressing
calculations.

52

Section 13: Representation Issues

(continued)

A:

13.3(14-19): Address
Clauses

The recommended level of support
pragmaPack is:

For apacked record type, the components
should be packed astightly as possible
subject to the Sizes of the component
subtypes, and subject to any
record_representation_clause that
appliesto the type; the implementation
may, but need not, reorder components
or cross aligned word boundaries to
improvethe packing. A component whose
Si ze isgreater than the word size may be
allocated an integral number of words.

Partly followed. Tight packing of arrays
is supported for component sizes of 1, 2,
4, 8, 16 and 32 bits.

An implementation should support
Address clauses for imported
subprograms.

Followed.

For anarray X, X Address should point
at the first component of the array, and
not at the array bounds.

Followed.

The recommended level of support for
the Addr ess attributeis:

X Address should produce auseful result
if X isan object that isaliased or of a
by-reference type, or is an entity whose
Addr ess has been specified.

Followed. A valid address will be
produced even if none of those conditions
have been met. If necessary, the object is
forced into memory to ensure the address
isvalid.

53

Chapter 3. Implementation Advice

(continued)

A:

(continued)

A:

(continued)

A:

An implementation should support
Addr ess clauses for imported
subprograms.

Followed.

Objects (including subcomponents) that
are aliased or of aby-reference type
should be allocated on storage element
boundaries.

Followed.

If the Addr ess of an object is specified,
or it isimported or exported, then the
implementation should not perform
optimizations based on assumptions of
no aliases.

Followed.

13.3(29-35): Alignment The recommended level of support for

Clauses

A:

(continued)

A:

(continued)

the Al'i gnnent attribute for subtypesis:

An implementation should support
specified Alignments that are factors and
multiples of the number of storage
elements per word, subject to the
following:

Followed.

An implementation need not support
specified Al i gnment sfor combinations of
Si zesand Al i gnnent sthat cannot be
easily loaded and stored by available
machine instructions.

Followed.

An implementation need not support
specified Al i gnnent sthat are greater than
the maximum Al i gnnent the
implementation ever returns by default.

Followed.

Section 13: Representation Issues

(continued)

A:

(continued)

A:

13.3(42-43): Size
Clauses

A:

13.3(50-56): Size
Clauses

A:

(continued)

The recommended level of support for
the Al'i gnnent attribute for objectsis:

Same as above, for subtypes, but in
addition:

Followed.

For stand-alone library-level objects of
statically constrained subtypes, the
implementation should support all

Al'i gnment ssupported by thetarget linker.
For example, page alignment islikely to
be supported for such objects, but not for
subtypes.

Followed.

The recommended level of support for
the Si ze attribute of objectsis:

A Si ze clause should be supported for an
object if the specified Si ze isat least as
large asits subtype's Si ze, and
corresponds to asize in storage elements
that isamultiple of the object'sAl i gnment
(if the Al i gnnent is nonzero).

Followed.

If the Si ze of a subtypeis specified, and
alows for efficient independent
addressahility (see 9.10) on the target
architecture, then the Si ze of the
following objects of the subtype should
equal the Si ze of the subtype:

Aliased objects (including components).
Followed.

Si ze clause on a composite subtype
should not affect the internal layout of
components.

Followed.

55

Chapter 3. Implementation Advice

(continued) The recommended level of support for
the Si ze attribute of subtypesis:

The Si ze (if not specified) of astatic
discrete or fixed point subtype should be
the number of bits needed to represent
each val ue bel onging to the subtype using
an unbiased representation, leaving space
for asign bit only if the subtype contains
negativevalues. If such asubtypeisafirst
subtype, then an implementation should
support aspecified Si ze for it that reflects
this representation.

A: Followed.

(continued) For a subtype implemented with levels
of indirection, the Si ze should includethe
size of the pointers, but not the size of
what they point at.

A: Followed.

13.3(71-73): The recommended level of support for
Component Size the Conponent _Si ze attributeis:

Clauses
An implementation need not support

specified Conponent _Si zes that are less
than the Si ze of the component subtype.

A: Followed.

(continued) An implementation should support
specified Conponent _Si zesthat arefactors
and multiples of the word size. For such
Conponent _Si zes, thearray should contain
no gaps between components. For other
Conponent _Si zes(if supported), thearray
should contain no gaps between
components when packing is also
specified; the implementation should
forbid this combination in cases where it
cannot support a no-gaps representation.

A: Followed.

56

Section 13: Representation Issues

13.4(9-10):
Enumeration
Representation Clauses

A:

13.5.1(17-22): Record
Representation Clauses

A:

(continued)

A:

(continued)

A:

(continued)

The recommended level of support for
enumeration representation clausesis:

An implementation need not support
enumeration representation clauses for
boolean types, but should at minimum
support the internal codesin the range
System M n_Int.System Max_Int.

Followed.

The recommended level of support for
record_representation_clauses is

An implementation should support
storage places that can be extracted with
aload, mask, shift sequence of machine
code, and set with aload, shift, mask,
store sequence, given the available
machineinstructionsand run-time model.

Followed.

A storage place should be supported if its
sizeisegual totheSi ze of the component
subtype, and it starts and ends on a
boundary that obeysthe Al i gnnent of the
component subtype.

Followed.

If the default bit ordering appliesto the
declaration of a given type, then for a
component whose subtype's Si ze isless
than the word size, any storage place that
does not cross an aligned word boundary
should be supported.

Followed.

Animplementation may reserve astorage
place for the tag field of atagged type,
and disallow other components from
overlapping that place.

Followed.

57

Chapter 3. Implementation Advice

(continued)

An implementation need not support a
conponent _cl ause for acomponent of an
extension part if the storage place is not
after the storage places of all components
of the parent type, whether or not those
storage places had been specified.

Followed. The above advice on record
representation clausesis followed, and
all mentioned features are implemented.

13.5.2(5): Storage Place If acomponent isrepresented using some

Attributes

13.5.3(7-8): Bit
Ordering

13.7(37): Address as
Private

A:

13.7.1(16): Address
Operations

form of pointer (such as an offset) to the
actual data of the component, and this
datais contiguous with the rest of the
object, then the storage place attributes
should reflect the place of the actual data,
not the pointer. If acomponent is
allocated discontinuously from the rest
of the object, then awarning should be
generated upon reference to one of its
storage place attributes.

Followed. There are no such components
in XGC Ada.

The recommended level of support for
the non-default bit ordering is:

If Word_Si ze = Storage_Uni t, then the
implementation should support the
non-default bit ordering in addition to the
default bit ordering.

Followed. Word size does not equal
storage sizein thisimplementation. Thus
non-default bit ordering is not supported.

Addr ess should be of a private type.

Not Followed. Thetype Addressis
visible.

Operationsin Syst emand its children
should reflect the target environment

58

Section 13: Representation Issues

semanticsasclosely asisreasonable. For
example, on most machines, it makes
sense for address arithmetic to wrap
around. Operations that do not make
sense should raise Program Error.

Followed. Address arithmetic is modul ar
arithmetic that wraps around. No
operation raises Program Error, since all
operations make sense.

13.9(14-17): Unchecked The Si ze of an array object should not

Conversion

A:

(continued)

(continued)

include its bounds; hence, the bounds
should not be part of the converted data.

Followed.

The implementation should not generate
unnecessary run-time checks to ensure
that the representation of Sisa
representation of thetarget type. It should
take advantage of the permission to return
by reference when possible. Restrictions
on unchecked conversions should be
avoided unless required by the target
environment.

Followed. There are no restrictions on
unchecked conversion. A warning is
generated if the source and target types
do not have the same size since the
semanticsin this case may be target
dependent.

The recommended level of support for
unchecked conversionsis:

Unchecked conversions should be
supported and should bereversiblein the
caseswherethisclause definestheresult.
To enable meaningful use of unchecked
conversion, a contiguous representation
should be used for elementary subtypes,
for statically constrained array subtypes
whose component subtype is one of the

59

Chapter 3. Implementation Advice

A:

13.11(23-25): Implicit
Heap Usage

(continued)

A:

(continued)

A:

subtypes described in this paragraph, and
for record subtypeswithout discriminants
whose component subtypes are described
in this paragraph.

Followed.

Animplementation should document any
cases in which it dynamically allocates
heap storage for a purpose other than the
evaluation of an allocator.

Followed, the only other points at which
heap storageisdynamically allocated are
asfollows:

» Toallocate spacefor atask when atask
is created.

A default (implementation-provided)
storage pool for an access-to- constant
type should not have overhead to support
de-allocation of individual objects.

Not applicable.

A storage pool for an anonymous access
type should be created at the point of an
alocator for the type, and be reclaimed
when the designated object becomes
inaccessible.

Followed.

13.11.2(17): Unchecked For a standard storage pool, Free should

De-allocation
A:

13.13.2(17): Stream
Oriented Attributes

actually reclaim the storage.
Not supported.

If astream element isthe same sizeasa
storage element, then the normal
in-memory representation should be used
by Read and Wi t e for scalar objects.
Otherwise, Read and Wi t e should usethe
smallest number of stream elements

60

Annex A: Predefined Language Environment

needed to represent all valuesin the base
range of the scalar type.

