
XGC Users Guide

Using the Assembler Linker and Utilities

www.xgc.com

XGC Users Guide
Using the Assembler Linker and Utilities

Order Number: XGC-ALU-110101

XGC Technology

 London
 UK

Web: <www.xgc.com>

XGC Users Guide: Using the Assembler Linker and Utilities
by Free Software Foundation and XGC Technology

Publication date January 2011
© 1997, 1998, 1999, 2001, 2004, 2010 XGC Technology
© 1998, 1989, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Acknowledgments

This guide is based on documentation distributed by the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

License

This guide is distributed under the terms of the GNU Public license. Permission is granted to make and distribute verbatim copies of this document
provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified
versions of this document under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this document into another language,
under the above conditions for modified versions.

Contents

About this Guide ix
1 Audience ix
2 Related Documents x
3 Reader's Comments x
4 Documentation Conventions x

Using the Macro AssemblerPart I

Summary 3Chapter 1

as 3

Overview 7Chapter 2

2.1 Object File Formats 7
2.2 Command Line 8
2.3 Input Files 8
2.4 Output (Object) File 9
2.5 Error and Warning Messages 10

Assembler Command-Line Options 11Chapter 3

iii

Assembler Syntax 17Chapter 4

4.1 Preprocessing 17
4.2 White-space 18
4.3 Comments 18
4.4 Symbols 19
4.5 Statements 19
4.6 Constants 20

4.6.1 Character Constants 21
4.6.2 Number Constants 23

Sections and Relocation 25Chapter 5

5.1 Background 25
5.2 Linker Sections 27
5.3 Sub-Sections 28
5.4 bss Section 29

Assembler Symbols 31Chapter 6

6.1 Labels 31
6.2 Giving Symbols Other Values 31
6.3 Symbol Names 32
6.4 The Special Dot Symbol 33
6.5 Symbol Attributes 33

6.5.1 Value 34
6.5.2 Type 34
6.5.3 Symbol Attributes for COFF 34

Assembler Expressions 35Chapter 7

7.1 Empty Expressions 35
7.2 Integer Expressions 35

7.2.1 Arguments 36
7.2.2 Operators 36
7.2.3 Prefix Operator 36
7.2.4 Infix Operators 37

Assembler Directives 39Chapter 8

.abort 39

.ABORT 40

.align 40

.app-file 41

iv

XGC Users Guide

.ascii 41

.asciz 42

.balign[wl] 42

.byte 43

.comm 43

.data 44

.def 44

.dim 45

.double 45

.eject 45

.else 46

.endef 46

.endif 46

.equ 47

.equiv 47

.err 48

.extern 48

.file 48

.fill 49

.float 50

.global 50

.hword 50

.ident 51

.if 51

.include 52

.int 53

.irp 53

.irpc 54

.lcomm 55

.lflags 55

.line 55

.linkonce 56

.ln 57

.list 57

.long 58

.macro 58

.nolist 60

.octa 60

.org 61

.p2align[wl] 61

.psize 62

.quad 63

.rept 63

.sbttl 64

v

XGC Users Guide

.scl 64

.section 65

.set 67

.short 67

.single 68

.size 68

.skip 68

.space 69

.stabd, .stabn, .stabs 69

.string 70

.tag 71

.text 71

.title 72

.type 72

.val 73

.word 73

Using the LinkerPart II

Linker Overview 77Chapter 9

Linker Invocation 79Chapter 10

10.1 Command Line Options 79
10.2 Environment Variables 95

Linker Command Language 97Chapter 11

11.1 Linker Scripts 98
11.2 Expressions 98

11.2.1 Integers 99
11.2.2 Symbol Names 99
11.2.3 The Location Counter 100
11.2.4 Operators 101
11.2.5 Evaluation 101
11.2.6 Assignment: Defining Symbols 101
11.2.7 Arithmetic Functions 104
11.2.8 Semicolons 106

11.3 Memory Layout 107
11.4 Specifying Output Sections 108

11.4.1 Section Definitions 109
11.4.2 Section Placement 110
11.4.3 Section Data Expressions 113

vi

XGC Users Guide

11.4.4 Optional Section Attributes 116
11.4.5 Overlays 118

11.5 The Entry Point 120
11.6 Version Script 121
11.7 Option Commands 125

Using the Object Code UtilitiesPart III

The Utilities 131Chapter 12

12.1 ar 131
12.1.1 Controlling ar on the command
line 132
12.1.2 Controlling ar with a script 136