A: Not supported.

3.8. Annex A: Predefined Language Environment

A.1(52): Implementation Advice If an implementation

provides additional named predefined integer types,

then the names should end with Integer asin

Long_Integer. If an implementation provides

additional named predefined floating point types, then

the names should end with Float asin Long_Float.

.. 61
A.3.2(49): Ada.Characters.Handling
<primary>Ada.Characters.Handling</primary>

.. 62
A.4.5(106): Bounded-Length String Handling
<primary>Alignments of components</primary>

.. 62
A.5.2(46-47). Random Number Generation
<primary>Random Number Generation</primary>

.. 62
(continued) If the generator period is sufficiently long in

relation to the number of distinct initiator values, then

each possible value of I ni ti at or passed to Reset

should initiate a sequence of random numbers that

does not, in a practical sense, overlap the sequence

initiated by any other value. If thisis not possible,

then the mapping between initiator values and

generator states should be arapidly varying function

of theinitiator value.ccccceeiiiiiiiiiiiee e 62
A.10.7(23): Get _Immediate
<primary>Get_Immediate</primary>

.. 62

A.1(52): If an implementation provides additional

I mplementation Advice named predefined integer types, then the
names should end with Integer asin
Long_Integer. If animplementation
provides additional named predefined
floating point types, then the names
should end with Float asin Long_Float.

61

Chapter 3. Implementation Advice

A:

A.3.2(49):

Followed.

If an implementation providesalocalized

AdaCharactersHandling definition of Char act er or

A.4.5(106):

W de_Char act er, then the effects of the
subprograms in Char act er s. Handl i ng
should reflect the localizations. See aso
35.2

Followed. XGC Ada provides no such
localized definitions.

Bounded string objects should not be

Bounded-L ength String implemented by implicit pointers and

Handling

A:

A.5.2(46-47): Random
Number Generation

A:

(continued)

A.10.7(23):
Get_Immediate

dynamic allocation.

Followed. No implicit pointers or
dynamic allocation are used.

Any storage associated with an object of
type Gener at or should be reclaimed on
exit from the scope of the object.

Followed.

If the generator period issufficiently long
in relation to the number of distinct
initiator values, then each possible value
of Initiator passed to Reset should
initiate a sequence of random numbers
that doesnot, in apractical sense, overlap
the sequenceinitiated by any other value.
If thisis not possible, then the mapping
between initiator values and generator
states should be arapidly varying
function of the initiator value.

Followed. The generator period is
sufficiently long for the first condition
here to hold true.

TheGet _| medi at e procedures should be
implemented with unbuffered input. For
adevice such asakeyboard, input should
be availableif akey has aready been
typed, whereas for a disk file, input

62

Annex B: Interface to Other Languages

should always be available except at end
of file. For afile associated with a
keyboard-like device, any line-editing
features of the underlying operating
system should be disabled during the
execution of Get _| nmedi at e.

A: Followed.

3.9. Annex B: Interface to Other Languages

B.1(39-41): Pragma Export
<primary>pragma Export</primary>
.. 65

(continued) Automatic el aboration of pre-elaborated packages
should be provided when pragma Export is supported.

.. 65
(continued) For each supported convention L other than

I ntrinsi c, animplementation should support I npor t

and Export pragmasfor objects of L-compatibletypes

and for subprograms, and pragma Convent i on for

L-eligible types and for subprograms, presuming the

other language has corresponding features. Pragma

Convent i on need not be supported for scalar types.

.. 65
B.2(12-13): Package Interfaces
<primary>lnterfaces</primary>

.. 66
(continued) An implementation supporting an interfaceto C,

COBOL, or FORTRAN should provide the

corresponding package or packages described in the

following clauses.ccccceei e, 66
B.3(63-71): Interfacing with C
<primary>C, interfacing with</primary>

.. 66
(continued) An Ada procedure correspondsto avoid-returning

CTUNCLION. .o 66
(continued) An Ada function corresponds to a non-void C

FUNCLION. oo e 66
(continued) An Adai n scalar parameter is passed as a scalar

argument to aC function.cccccvvvvvvvinniineninininnn. 66

(continued) An Adai n parameter of an access-to-object type
with designated type T ispassed asa t* argument

63

Chapter 3. Implementation Advice

to a C function, wheret isthe C type corresponding

tothe Adatype T. .o 66
(continued) An Ada access T parameter, or an Adaout orin

out parameter of an elementary typeT, is passed asa

t* argument to a C function, wheret isthe C type

corresponding to the Adatype T. In the case of an

elementary out orin out parameter, apointer to a

temporary copy isused to preserve by-copy semantics.

(continued) An Ada parameter of arecord type T, of any
mode, ispassed asa t* argument to a C function,
wheret isthe C structure corresponding to the Ada
VP T. e 67
(continued) An Ada parameter of an array type with
component type T, of any mode, ispassedasa t*
argument to a C function, wheret isthe C type
corresponding to the Adatype T.ccccevviieeeniiiineenns 67
(continued) An Ada parameter of an access-to-subprogram
typeis passed as a pointer to a C function whose
prototype corresponds to the designated subprogram'’s

SPECITICALTION. .. 67
B.4(95-98): Interfacing with COBOL
<primary>COBOLCS</primary>
<secondary>interfacing with</secondary>

.. 68

(continued) An Ada access T parameter is passed asaBY
REFERENCE data item of the COBOL type

COorresPONAING tO T wevveeiiiieee et 68
B.5(22-26): Interfacing with FORTRAN
<primary>FORTRANSC<C/primary>

.. 68

(continued) An Ada function corresponds to a FORTRAN
FUNCLION. oo e 68

(continued) An Ada parameter of an elementary, array, or
record type T is passed asaT argument to a
FORTRAN procedure, where T isthe FORTRAN type
corresponding to the Ada type T, and where the
INTENT attribute of the corresponding dummy
argument matches the Adaformal parameter mode;
the FORTRAN implementation's parameter passing
conventions are used. For elementary types, alocal
copy isused if necessary to ensure by-copy semantics.

Annex B: Interface to Other Languages

(continued) An Ada parameter of an access-to-subprogram
typeis passed as areference to a FORTRAN
procedure whose interface corresponds to the
designated subprogram's specification. 69

B.1(39-41): Pragma If an implementation supports pragma

Export Export toagivenlanguage, thenit should
also alow the main subprogram to be
writtenin that language. It should support
some mechanism for invoking the
elaboration of the Adalibrary units
included in the system, and for invoking
the finalization of the environment task.
On typical systems, the recommended
mechanismisto provide two subprograms
whose link names are adai ni t and
adaf i nal . adai ni t should contain the
elaboration code for library units.
adaf i nal should contain the finalization
code. These subprograms should have no
effect the second and subsequent time

they are called.

A: Followed.

(continued) Automatic elaboration of pre-elaborated
packages should be provided when
pragma Export is supported.

A: Followed.

(continued) For each supported convention L other

thanli ntri nsi ¢, animplementation should
support | nport and Export pragmas for
objects of L-compatible types and for
subprograms, and pragmacConvent i on for
L-eligible types and for subprograms,
presuming the other language has
corresponding features. Pragma

Convent i on need not be supported for
scalar types.

A: Followed.

65

Chapter 3. Implementation Advice

B.2(12-13): Package
Interfaces

A:

(continued)

A:

For each implementation-defined
convention identifier, there should be a
child package of package Interfaceswith
the corresponding name. This package
should contain any declarations that
would be useful for interfacing to the
language (implementation) represented
by the convention. Any declarations
useful for interfacing to any language on
the given hardware architecture should
be provided directly in I nter f aces.

Followed.

An implementation supporting an
interfaceto C, COBOL, or FORTRAN
should providethe corresponding package
or packages described in the following
clauses.

Not Followed.

B.3(63-71): Interfacing An implementation should support the

with C

A:

(continued)

A:

(continued)

A:

(continued)

A:

(continued)

following interface correspondences
between Adaand C.

Followed.

An Ada procedure corresponds to a
void-returning C function.

Followed.

An Adafunction correspondsto a
non-void C function.

Followed.

AnAdain scalar parameter is passed as
ascalar argument to a C function.

Followed.
AnAdain parameter of an

access-to-object typewith designated type
Tispassedasa t* argumenttoaC

66

Annex B: Interface to Other Languages

A:

(continued)

A:

(continued)

(continued)

A:

(continued)

function, wheret isthe C type
corresponding to the AdatypeT.

Followed.

An Adaaccess T parameter, or an Ada
out orin out parameter of an elementary
typeT,ispassedasa t* argumenttoa
C function, wheret isthe C type
corresponding to the AdatypeT. In the
case of an elementary out orin out
parameter, a pointer to atemporary copy
is used to preserve by-copy semantics.

Followed.

An Ada parameter of arecord type T, of
any mode, ispassedasa t* argument
toaC function, wheret isthe C structure
corresponding to the Adatype T.

Followed. This convention may be
overridden by the use of the
C_Pass By _Copy pragma, or
Convention, or by explicitly specifying
the mechanism for a given call using an
extended import or export pragma.

An Ada parameter of an array type with
component typeT, of any mode, is passed
asa t* argumenttoacC function, where
t isthe C type corresponding to the Ada
typeT.

Followed.

An Ada parameter of an
access-to-subprogram typeis passed as a
pointer to a C function whaose prototype
corresponds to the designated
subprogram's specification.

Followed.

67

Chapter 3. Implementation Advice

B.4(95-98): Interfacing An Adaimplementation should support

with COBOL

(continued)

the following interface correspondences
between Ada and COBOL.

Not Followed. COBOL is not supported
by XGC Ada

AnAdaaccess T parameter is passed as
aBY REFERENCE dataitem of the
COBOL type corresponding to T.

AnAdain scalar parameter is passed as
aBY CONTENT dataitem of the
corresponding COBOL type.

Any other Ada parameter is passed as a
BY REFERENCE dataitem of the
COBOL type corresponding to the Ada
parameter type; for scalars, alocal copy
isused if necessary to ensure by-copy
semantics.

Not applicable. COBOL isnot supported
by XGC Ada

B.5(22-26): Interfacing An Adaimplementation should support

with FORTRAN

A:

(continued)

A:

(continued)

the following interface correspondences
between Ada and FORTRAN: Followed.

An Ada procedure corresponds to a
FORTRAN subroutine.

Followed.

An Adafunction correspondsto a
FORTRAN function.

Followed.

An Ada parameter of an elementary,
array, or record type Tispassed asaT
argument to a FORTRAN procedure,
where T isthe FORTRAN type
corresponding to the Adatype T, and
where the INTENT attribute of the
corresponding dummy argument matches

68

Annex C: Systems Programming

A:

(continued)

the Adaformal parameter mode; the
FORTRAN implementation's parameter
passing conventions are used. For
elementary types, alocal copy isused if
necessary to ensure by-copy semantics.

Followed.

An Ada parameter of an
access-to-subprogram typeis passed as a
reference to a FORTRAN procedure
whose interface corresponds to the
designated subprogram's specification.

Followed.

3.10. Annex C: Systems Programming

C.1(3-5): Access

to Machine Operations

<primary>Machine Code</primary>

.. 70

(continued) The interfacing pragmas (see Annex B) should
support interface to assembler; the default assembler
should be associated with the convention identifier

Assenbl er.

.. 70

(continued) If an entity is exported to assembly language,
then the implementation should allocate it at an
addressable location, and should ensurethat it is
retained by the linking process, even if not otherwise
referenced from the Ada code. The implementation
should assume that any call to a machine code or
assembler subprogram is allowed to read or update
every object that is specified as exported. 71
C.1(10-16): Access to Machine Operations The
implementation should ensure that little or no
overhead is associated with calling intrinsic and
machine-code subprograms.ccccceeeeeiviiciinnenennn. 71
(continued) It isrecommended that intrinsic subprograms be
provided for convenient access to any machine
operations that provide specia capabilities or
efficiency and that are not otherwise avail able through
the language CONSLIUCES.cccvvveieeeeeeeiiiciiiieeeean. 71

69

Chapter 3. Implementation Advice

(continued) Atomic read-modify-write operations-- e.g., test
and set, compare and swap, decrement and test,

ENQUEUE/JEJUEUE.oeoiiiiiieeiiiiie e 71
(continued) Standard numeric functions-- e.g., sin, log. 71
(continued) String manipulation operations -- e.g., trandlate

ANALESE. oo 72
(continued) Vector operations -- e.g., compare vector against

thresholds.eeveeiiieeeee e 72
(continued) Direct operations on 1/O ports.ccccceeeeeenneee. 72
C.3(28): Interrupt Support
<primary>lnterrupts</primary>

.. 72
C.3.1(20-21): Protected Procedure Handlers
<primary>Protected Procedure Handlers</primary>

.. 72

(continued) Whenever practical, violations of any
implementation-defined restrictions should be detected

beforeruntime. ... 72
C.3.2(25): Package Interrupts
<primary>lnterrupts</primary>

.. 72
C.4(14): Pre-elaboration Requirements
<primary>Component_Alignment</primary>

.. 73

C.5(8): Pragma Discard_Names If the pragma appliesto an
entity, then the implementation should reduce the
amount of storage used for storing names associated

With that entity.ccccooeiieeii e 73
C.7.2(30): The Package Task_Attributes
<primary>Task attributes</primary>

.. 73

C.1(3-5): Accessto The machine code or intrinsic support

Machine Operations should allow accessto all operations
normally available to assembly language
programmers for the target environment,
including privileged instructions, if any.

A: Followed.

(continued) The interfacing pragmas (see Annex B)
should support interface to assembler; the
default assembler should be associated
with the convention identifier Assenbl er .

70

Annex C: Systems Programming

A:

(continued)

A:

C.1(10-16): Accessto
M achine Oper ations

(continued)

(continued)

(continued)

A:

Followed.

If an entity is exported to assembly
language, then the implementation should
dlocate it at an addressablelocation, and
should ensure that it is retained by the
linking process, even if not otherwise
referenced from the Ada code. The
implementation should assume that any
call to a machine code or assembler
subprogram is allowed to read or update
every object that is specified as exported.

Followed.

The implementation should ensure that
little or no overhead is associated with
calling intrinsic and machine-code
subprograms.

Followed for both intrinsics and
machine-code subprograms.

It is recommended that intrinsic
subprograms be provided for convenient
access to any machine operations that
provide special capabilities or efficiency
and that are not otherwise available
through the language constructs.

Followed. A full set of machine operation
intrinsic subprograms is provided.

Atomic read-modify-write operations --
e.g., test and set, compare and swap,
decrement and test, enqueue/dequeue.

Followed on any target supporting such
operations.

Standard numeric functions -- e.g., sin,
log.

Followed on any target supporting such
operations.

71

Chapter 3. Implementation Advice

(continued)

A:

(continued)

A:

(continued)

A:

C.3(28): Interrupt
Support

String manipul ation operations -- e.g.,
translate and test.

Followed on any target supporting such
operations.

Vector operations -- e.g., compare vector
against thresholds.

Followed on any target supporting such
operations.

Direct operations on /O ports.

Followed on any target supporting such
operations.

If the Cei I'i ng_Locki ng policy isnot in
effect, theimplementation should provide
means for the application to specify
whichinterrupts are to be blocked during
protected actions, if the underlying
system alowsfor afiner-grain control of
interrupt blocking.

Followed. The underlying system does
not allow for finer-grain control of
interrupt blocking.

C.3.1(20-21): Protected Whenever possible, the implementation

Procedure Handlers

(continued)

C.3.2(25): Package
Interrupts

should allow interrupt handlersto be
called directly by the hardware.

Followed on any target where the
underlying operating system permits such
direct calls.

Whenever practical, violations of any
implementation-defined restrictions
should be detected before run time.

Followed. Compile time warnings are
given when possible.

If implementation-defined forms of
interrupt handler procedures are

72

Annex C: Systems Programming

A:
C.4(14):

Pre-elabor ation
Requirements

C.5(8): Pragma
Discard Names

A:

supported, such as protected procedures
with parameters, then for each such form
of ahandler, atype analogousto

Par anet er | ess_Handl er should be
specified in a child package of

I nt errupt s, with the same operations as
in the predefined package Interrupts.

Followed.

It is recommended that pre-elaborated
packages be implemented in such away
that there should be little or no code
executed at run time for the elaboration
of entities not already covered by the

I mplementation Requirements.

Followed. Executable code is generated
in some cases, e.g. loopstoinitidizelarge
arrays.

If the pragma applies to an entity, then
the implementation should reduce the
amount of storage used for storing names
associated with that entity.

Followed.

C.7.2(30): ThePackage Some implementations are targeted to

Task_Attributes

domainsinwhich memory useat runtime
must be completely deterministic. For
such implementations, it isrecommended
that the storage for task attributes will be
pre-allocated statically and not from the
heap. This can be accomplished by either
placing restrictions on the number and
the size of the task's attributes, or by using
the pre-allocated storage for the first N
attribute objects, and the heap for the
others. In the latter case, N should be
documented.

Not followed. Thisimplementation is not
targeted to such adomain.

73

Chapter 3. Implementation Advice

3.11. Annex D: Real-Time Systems

D.3(17): Locking Policies
<primary>Locking</primary>
.. 74
D.4(16): Entry Queuing Policies
<primary>Entry Queuing</primary>
.. 74
D.6(9-10): Preemptive Abort
<primary>Abort</primary>
.. 75

(continued) On a multi-processor, the delay associated with
aborting atask on another processor should be
bounded; the implementation should use periodic

polling, if necessary, to achievethis.cccc..... 75
D.7(21): Tasking Restrictions
<primary>Restrictions</primary>

.. 75
D.8(47-49): Monotonic Time
<primary>Time</primary >

.. 75

(continued) It is recommended that Cal endar . O ock and
Real _Ti ne. d ock beimplemented as transformations
of thesametimebase.cccccccveeiiiiiiii e, 75
(continued) It is recommended that the best time base which
exists in the underlying system be available to the
application through O ock. Best may mean highest

accuracy or |argest range.occceveeviiiveeeiiiiieeeenene 75
D.3(17): Locking The implementation should use names
Poalicies that end with _Locki ng for locking

policies defined by the implementation.