12.2 nm 139
12.3 objcopy 143
12.4 objdump 148
12.5 ranlib 153
12.6 size 154
12.7 strings 155
12.8 strip 157
12.9 c++filt 159
12.10 addr2line 160

Selecting the target system 163Chapter 13

13.1 Target Selection 163
13.2 Architecture selection 165
13.3 Linker emulation selection 166

AppendicesPart IV

BFD 171Appendix A

A.1 How it Works: An Outline of BFD 171
A.1.1 Information Loss 172
A.1.2 The BFD canonical object-file
format 173

Index 177

vii

XGC Users Guide

viii

About this Guide

This guide contains detailed information about the assembler, linker
and object code utilities included with all XGC compilation
systems. The command line examples given show the native form
of the commands. For cross compilation systems, each command
must be prefixed with the prefix name given in the appropriate
product-specific documentation.

This guide does not contain details of the target computer
instruction set or any additional assembler directives. These are
documented in the relevant volumes of the target computer vendor's
documentation. For additional command line options see the Getting
Started guide that ships with the compilation system.

1. Audience

This guide is written for the experienced programmer who is
already familiar with high-order programming languages and with
embedded systems programming in general. Users of the assembler
will require a detailed understanding of the target computer's
instruction set.

ix

2. Related Documents

Getting Started a product-specific guide.

The Compiler User Guide.

XGC User Guide Part V, which describes the simulator and
debugger.

XGC Libraries, which documents the library functions available
with all XGC compilers.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments in the following ways:

• Internet electronic mail: readers_comments@xgc.com

Please include the following information along with your
comments:

• The full title of the book and the order number. (The order
number is printed on the title page of this book.)

• The section numbers and page numbers of the information on
which you are commenting.

• The version of the software that you are using.

Technical support enquiries should be directed to the XGC web
site [http://www.xgc.com/] or by email to support@xgc.com.

4. Documentation Conventions

This guide uses the following typographic conventions:

% , $
A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

x

About this Guide

readers_comments@xgc.com
http://www.xgc.com/
http://www.xgc.com/
http://www.xgc.com/
support@xgc.com

#

A number sign represents the superuser prompt.

$vi hello.c

Boldface type in interactive examples indicates typed user
input.

file

Italic or slanted type indicates variable values, place-holders,
and function argument names.

[|], { | }
In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

...
In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated.

cat(1)
A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mb/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

xi

Documentation Conventions

xii

I
Using the Macro Assembler

SummaryChapter 1

Here is a brief summary of how to invoke the assembler. For details,
see Chapter 3, Assembler Command-Line Options [11] .

as

prefix-as

Synopsis

prefix-as [[-[adhlns]]] [[=file]] [[-D]] [[--defsym sym=val]] [[-f]]
[[--help]] [[-I dir]] [[-J]] [[-K]] [--size-sort] [[-L]] [[--version]]
[[-W]] [[-w]] [[-x]] [[-Z]] [[[--] | [files ...]]]

Options

-a[dhlns]
Turn on listings, in any of a variety of ways:

-ad
omit debugging directives

3

-ah
include high-level source

-al
include assembly

-an
omit forms processing

-as
include symbols

=file

set the name of the listing file

You may combine these options; for example, use -aln for
assembly listing without forms processing. The “ =file ”
option, if used, must be the last one. By itself, -a defaults to
-ahls that is, all listings turned on.

-D
Ignored. This option is accepted for script compatibility with
calls to other assemblers.

--defsym sym=value
Define the symbol sym to be value before assembling the input
file. value must be an integer constant. As in C, a leading “ 0x
” indicates a hexadecimal value, and a leading “ 0 ” indicates
an octal value.

-f
"fast"--skip white-space and comment preprocessing (assume
source is compiler output).

--help
Print a summary of the command line options and exit.

-I dir

Add directory dir to the search list for .include directives.

-J
Don't warn about signed overflow.

-K
Issue warnings when difference tables altered for long
displacements.

4

Chapter 1. Summary

-L
Keep (in the symbol table) local symbols, starting with “ L ” .

.o objfile

Name the object-file output from the assembler objfile.