A: Followed. No such
implementation-defined locking policies
exist.

D.4(16): Entry Queuing Namesthat end with _Queuing should be
Policies used for al implementation-defined
gueuing policies.

A: Followed. No such
implementati on-defined queuing policies
exigt.

74

Annex D: Real-Time Systems

D.6(9-10): Preemptive Eventhough theabort _statenent is

Abort

A:

(continued)

A:

D.7(21): Tasking
Restrictions

A:

included inthelist of potentially blocking
operations (see 9.5.1), it isrecommended
that this statement be implemented in a
way that never requiresthetask executing
theabort st at ement to block.

Not applicable.

On amulti-processor, the delay associated
with aborting atask on another processor
should be bounded; the implementation
should use periodic polling, if necessary,
to achievethis.

Not applicable.

When feasible, theimplementation should
take advantage of the specified
restrictions to produce a more efficient
implementation.

Followed.

D.8(47-49): Monotonic When appropriate, implementations

Time

A:

(continued)

(continued)

should provide configuration mechanisms
to change the value of Ti ck.

Not Followed.

It is recommended that Cal endar. C ock
and Real _Ti ne. d ock be implemented as
transformations of the same time base.

Not Followed. Package Calendar is
prohibited by the built-in restriction
No_Calendar.

It isrecommended that the best time base
which existsin the underlying system be
availableto the application through d ock.
Best may mean highest accuracy or
largest range.

Followed.

75

Chapter 3. Implementation Advice

3.12. Annex E: Distributed Systems

E.5(28-29): Partition Communication Subsystem
<primary>Partitions</primary?>
.. 76

(continued) The Wi t e operation on a stream of type
Par ans_Stream Type should raise St orage_Error if it
runs out of space trying to write the | t eminto the

SITEAIM. e e e e eeeees 76
E.5(28-29): Partition Whenever possible, the PCSonthe called
Communication partition should alow for multiple tasks
Subsystem to call the RPC-receiver with different

messages and should allow them to block
until the corresponding subprogram body

returns.
A: Not applicable.
(continued) The Wi t e operation on a stream of type

Par ans_St ream Type should raise
Storage_Error if it runsout of space
trying to write the | t eminto the stream.

A: Not applicable.

3.13. Annex F: Information Systems

F(7): cCoOBOL Support
<primary>COBOL support</primary>
.. 76
F.1(2): Decimal Radix Support
<primary>Decimal Radix</primary>
.. 77

F(7): COBOL Support If COBOL (respectively, C) iswidely
supported in the target environment,
implementations supporting the
Information Systems Annex should
provide the child package
I nterfaces. COBOL (respectively,
Interfaces. C) specified in Annex B and
should support aconvent i on_i dentifier

76

Annex G: Numerics

of COBOL (respectively, C) in the
interfacing pragmas (see Annex B), thus
alowing Ada programsto interface with
programs written in that language.

A: Not applicable. COBOL isnot supported
by XGC Ada.

F.1(2): Decimal Radix Packed decimal should be used asthe
Support internal representation for objects of
subtype S when SMachine Radix = 10.

A: Not followed. XGC Adaignores
S'Machine_Radix and always uses binary
representations.

3.14. Annex G: Numerics

G: Numerics If FORTRAN (respectively, C) iswidely
supported in the target environment, implementations
supporting the Numerics Annex should provide the
child package | nt erf aces. Fortran (respectively,

I nterfaces. C) specified in Annex B and should
support aconvention_i dentifier of FORTRAN
(respectively, C) in the interfacing pragmas (see
Annex B), thus allowing Ada programs to interface

with programs written in that language. 78
G.1.1(56-58): Complex Types
<primary>Complex types</primary>

.. 78

(continued) Similarly, because the usual mathematical
meaning of addition of acomplex operand and areal
operand is that the imaginary operand remains
unchanged, an implementation should not perform
this operation by first promoting the real operand to
complex type and then performing afull complex
addition. In implementations in which the
Si gned_Zer os attribute of the component typeisTr ue
(and which therefore conform to IEC 559:1989 in
regard to the handling of the sign of zero in predefined
arithmetic operations), the latter technique will not
generate the required result when the imaginary
component of the complex operand is a negatively
signed zero. (Explicit addition of the negative zero to

7

Chapter 3. Implementation Advice

the zero obtained during promotion yields a positive
zero.) Analogous advice appliesin the case of addition
of acomplex operand and a pure-imaginary operand,
and in the case of subtraction of a complex operand
and area or pure-imaginary operand.cc........ 79

(continued) Implementationsinwhich Real ' Si gned_Zeros is
Tr ue should attempt to provide arational treatment
of the signs of zero results and result components. As
one example, the result of the Argunent function
should have the sign of the imaginary component of
the parameter X when the point represented by that
parameter lies on the positive real axis; as another,
the sign of the imaginary component of the
Conpose_From Pol ar function should be the same as
(respectively, the opposite of) that of the Ar gurent
parameter when that parameter has a value of zero
and the Mbdul us parameter has a nonnegative

(respectively, negative) value.cccccevvvveeeiinnneen. 80
G.1.2(49): Complex Elementary Functions
<primary>Complex elementary functions</primary>

.. 80
G.2.4(19): Accuracy Requirements
<primary>Accuracy requirements</primary>

.. 81
G.2.6(15): Complex Arithmetic Accuracy
<primary>Complex arithmetic accuracy</primary>

.. 81
G: Numerics If FORTRAN (respectively, C) iswidely

supported in the target environment,
implementations supporting the Numerics
Annex should provide the child package
Interfaces. Fortran (respectively,
Interfaces. C) specified in Annex B and
should support aconvention_i denti fier
of FORTRAN (respectively, C) in the
interfacing pragmas (see Annex B), thus
allowing Ada programs to interface with
programs written in that language.

A: Not applicable.

G.1.1(56-58): Complex Becausethe usual mathematical meaning
Types of multiplication of acomplex operand
and areal operand is that of the scaling

78

Annex G: Numerics

A:

(continued)

of both components of the former by the
latter, an implementation should not
perform this operation by first promoting
thereal operand to complex type and then
performing afull complex multiplication.
In systems that, in the future, support an
Adabinding to IEC 559:1989, the latter
technique will not generate the required
result when one of the components of the
complex operand isinfinite. (Explicit
multiplication of the infinite component
by the zero component obtained during
promotion yields a NaN that propagates
into the final result.) Analogous advice
appliesin the case of multiplication of a
complex operand and a pure-imaginary
operand, and in the case of division of a
complex operand by area or
pure-imaginary operand.

Not followed.

Similarly, because the usual mathematical
meaning of addition of a complex
operand and areal operand isthat the
imaginary operand remains unchanged,
an implementation should not perform
this operation by first promoting the rea
operand to complex type and then
performing afull complex addition. In
implementations in which the

Si gned_Zer os attribute of the component
typeisTr ue (and which therefore conform
to IEC 559:1989 in regard to the handling
of the sign of zero in predefined
arithmetic operations), thelatter technique
will not generate the required result when
theimaginary component of the complex
operand is a negatively signed zero.
(Explicit addition of the negative zero to
the zero obtained during promotion yields
apositive zero.) Analogous advice applies
in the case of addition of acomplex
operand and a pure-imaginary operand,

79

Chapter 3. Implementation Advice

A:

(continued)

A:

G.1.2(49): Complex
Elementary Functions

and in the case of subtraction of a
complex operand and areal or
pure-imaginary operand.

Not followed.

Implementations in which

Real ' Si gned_Zer os isTr ue should attempt
to provide arational treatment of thesigns
of zero results and result components. As
one example, the result of the Ar gunent
function should have the sign of the
imaginary component of the parameter X
when the point represented by that
parameter lies on the positive real axis,
as another, the sign of the imaginary
component of the Conpose_Fr om Pol ar
function should be the same as
(respectively, the opposite of) that of the
Argument parameter when that parameter
has a value of zero and the Mbdul us
parameter has a nonnegative
(respectively, negative) value.

Not applicable.

Implementationsin which

Conpl ex_Types. Real ' Si gned_Zeros is

Tr ue should attempt to provide arational
treatment of the signs of zero results and
result components. For example, many
of the complex elementary functions have
componentsthat are odd functions of one
of the parameter components; in these
cases, the result component should have
the sign of the parameter component at
the origin. Other complex elementary
functions have zero components whose
sign is opposite that of a parameter
component at the origin, or isalways
positive or always negative.

Not applicable.

80

Annex G: Numerics

G.2.4(19): Accuracy
Requirements

A:

G.2.6(15): Complex
Arithmetic Accuracy

Theversionsof theforward trigonometric
functions without a Cycl e parameter
should not beimplemented by calling the
corresponding version with aCycl e
parameter of 2. 0* Nuneri cs. Pi , sincethis
will not provide the required accuracy in
some portions of the domain. For the
same reason, the version of Log without
aBase parameter should not be
implemented by calling the corresponding
version with aBase parameter of

Numeri cs. e.

Not applicable.

The version of the Conpose_From Pol ar
function without aCycl e parameter
should not beimplemented by calling the
corresponding version with aCycl e
parameter of 2. 0*Nurreri ¢s. Pi , Sincethis
will not provide the required accuracy in
some portions of the domain.

Not applicable.

81

82

Machine Code Insertions

Chapter 4

Package Machine_Code provides machine code support as
described in the Ada 95 Reference Manual in two separate forms:

» Machine code statements, consisting of qualified expressions
that fit the requirements of RM section 13.8.

» Anintrinsic callable procedure, providing an aternative
mechanism of including machine instructions in a subprogram.

The two features are similar, and both closely related to the
mechanism provided by the asm instructionin the GNU C compiler.
Full understanding and use of the facilitiesin this package requires
understanding the asm instruction as described in Using and Porting
GNU CC by Richard Sallman .Callsto the function Asm and the
procedure Asm have identical semantic restrictions and effects as
described below. Both are provided so that the procedure call can
be used as a statement, and the function call can be used to form
acode_statement.

Thefirst example given in the GNU CC documentation isthe C
asm instruction:

83

Chapter 4. Machine Code Insertions

asm ("fsinx %, %" : "=f" (result) : "f" (angle));

The equivalent can be written in Ada as:

Asm ("fsinx %, %",
M/_Float' Asm Qutput ("=f", result),
M/_Float' AsmInput ("f", angle));

The first argument to Asm is the assembler template, and is
identical to what isused in GNU CC. This string must be a static
expression. The second argument is the output operand list. Itis
either asingle Asm_Output attribute reference, or alist of such
references enclosed in parentheses (technically an array aggregate
of such references).

The Asm_Output attribute denotes a function that takes two
parameters. Thefirstisastring, the second isthe name of avariable
of the type designated by the attribute prefix. The first (string)
argument is required to be a static expression and designates the
constraint for the parameter (e.g. what kind of register isrequired).
The second argument is the variable to be updated with the result.
The possible valuesfor constraint are the same asthose used in the
RTL, and are dependent on the configuration file used to build the
GCC back end. If there are no output operands, then this argument
may either be omitted, or explicitly givenasNo_Output_Operands.

The second argument of My _Foat'/Asm_Output functionsasthough
it were an out parameter, which isalittle curious, but all names
have the form of expressions, so there is no syntactic irregul arity,
even though normally functions would not be permitted out
parameters. The third argument isthe list of input operands. Itis
either asingle Asm_Input attribute reference, or alist of such
references enclosed in parentheses (technically an array aggregate
of such references).

The Asm_Input attribute denotes a function that takes two
parameters. Thefirst isastring, the second is an expression of the
type designated by the prefix. Thefirst (string) argument isrequired
to be a static expression, and is the constraint for the parameter,
(e.g. what kind of register isrequired). The second argument isthe

value to be used asthe input argument. The possible valuesfor the
constraint are the same asthose used in the RTL, and are dependent
on the configuration file used to built the GCC back end.

If there are no input operands, this argument may either be omitted,
or explicitly given as No_Input_Operands. The fourth argument,
not present in the above example, isalist of register names, called
the clobber argument. This argument, if given, must be a static
string expression, and is a space or comma separated list of names
of registersthat must be considered destroyed as aresult of the
Asm call. If thisargument isthe null string (the default value), then
the code generator assumes that no additional registers are
destroyed.

The fifth argument, not present in the above example, called the
volatile argument, is by default False. It can be set to the literal
value True to indicate to the code generator that all optimizations
with respect to the instruction specified should be suppressed, and
that in particular, for an instruction that has outputs, theinstruction
will still be generated, even if none of the outputs are used. See
the full description in the GCC manual for further details.

The Asm subprograms may be used in two ways. First the
procedure forms can be used anywhere a procedure call would be
valid, and correspond to what the RM calls“intrinsic” routines.
Such calls can be used to intersperse machine instructions with
other Ada statements. Second, the function forms, which return a
dummy value of the limited private type Asm_Insn, can be used
in code statements, and indeed thisis the only context where such
calls are allowed. Code statements appear as aggregates of the
form:

Asm Insn' (Asm(...));
Asm Insn' (AsmVolatile (...));

In accordance with RM rules, such code statements are allowed
only within subprograms whase entire body consists of such
statements. It is not permissible to intermix such statements with
other Ada statements.

Typicaly the form using intrinsic procedure callsis more
convenient and moreflexible. The code statement formis provided

85

Chapter 4. Machine Code Insertions

to meet the RM suggestion that such afacility should be made
available. The following is the exact syntax of the call to Asm (of
course if named notation is used, the arguments may be givenin
arbitrary order, following the normal rules for use of positional
and named arguments)

ASM CALL ::= Asm (

[Tenplate =>] static_string EXPRESSI ON
[,[Qutputs =>] OUTPUT_OPERAND LI ST]
[,[Inputs =>] | NPUT_OPERAND LI ST]
[,[Cl obber =>] static_string EXPRESSI ON]
[,[Volatile =>] static_bool ean EXPRESSI QN)

OUTPUT_OPERAND LI ST :: =
No_Qut put _Qper ands
| OQUTPUT_OPERAND_ATTRI BUTE

| (OUTPUT_OPERAND ATTRI BUTE {, OUTPUT_OPERAND ATTR! BUTE

OUTPUT_OPERAND_ATTRI BUTE : : =
SUBTYPE_MARK' Asm Qut put (static_string EXPRESSI ON, NAN

| NPUT_OPERAND LI ST :: =

No_I nput _Oper ands

| 1 NPUT_OPERAND ATTRI BUTE

| (1 NPUT_OPERAND_ATTRI BUTE {, | NPUT_OPERAND ATTRI BUTE})

| NPUT_CPERAND ATTRI BUTE :: =
SUBTYPE_MARK' Asm | nput (static_string EXPRESSI ON, EXPH

/)

ESSI ON)

4.1. Constraints for Operands

Here are specific details on what constraint | etters you can use with
Asm statement operands. Constraints can say whether an operand
may be in aregister, and which kinds of register; whether the
operand can be amemory reference, and which kinds of address;
whether the operand may be an immediate constant, and which
possible valuesit may have. Constraints can aso require two
operands to match.

86

Simple Constraints

4.1.1. Smple Constraints

The simplest kind of constraint is a string full of |etters, each of
which describes one kind of operand that is permitted. Here are
the letters that are allowed:

13 ”

m

A memory operand is allowed, with any kind of address that
the target computer supportsin general.

A memory operand is allowed, but only if the addressis
offsettable. This means that adding a small integer (actually,
thewidth in bytes of the operand, as determined by its machine
mode) may be added to the addressand theresult isalso avalid
memory address.

For example, an address which is constant is offsettable; sois
an addressthat is the sum of aregister and a constant (as long
asadlightly larger constant is aso within the range of
address-off sets supported by the machine); but an
auto-increment or auto-decrement address is not offsettable.
More complicated indirect/indexed addresses may or may not
be offsettable depending on the other addressing modes that
the machine supports.

Note that in an output operand which can be matched by
another operand, the constraint letter “ o ” isvalid only when
accompanied by both “ <” (if the target machine has
pre-decrement addressing) and “ > (if the target machine has
pre-increment addressing).

13 VH

A memory operand that is not offsettable. In other words,
anything that would fit the“ m” constraint but not the“ o ”
constraint.

A memory operand with auto-decrement addressing (either
pre-decrement or post-decrement) is allowed.

87

Chapter 4. Machine Code Insertions

A memory operand with auto-increment addressing (either
pre-increment or post-increment) is allowed.

1 ”

A register operand is allowed provided that it isin agenera
register.

“d”,%a” T
Other letters can be defined in machine-dependent fashion to
stand for particular classes of registers.“d” ,“a” and“ f "
are defined on the 68000/68020 to stand for data, address and
floating point registers.

An immediate integer operand (one with constant value) is
allowed. Thisincludes symbolic constants whose values will
be known only at assembly time.

173 ”

n

Animmediate integer operand with aknown numeric valueis
alowed. Many systems cannot support assembly-time constants
for operands less than aword wide. Constraints for these
operands should use“ n ” rather than“ i ” .

Other lettersintherange® | ” through“ P” may be defined in
a machine-dependent fashion to permit immediate integer
operands with explicit integer values in specified ranges. For
example, on the 68000, “ | " is defined to stand for the range
of values 1 to 8. Thisisthe range permitted as a shift count in
the shift instructions.

1 En

Animmediate floating operand (expression codeconst _doubl e)
is allowed, but only if the target floating point format is the
same as that of the host machine (on which the compiler is
running).

88

Simple Constraints

13 Fn

Animmediate floating operand (expression codeconst _doubl e)
isallowed.

1 Gn ’n HH

“G" and“ H” may be defined in a machine-dependent fashion
to permit immediate floating operands in particular ranges of
values.

S

An immediate integer operand whose value is not an explicit
integer is allowed.

Thismight appear strange; if aninsn allows a constant operand
with avalue not known at compiletime, it certainly must allow
any known value. Sowhy use*” s ” instead of “ i ” ?Sometimes
it allows better code to be generated.