-R
Fold the data section into the text section.

--statistics
Print the maximum space (in bytes) and total time (in seconds)
used by assembly.

-v , -version
Print the as version.

--version
Print the as version and exit.

-W
Suppress warning messages.

-w
Ignored.

-x
Ignored.

-Z
Generate an object file even after errors.

-- | files ...

Standard input, or source files to assemble.

5

6

OverviewChapter 2

The GNU assembler is really a family of assemblers. If you have
used the GNU assembler on one architecture, you should find a
fairly similar environment when you use it on another architecture.
Each version has much in common with the others, including object
file formats, most assembler directives (often called pseudo-ops)
and assembler syntax.

The assembler is primarily intended to assemble the output of the
compiler for use by the linker. Nevertheless, we've tried to make
the assembler assemble correctly everything that other assemblers
for the same machine would assemble.

Unlike older assemblers, the assembler is designed to assemble a
source program in one pass of the source file. This has a subtle
impact on the .org directive (see .org [61]).

2.1. Object File Formats

The assembler can be configured to produce several alternative
object file formats. For the most part, this does not affect how you
write assembly language programs; but directives for debugging
symbols are typically different in different file formats. See
Section 6.5, “Symbol Attributes” [33] .

7

2.2. Command Line

After the program name prefix-as ,the command line may
contain options and file names. Options may appear in any order,
and may be before, after, or between file names. The order of file
names is significant.

-- (two hyphens) by itself names the standard input file explicitly,
as one of the files for the assembler to assemble.

Except for -- any command line argument that begins with a hyphen
(-) is an option. Each option changes the behavior of the assembler.
No option changes the way another option works. An option is a
- followed by one or more letters; the case of the letter is important.
All options are optional.

Some options expect exactly one file name to follow them. The
file name may either immediately follow the option's letter
(compatible with older assemblers) or it may be the next command
argument (GNU standard). These two command lines are
equivalent:

prefix-as -o my-object-file.o mumble.s
prefix-as -omy-object-file.o mumble.s

2.3. Input Files

We use the phrase source program, abbreviated source, to describe
the program input to one run of the assembler. The program may
be in one or more files; how the source is partitioned into files
doesn't change the meaning of the source.

The source program is a concatenation of the text in all the files,
in the order specified.

Each time you run the assembler it assembles exactly one source
program. The source program is made up of one or more files. (The
standard input is also a file.)

You give the assembler a command line that has zero or more input
file names. The input files are read (from left file name to right).

8

Chapter 2. Overview

A command line argument (in any position) that has no special
meaning is taken to be an input file name.

If you give the assembler no file names it attempts to read one input
file from the the assembler standard input, which is normally your
terminal. You may have to type Ctrl-D to tell the assembler there
is no more program to assemble.

Use -- if you need to explicitly name the standard input file in your
command line.

If the source is empty, the assembler produces a small, empty object
file.

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files) and
either may be used in reporting error messages. One way refers to
a line number in a physical file; the other refers to a line number
in a “logical” file. See Section 2.5, “Error and Warning
Messages” [10] .

Physical files are those files named in the command line given to
the assembler .

Logical files are simply names declared explicitly by assembler
directives; they bear no relation to physical files. Logical file names
help error messages reflect the original source file, when the
assembler source is itself synthesized from other files. See
.app-file [41] .

2.4. Output (Object) File

Every time you run the assembler it produces an output file, which
is your assembly language program translated into numbers. This
file is the object file. Its default name is a.out. You can give it
another name by using the -o option. Conventionally, object file
names end with .o. The default name is used for historical reasons:
older assemblers were capable of assembling self-contained
programs directly into a runnable program. (For some formats, this
isn't currently possible, but it can be done for the a.out format.)

9

Filenames and Line-numbers

The object file is meant for input to the linker .It contains assembled
program code, information to help the linker integrate the assembled
program into a runnable file, and (optionally) symbolic information
for the debugger.

2.5. Error and Warning Messages

The assembler may write warnings and error messages to the
standard error file (usually your terminal). This should not happen
when a compiler runs the assembler automatically. Warnings report
an assumption made so that the assembler could keep assembling
a flawed program; errors report a grave problem that stops the
assembly.

Warning messages have the format

file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given
(see .app-file: .app-file [41]) it is used for the filename, otherwise
the name of the current input file is used. If a logical line number
was given (see .line [55])then it is used to calculate the number
printed, otherwise the actual line in the current source file is printed.
The message text is intended to be self explanatory (in the grand
UNIX tradition).

Error messages have the format

file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages.
The actual message text may be rather less explanatory because
many of them aren't supposed to happen.

10

Chapter 2. Overview

Assembler
Command-Line Options

Chapter 3

If you are invoking the assembler via the compiler, you can use
the -Wa option to pass arguments through to the assembler. The
assembler arguments must be separated from each other (and the
-Wa) by commas. For example:

$

prefix-gcc -c -g -O -Wa,-alhd,-L file.c

emits a listing to standard output with high-level and assembly
source.

Usually you do not need to use this -Wa mechanism, since many
compiler command-line options are automatically passed to the
assembler by the compiler. (You can call the GNU compiler driver
with the -v option to see precisely what options it passes to each
compilation pass, including the assembler.)

11

Enable Listings: -a[cdhlns]

These options enable listing output from the assembler. By
itself, -a requests high-level, assembly, and symbols listing.
You can use other letters to select specific options for the list:
-ah requests a high-level language listing, -al requests an
output-program assembly listing, and -as requests a symbol
table listing. High-level listings require that a compiler
debugging option like -g be used, and that assembly listings
(-al) be requested also.

Use the -ac option to omit false conditionals from a listing.
Any lines that are not assembled because of a false .if (or .ifdef,
or any other conditional), or a true .if followed by an .else, will
be omitted from the listing.

Use the -ad option to omit debugging directives from the
listing.

Once you have specified one of these options, you can further
control listing output and its appearance using the directives
.list, .nolist, .psize, .eject, .term, and .sbttl. The -an option
turns off all forms processing. If you do not request listing
output with one of the -a options, the listing-control directives
have no effect.

The letters after -a may be combined into one option, e.g., -aln.

-D

This option has no effect whatsoever, but it is accepted to make
it more likely that scripts written for other assemblers also
work with the assembler.

Work Faster: -f

-f should only be used when assembling programs written by
a (trusted) compiler. -f stops the assembler from doing
white-space and comment preprocessing on the input file(s)
before assembling them. See Section 4.1, “Preprocessing” [17]
.

Warning. If you use -f when the files actually need to be
pre-processed (if they contain comments, for example), the
assembler does not work correctly.

12

Chapter 3. Assembler Command-Line Options

.include search path: -I path

Use this option to add a path to the list of directories the
assembler searches for files specified in .include directives
(see .include [52]). You may use -I as many times as necessary
to include a variety of paths. The current working directory is
always searched first; after that, the assembler searches any -I
directories in the same order as they were specified (left to
right) on the command line.

Difference Tables: -K

The assembler sometimes alters the code emitted for directives
of the form “ .word sym1-sym2 ” ; see .word. You can use the
-K option if you want a warning issued when this is done.

Include Local Labels: -L

Labels beginning with “ L ” (upper case only) are called local
labels. See Section 6.3, “Symbol Names” [32] .Normally you
do not see such labels when debugging, because they are
intended for the use of programs (like compilers) that compose
assembler programs, not for your notice. Normally both the
assembler and the linker discard such labels, so you do not
normally debug with them.

This option tells the assembler to retain those “ L... ” symbols
in the object file. Usually if you do this you also tell the linker
to preserve symbols whose names begin with “ L ” .

By default, a local label is any label beginning with “ L ” ,but
each target is allowed to redefine the local label prefix.

Name the Object File: -o

There is always one object file output when you run the
assembler. By default it has the name a.out. You use this
option (which takes exactly one filename) to give the object
file a different name.

Whatever the object file is called, the assembler overwrites
any existing file of the same name.

13

Join Data and Text Sections: -R

-R tells the assembler to write the object file as if all
data-section data lives in the text section. This is only done at
the very last moment: your binary data are the same, but data
section parts are relocated differently. The data section part of
your object file is zero bytes long because all its bytes are
appended to the text section. (See Chapter 5, Sections and
Relocation [25] .)

When you specify -R it would be possible to generate shorter
address displacements (because we do not have to cross
between text and data section). We refrain from doing this
simply for compatibility with older versions of the assembler.
In future, -R may work this way.