For example, on the 68000 in afullword instruction it is
possible to use an immediate operand; but if the immediate
valueis between -128 and 127, better code resultsfrom loading
the value into aregister and using the register. Thisis because
the load into the register can be done with a* noveq ”
instruction. We arrange for thisto happen by defining the | etter
“ K” to mean “any integer outside therange-128to 127" ,and
then specifying “ Ks ” in the operand constraints.

1 ”

g

Any register, memory or immediate integer operand isallowed,
except for registers that are not general registers.

“ xn

Any operand whatsoever is allowed.

An operand that matches the specified operand number is
allowed. If adigit isused together with letters within the same
alternative, the digit should come last.

89

Chapter 4. Machine Code Insertions

Thisis called a matching constraint and what it really means
isthat the assembler has only a single operand that fills two
roleswhich asmdistinguishes. For example, an add instruction
uses two input operands and an output operand, but on most
CISC machinesan add instruction really has only two operands,
one of them an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More
precisely, the two operands that match must include one
input-only operand and one output-only operand. Moreove,
the digit must be a smaller number than the number of the
operand that usesit in the constraint.

1 ”

p

An operand that is avalid memory addressisalowed. Thisis
for “load address’ and “push address’ instructions.

p " inthe constraint must be accompanied by addr ess_oper and
asthepredicateinthemat ch_oper and. This predicate interprets
the mode specified in the mat ch_oper and as the mode of the
memory reference for which the address would be valid.

Lettersintherange” Q” through“ U” may be defined in a
machine-dependent fashion to stand for arbitrary operand types.

4.1.2. Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of
possible operands. For example, on the 68000, alogical-or
instruction can combine register or an immediate value into
memory, or it can combine any kind of operand into aregister; but
it cannot combine one memory location into another.

These constraints are represented as multiple alternatives. An
alternative can be described by a series of lettersfor each operand.
The overal constraint for an operand is made from the letters for
this operand from thefirst alternative, acomma, thelettersfor this
operand from the second alternative, acomma, and so on until the
last alternative.

90

Constraint Modifier Characters

If al the operandsfit any one alternative, the instruction is valid.
Otherwise, for each aternative, the compiler counts how many
instructions must be added to copy the operands so that that
alternative applies. The alternative requiring the least copying is
chosen. If two alternatives need the same amount of copying, the
one that comesfirst is chosen. These choices can be atered with
the® ?” and“ ! ” characters:

?

Disparage slightly the alternative that the“ ? " appearsin, as
a choice when no aternative applies exactly. The compiler
regards this alternative as one unit more costly for each“ ? ”
that appearsin it.

Disparage severely the alternative that the“ | " appearsin.
This aternative can still be used if it fits without reloading,
but if reloading is needed, some other alternative will be used.

4.1.3. Constraint Modifier Characters

Here are constraint modifier characters.

Means that this operand is write-only for thisinstruction: the
previous value is discarded and replaced by output data.

13 ”

+

Means that this operand is both read and written by the
instruction.

When the compiler fixes up the operands to satisfy the
constraints, it needs to know which operands are inputsto the
instruction and which are outputs from it. “ =" identifies an
output; “ +” identifiesan operand that is both input and output;
all other operands are assumed to be input only.

i &n

Means (in a particular alternative) that this operand is an
earlyclobber operand, which ismodified before theinstruction

91

Chapter 4. Machine Code Insertions

is finished using the input operands. Therefore, this operand
may not liein aregister that is used as an input operand or as
part of any memory address.

“ &” appliesonly to the alternative in which it iswritten. In
constraintswith multiple aternatives, sometimes one aternative
requires” &” whileothersdo not. See, for example, the* movdf
" insn of the 68000.

Aninput operand can be tied to an earlyclobber operand if its
only use as an input occurs before the early result iswritten.
Adding alternatives of this form often allows the compiler to
produce better code when only some of the inputs can be
affected by the earlyclobber.

“ &" does not obviate the need to write“ =" .
{3 %H

Declares the instruction to be commutative for this operand
and the following operand. This means that the compiler may
interchange the two operandsiif that is the cheapest way to
make all operands fit the constraints.

13 #11

Saysthat all following characters, up to the next comma, are
to be ignored as a constraint. They are significant only for
choosing register preferences.

92

Chapter 5 Compatibility Guide

This chapter contains sections that describe compatibility issues
between X GC Ada and other Ada 83 and Ada 95 compilation
systems, to aid in porting applications devel oped in other Ada
environments.

5.1. Compatibility with Ada 83

Ada 95 isdesigned to be highly upwards compatible with Ada 83.
In particular, the design intention is that the difficulties associated
with moving from Ada 83 to Ada 95 should be no greater than

those that occur when moving from one Ada 83 system to another.

However, there are anumber of points at which there are minor
incompatibilities. The Ada 95 Annotated Reference Manual
contains full details of these issues, and should be consulted for a
complete treatment. In practice the following are the most likely
issues to be encountered.

Character range
Therange of Standard.Character isnow thefull 256 characters
of Latin-1, whereas in most Ada 83 implementations it was
restricted to 128 characters. Thismay show up ascompiletime
or runtime errors. The desirable fix isto adapt the program to

93

Chapter 5. Compatibility Guide

accommodate the full character set, but in some casesit may
be convenient to define a subtype or derived type of Character
that covers only the restricted range.

New reserved words
Theidentifiersabstract, al i ased, prot ect ed, r equeue, t agged,
anduntil| arereserved in Ada95. Existing Ada 83 code using
any of these identifiers must be edited to use some alternative
name.

Freezing rules

Therulesin Ada 95 are dlightly different with regard to the
point at which entities are frozen, and representation pragmas
and clauses are not permitted past the freeze point. This shows
up most typically intheform of an error message complaining
that arepresentation item appearstoo late, and the appropriate
corrective action is to move the item nearer to the declaration
of the entity to which it refers.

A particular caseisthat representation pragmas (including the
extended DEC Ada 83 compatibility pragmas such as
Export_Procedure), cannot be applied to a subprogram body.
If necessary, a separate subprogram declaration must be
introduced to which the pragma can be applied.

Optional bodies for library packages
In Ada 83, a package that did not require a package body was
neverthelessallowed to have one. Thislead to certain surprises
in compiling large systems (situationsin which the body could
be unexpectedly ignored). In Ada 95, if a package does not
require abody then it is not permitted to have a body. To fix
this problem, simply remove a redundant body if it is empty,
or, if it is non-empty, introduce a dummy declaration into the
spec that makes the body required. One approach isto add a
private part to the package declaration (if necessary), and define
aparameterless procedure called Requires_Body, which must
then be given adummy procedure body in the package body,
which then becomes required.

Numeric_Error is now the same as Constraint_Error
In Ada 95, the exception Numeric_Error is arenaming of
Constraint_Error. Thismeansthat itisillegal to have separate
exception handlers for the two exceptions. Thefix is simply
to remove the handler for the Numeric_Error case (since even

94

Compatibility with Other Ada 95 Systems

in Ada 83, a compiler was free to raise Constraint_Error in
place of Numeric_Error in all cases).

Indefinite subtypesin generics
In Ada 83, it was permissible to pass an indefinite type (e.g.
String) asthe actual for ageneric formal private type, but then
the instantiation would beillegal if there were any instances
of declarations of variables of thistypein the generic body. In
Ada 95, to avoid this clear violation of the contract model, the
generic declaration clearly indicates whether or not such
instantiations are permitted. If ageneric formal parameter has
explicit unknown discriminants, indicated by using (<>) after
the type name, then it can be instantiated with indefinite types,
but no variables can be declared of this type. Any attempt to
declare avariable will result in anillegality at the time the
generic is declared. If the (<>) notation is not used, thenitis
illegal to instantiate the generic with an indefinite type. This
will show up as a compile time error, and the fix is usually
simply to add the (<>) to the generic declaration.

The compiler provides a switch that causes X GC Adato operate
in Ada 83 mode. In this mode, some but not all compatibility
problems of the type described above are handled automatically.
For example, the new Ada 95 protected keywords are not
recognized in this mode. However, in practice, it is usually
advisable to make the necessary modifications to the program to
remove the need for using this switch.

5.2. Compatibility with Other Ada 95 Systems

Providing that programs avoid the use of restricted, implementation
dependent and implementation defined features of XGC Ada, there
should be ahigh degree of portability between X GC Adaand other
Ada 95 systems. The following are specific items which have
proved troublesome in moving XGC Ada programsto other Ada
95 compilers, but do not affect porting code to XGC Ada.

Ada 83 Pragmas and Attributes
Ada 95 compilers are allowed, but not required, to implement
the missing Ada 83 pragmas and attributes that are no longer
defined in Ada 95. XGC Adaimplements all such pragmas
and attributes, eliminating this as a compatibility concern, but
some other Ada 95 compilers reject these pragmas and
attributes.

95

Chapter 5. Compatibility Guide

Special-needs Annexes
XGC Adaimplements the arestricted set of special needs
annexes. Other Ada compilers may support a different set and
that means that use of these features may not be portable to
other Ada 95 compilation systems.

Representation Clauses
Some other Ada 95 compilersimplement only the minimal set
of representation clauses required by the Ada 95 reference
manual. XGC Ada goes far beyond this minimal set, as
described in the next section.

5.3. Representation Clauses

The Ada 83 reference manual was quite vague in describing both
the minimal required implementation of representation clauses,
and also their precise effects. The Ada 95 reference manual ismuch
more explicit, but the minimal set of capabilities required in Ada
95 is quite limited.

XGCAdaimplementsthefull required set of capabilities described
in the Ada 95 reference manual, but also goes much beyond this,
and in particular an effort has been made to be compatible with
existing Ada 83 usage to the greatest extent possible.

A few cases exist in which Ada 83 compiler behavior is
incompatible with requirements in the Ada 95 reference manual.
These are instances of intentional or accidental dependence on
specific implementation dependent characteristics of these Ada 83
compilers. The followingisalist of the cases most likely to arise
in existing legacy Ada 83 code.

Implicit Packing
Some Ada 83 compilers allowed a Size specification to cause
implicit packing of an array or record. Thisis specifically
disallowed by implementation advice in the Ada 83 reference
manual (for good reason, this usage can cause expensive
implicit conversionsto occur in the code). The problem will
show up as an error message rejecting the size clause. The fix
issimply to provide the explicit pragma Pack.

Meaning of Size Attribute
The Size attribute in Ada 95 for discrete types is defined as
being the minimal number of bits required to hold values of

96

Representation Clauses

thetype. For example, on a32-bit machine, the size of Natural
will typically be 31 and not 32 (since no sign bit is required).
SomeAda83 compilersgave 31, and some 32 in thissituation.
This problem will usually show up asacompiletime error, but
not always. It isagood ideato check all uses of the'Size
attribute when porting Ada 83 code. The XGC Ada specific
attribute Object_Size can provide a useful way of duplicating
the behavior of some Ada 83 compiler systems.

Size of Access Types
A common assumption in Ada 83 code is that an access type
isin fact apointer, and that therefore it will be the same size
as a System.Address value. This assumption istrue for XGC
Adain most caseswith one exception. For the case of apointer
to an unconstrained array type (where the bounds may vary
from one value of the access type to another), the default isto
use afat pointer, which isrepresented astwo separate pointers,
one to the bounds, and one to the array. This representation
has a number of advantages, including improved efficiency.
However, it may cause some difficulties in porting existing
Ada 83 code which makes the assumption that, for example,
pointersfit in 32 bits on a machine with 32-bit addressing.

To get around this problem, XGC Ada also permits the use of
thin pointersfor accesstypesin this case (where the designated
type is an unconstrained array type). These thin pointers are
indeed the same size as a System.Address value. To specify a
thin pointer, use a size clause for the type, for example:

type X is access all String;
for X Size use System Address'Si ze;

which will cause the type X to be represented using asingle
pointer. When using this representation, the bounds are right
behind the array. This representation is dlightly less efficient,
and does not allow quite such flexibility in the use of foreign
pointersor in using the Unrestricted Access attributeto create
pointers to non-aliased objects. But for any standard portable
use of the access type it will work in afunctionally correct
manner and allow porting of existing code. Note that another
way of forcing athin pointer representation isto use a
component size clause for the element sizein an array, or a
record representation clause for an access field in arecord.

97

98

Appendix A Restrictions and Profiles

This Appendix defines how the Ada 95 restrictions, accessible
through the pragma Restrictions, are supported. Unsafe features
such as run-time dispatching and heap management are not
supported in the run-time system, so all the restrictions that are
relevant for these features are set to True by default.

Thefollowing restrictionsare built in. That is, they cannot be turned
off and are exploited by the compiler to offer better-quality
generated code than would otherwise be possible.

No_Abort_Statements
No_Dispatch
No_Local_Protected_Objects
No_Requeue
No_Task_Attributes
No_Task Hierarchy

No_Terminate Alternatives

99

Appendix A. Restrictions and Profiles

The implementation-defined pragma Profile may also be used to
set and unset restrictions that correspond to a certain application

area. The profiles supported are as follows:

TableA.1. Supported Profiles

Profile Name Description

XGC Thisisthe default profile and offersthe least
restrictions.

Ravenscar Thisalows alimited form of tasking that

includes static tasks, protected objects, the
delay until statement and interrupts.

Restricted Run_Time This severely restricts the use of

non-deterministic language features
(including tasking) and is suitable for
general avionics applications.

No_Run Time This profile prohibits all callsto the
predefined Adalibrary and is useful for
safety-critical applications. Callsto the
compiler support library are not restricted.

TableA.2, “Profiles and Restrictions’ [100] gives the individual
restrictionsfor each profile. Note that the built-in restrictions apply

to all profiles.
TableA.2. Profiles and Restrictions
Restriction Ada 95 Reference Default Ramensar Redrided
Manual Section Run Time
Boolean_Entry Barriers XGC (Ravenscar) False True True
Immediate_Reclamation ~ RM H.4(10) Fase Fdse Fdse
No_Abort_Statements RM D.7(5), H.4(3) True True True
No_Access_Subprograms RM H.4(17) Fase True True
No_Allocators RM H.4(7) Fase Fdse True
No_Asynchronous Control RM D.9(10) Fase True True
No_Calendar XGC Fase True True
No_Delay RM H.4(21) Fase Fdse True
No_Dispatch RM H.4(19) True True True
No_Dynamic_Interrupts XGC True True True
No_Dynamic_Priorities RM D.9(9) Fase True True

100

Restriction Ada 95 Reference Default Ramensar Redrided

Manual Section Run Time
No_Elaboration_Code XGC Fase Fdse True
No Ey Cdis In Haooraion Gode XGC False True True
No_Entry Queue XGC True True True
No_Enumeration Maps XGC Fase Fdse True
No_Exception_Handlers XGC Fase Fdse True
No_Exceptions RM H.4(12) Fase Fdse Fadse
No_Fixed Point RM H.4(15) Fase Fase Fase
No_Floating_Point RM H.4(14) Fase Fdse Fdse
No_Implementation Attributes XGC Fase Fdse True
No_Implementation Pragmas XGC Fase Fdse True
No_Implementation Redricions XGC Fase Fdse True
No_Implicit_ Conditionals XGC Fase Fdse True
No_Implicit Hegp_Allocations RM D.8(8), H.4(3) False True True
No_Implicit_Loops XGC Fase Fase False
No |10 RM H.4(20) Fase True True
No_Local_Allocators RM H.4(8) Fase True True
No_L ocal_Protected Objects XGC True True True
No_Nested Finalization RM D.7(4) True True True
No_Protected Type Allocators XGC True True True
No_Protected Types RM H.4(5) Fase Fdse True
No_Recursion RM H.4(22) Fase True True
No_Reentrancy RM H.4(23) Fase Fase Fase
No_Relative Delay XGC False True True
No_Requeue XGC True True True
No_Select_Statements XGC (Ravenscar) False True True
No_Standard_Storage Pools XGC True True True
No_Streams XGC True True True
No_Task_Allocators RM D.7(7) Fase True True
No_Task_Attributes XGC True True True
No_Task Hierarchy RM D.7(3),H.4(3) True True True
No_Task_Termination XGC True True True
No_Terminate_Alternatives RM D.7(6) True True True

101

Appendix A. Restrictions and Profiles

Restriction Ada 95 Reference Default Ramensar Redrided
Manual Section Run Time
No_Unchecked Access RM H.4(18) Fase True True
No_Unchecked_Conversion RM H.4(16) Fase Fadse True
No_Unchecked Dedlocation RM H.4(9) True True True
No_Wide_Characters XGC Fase True True
Static_Priorities XGC Fase True True
Static_Storage Size XGC Fase True True

TableA.3, “Profiles and Numerical Restrictions’ [102] givesthe
restrictions concerning numerical limits.

TableA.3. Profilesand Numerical Restrictions

Restriction Ada 95 Reference Default Ramansar Redrided
Manual Section Run Time
Max Asdraous SHet Neding RM D.7(18), 0 0 0
H.4(2)
Max_Protected Entries RM D.7(14) 1 1 1
Max_Select Alternatives RM D.7(12) Unddined O 0
Max_Storage At_Blocking RM D.7(17) 0 0 0
Max_Task_Entries RM D.7(13), Unddined O 0
H.4(2)
Max_Tasks RM D.7(19), Unddlined Unddiined Unodfined
H.4(2)

Max_Entry Queue Depth Ravenscar specific 1

1

1

Violation of therestriction Max_Entry Queue Depth is detected
at run time and raises the predefined exception Program_Error.

102

Appendix B The Predefined Library

This appendix lists the unitsin the Ada 95 predefined library, and
indicates whether a unit is supported or not. The answer “Yes’
means the unit is supported in the default profile, and maybeinthe
other profiles. The answer “Restricted...” means the unit is not
supported in any profile because of a built-in restriction.

Table B.1. Predefined Library Units

Unit Name Supported?
Ada Yes
Ada.Asynchronous_Task_Control Yes
Ada.Calendar Yes?P
Ada.Characters Yes
Ada.Characters.Handling Yes
Ada.Characters.Latin 1 Yes
Ada.CharactersWide Latin 1 Yes
Ada.Command _Line Yes
Ada.Decima Yes
AdaDirect_10 Yes
Ada.Dynamic_Priorities Yes

103

Appendix B.The Predefined Library

Unit Name Supported?

Ada.Exceptions Yes

AdaFinalization Restricted

No_Implicit_Heap_Allocations

Adalnterrupts Yes

Adalnterrupts.Names Yes

Ada.lO_Exceptions Yes

Ada.Numerics Yes

AdaNumericsComplex_Elementary_Functions Yes

Ada.Numerics.Complex_Types
Ada.Numerics.Discrete Random
Ada.Numerics.Elementary_Functions

Ada.Numerics.Float_Random

Yes
Yes
Yes
Yes

AdaNumaicsGaaic Condex Hematay Fundias Yes
Ada.Numerics.Generic_Complex_Types Yes
AdaNumericsGeneric_Elementary_Functions Yes

AdaReal_Time
Ada.Sequentia_10
Ada.Storage 10
Ada.Streams
Ada.Streams.Stream_|O
Ada.Strings
Ada.Strings.Bounded
Ada.Strings.Fixed
Ada.Strings.Maps
Ada.Strings.Maps.Constants
Ada.Strings.Unbounded
Ada. Strings.Wide_Bounded

Ada.Strings.Wide Fixed

Ada.Strings.Wide_Maps

Ada. Strings.Wide_Maps.Wide _Constants

Yes

Yed

Yes

Restricted No_Dispatch
Restricted No_Dispatch
Yes

Yes

Yes

Yes

Yes

Not available

Restricted
No_Implicit_Heap_Allocations
Restricted
No_Implicit Heap Allocations
Restricted
No_Implicit_Heap_Allocations

Restricted
No_Implicit_Heap_Allocations

104

Unit Name

Supported?

Ada.Strings.Wide_Unbounded

Ada.Synchronous_Task_Control
AdaTags

AdaTask_Attributes
AdaTask_Identification
AdaText 10
AdaText_|0.Complex_IO
Ada.Text_|O.Editing
AdaText |0.Text_Streams
Ada.Unchecked_Conversion
Ada.Unchecked Deallocation

AdaWide Text IO

AdaWide Text_|0.Complex_ IO
AdaWide Text_|O.Editing
AdaWide Text |O.Text_Streams
Calendar

Direct_10

|O_Exceptions

Interfaces

Interfaces.C
Interfaces.C.Pointers
Interfaces.C.Strings
Interfaces.COBOL

Interfaces. FORTRAN
Machine_Code

Sequentia_10

System

System.Address to_Access_Conversions

System.Machine_Code
System.RPC

Restricted
No_Implicit_Heap_Allocations

Yes

Restricted No_Dispatch
No

Yes

Yes’

Not applicable

Not applicable

Not applicable

Yes

Restricted
No_Unchecked_Deallocation

Not applicable
Not applicable
Not applicable
Not applicable
Yes®
Yes

Yes

Yes

Yes

Yes

Yes

Not applicable
Not applicable
Yes

Yes

Yes

Yes

Yes

Not available (depends on
Ada.Streams)

105

Appendix B.The Predefined Library

Unit Name Supported?

System.Storage_Elements Yes

System.Storage_Pools Not available (depends on
Ada.Finalization)

Text 10 Yes

Unchecked Conversion Yes

Unchecked Deallocation Restricted

No_Unchecked_Deallocation

8Restricted to POSIX date range, which is Jan 1, 1970 to Jan 19, 2038
B\When supported by appropriate system calls

106

| ndex

Symbols

! in constraint , 91
#in constraint , 92
% in constraint , 92
& incongtraint , 91
+in constraint , 91
Oinconstraint , 89
<inconstraint , 87
=inconstraint , 91
> in constraint , 88
?inconstraint , 91

A
Abort, 75

Access, unrestricted , 39
Accuracy requirements, 81
Accuracy, complex arithmetic, 81
Ada 95 |SO/ANSI Standard, ix
Ada.Characters.Handling, 62

Ada 83,1
Ada 95, 2
Address clauses, 53

address constraints, 90
Address of subprogram code, 32

Address, as private type, 58
Address, operations of, 58
address_operand, 90
Address Size, 31
Alignment clauses, 54
Alignment, maximum, 36
Alignments of components, 7, 60,
60, 60, 62
Alternative Character Sets, 44
Annotate, 3, 33
arrays

multidimensional, 46
Asm constraints, 86
Assert, 3
Attributes, 58
auto-increment/decrement addressing,
87

B

Big endian, 33

Bit, 31

Bit ordering, 58
Bit_Position, 32
Bounded errors, 42

107

Index

C
C, interfacing with, 66
C_Pass By Copy, 4
Checks

suppression of, 48
Child Units, 42
COBOL

interfacing with, 68
COBOL support, 76
Code Address, 32
Common_Object, 5, 56
Complex arithmetic accuracy, 81
Complex elementary functions, 80
Complex types, 78
Complex_Representation, 6, 58
Component_Alignment, 7, 73
Component_Size, 7, 7
constants in constraints, 88
constraint modifier characters, 91
constraint, matching, 89
constraints

Asm, 86

D

din constraint , 88
Debug, 8

Decimal Radix, 77
Default_Bit_Order, 33
digitsin constraint, 89
Duration, 47

E

Einconstraint , 88
earlyclobber operand, 91
Elab Body, 33
Elab_Spec, 33

Entry Queuing, 74
Enum_Rep, 34
Enumeration Values, 45
Error Detection, 42
Error detection, 42
Exception Information, 48
exclamation point, 91
Export_Function, 9

Export_Object, 10
Export_Procedure, 10
Export_Valued _Procedure, 11
extensible constraints, 90

F
Fin constraint , 89
Fixed Value, 34
Float Types, 46
FORTRAN, 68

G

G incongtraint , 89
ginconstraint , 89
Get_Immediate, 62

P{

H in constraint , 89
Has Discriminants, 35

i in constraint , 88

| in constraint , 88

Ident, 12
Implementation-dependent features,
1

Import_Function, 13
Import_Object, 14
Import_Procedure, 15
Import_Valued Procedure, 16
Integer Types, 45
Integer_Value, 35

Interface Name, 17

Interfaces, 66

Interrupt priority, maximum, 35
Interrupts, 72, 72

L

Linker_Alias, 17

Linker Section, 18

Little endian, 33

load address instruction, 90
Locking, 74

108

M

min constraint , 87

Machine Code, 70
Machine_Attribute, 20
Machine Size, 35

matching constraint, 89
Max_Interrupt_Priority, 35
Max_Priority, 36
Maximum_Alignment, 36
Mechanism_Code, 36

memory referencesin constraints, 87
modifiersin constraints, 91
multidimensional arrays, 46
multiple aternative constraints, 90

N

nin constraint , 88
No_Return, 20
Normalize Scalars, 18
Null_Parameter, 36

O

oinconstraint , 87

Object_Size, 36

offsettable address, 87

operand constraints
Asm, 86

P
p in constraint , 90
Packed Types, 52
Parameters, passing mechanism, 36
Parameters, when passed by
reference, 37
Partitions, 76
Passed_By_Reference, 37
Policies

Entry Queueing, 74

Locking, 74
Portability, 7
Pragma, 43

Ada 83,1

Ada 95, 2

Annotate, 3

Assert, 3
C_Pass By Copy, 4
Common_Object, 5
Complex_Representation, 6
Component_Alignment, 7
Debug, 8
Export_Function, 9
Export_Object, 10
Export_Procedure, 10
Export_Valued_Procedure, 11
Ident, 12
Import_Function, 13
Import_Object, 14
Import_Procedure, 15
Import_Valued_Procedure, 16
Interface Name, 17
Linker_Alias, 17
Linker_Section, 18
Machine_Attribute, 20
No_Return, 20
Normalize Scalars, 18
Profile, 21
Psect_Object, 21
Pure Function, 22
Share_Generic, 23
Source File Name, 23
Source Reference, 24
Subtitle, 24
Suppress_All, 25
Title, 25
Unchecked Union, 26
Unchecked Unit, 27
Unsuppress, 28
Warnings, 28
Weak _External, 29

pragma Export, 65

Priority, maximum, 36

Profile, 21

Protected Procedure Handlers, 72

Psect_Object, 21

Pure, 22

Pure Function, 22

push address instruction, 90

109

Index

Q V

Q ,inconstraint , 90 V in congtraint , 87
guestion mark, 91 Value Size, 39

R W

r in constraint , 88 Warnings, 28
Random Number Generation, 62 Weak External, 29
Range Length, 38 Word_Size, 39
Record representation clauses, 57

registersin constraints, 88 X

Representation Clauses, 52 X inconstraint , 89
Representation of enums, 34

Restrictions, 75 Z

Return values, passing mechanism, Zero address, passing, 36
36

S

sin constraint , 89
Share_Generic, 23
simple constraints, 87
Size Clauses, 55

Size of Address, 31
Size, setting for not-first subtype, 39
Size, used for objects, 36
Source File Name, 23
Source_Reference, 24
Storage Unit, 38
Subtitle, 24
Suppress All, 25

T
Task attributes, 73
Tick, 38

Time, 75

Title, 25
Type_Class, 38

U

Unchecked Union, 26
Unchecked Unit, 27
Unrestricted Access, 39
Unsuppress, 28

110