When the assembler is configured for COFF output, this option
is only useful if you use sections named “ .text ” and “ .data
” .

Display Assembly Statistics: --statistics

Use --statistics to display two statistics about the resources
used by the assembler :the maximum amount of space allocated
during the assembly (in bytes), and the total execution time
taken for the assembly (in cpu seconds).

Announce Version: -v

You can find out what version of the assembler is running by
including the option -v (which you can also spell as --version)
on the command line.

Suppress Warnings: -W

The assembler should never give a warning or error message
when assembling compiler output. But programs written by
people often cause the assembler to give a warning that a
particular assumption was made. All such warnings are directed
to the standard error file. If you use this option, no warnings
are issued. This option only affects the warning messages: it
does not change any particular of how the assembler assembles
your file. Errors, which stop the assembly, are still reported.

14

Chapter 3. Assembler Command-Line Options

Generate Object File in Spite of Errors: -Z

After an error message, the assembler normally produces no
output. If for some reason you are interested in object file
output even after the assembler gives an error message on your
program, use the -Z option. If there are any errors, the
assembler continues anyway, and writes an object file after a
final warning message of the form:

n errors, m warnings, generating bad object file.

15

16

Assembler SyntaxChapter 4

This chapter describes the machine-independent syntax allowed
in a source file. The assembler syntax is similar to what many other
assemblers use; it is inspired by the BSD 4.2 assembler.

4.1. Preprocessing

The assembler internal preprocessor:

• adjusts and removes extra white-space. It leaves one space or
tab before the keywords on a line, and turns any other
white-space on the line into a single space.

• removes all comments, replacing them with a single space, or
an appropriate number of newlines.

• converts character constants into the appropriate numeric values.

It does not do macro processing, include file handling, or anything
else you may get from your C compiler's preprocessor. You can
do include file processing with the .include directive (see
.include [52]). You can use the GNU C compiler driver to get other
“CPP” style preprocessing, by giving the input file a “ .S ” suffix.

17

Excess white-space, comments, and character constants cannot be
used in the portions of the input text that are not pre-processed.

If the first line of an input file is #NO_APP or if you use the -f option,
white-space and comments are not removed from the input file.
Within an input file, you can ask for white-space and comment
removal in specific portions of the by putting a line that says #APP
before the text that may contain white-space or comments, and
putting a line that says #NO_APP after this text. This feature is mainly
intend to support asm statements in compilers whose output is
otherwise free of comments and white-space.

4.2. White-space

White-space is one or more blanks or tabs, in any order.
White-space is used to separate symbols, and to make programs
neater for people to read. Unless within character constants (see
Section 4.6.1, “Character Constants” [21]), any white-space means
the same as exactly one space.

4.3. Comments

There are two ways of rendering comments to the assembler .In
both cases the comment is equivalent to one space.

Anything from “ /* ” through the next “ */ ” is a comment. This
means you may not nest these comments.

/*
 The only way to include a newline ('\n') in a comment
 is to use this sort of comment.
 */

 /* This sort of comment does not nest. */

Anything from the line comment character to the next newline is
considered a comment and is ignored. The line comment character
is see Chapter 2, Overview [7] .

On some machines there are two different line comment characters.
One character only begins a comment if it is the first

18

Chapter 4. Assembler Syntax

non-white-space character on a line, while the other always begins
a comment.

To be compatible with past assemblers, lines that begin with “ # ”
have a special interpretation. Following the “ # ” should be an
absolute expression (see Chapter 7, Assembler Expressions [35]
.): the logical line number of the next line. Then a string (see
Section 4.6.1.1, “Strings” [21] .) is allowed: if present it is a new
logical file name. The rest of the line, if any, should be white-space.

If the first non-white-space characters on the line are not numeric,
the line is ignored. (Just like a comment.)

 # This is an ordinary comment.
 # 42-6 "new_file_name" # New logical file name
 # This is logical line # 36.

This feature is deprecated, and may disappear from future versions
of the assembler.

4.4. Symbols

A symbol is one or more characters chosen from the set of all letters
(both upper and lower case), digits and the three characters “ _.$
” .On most machines, you can also use $ in symbol names;
exceptions are noted in Chapter 2, Overview [7] .No symbol may
begin with a digit. Case is significant. There is no length limit: all
characters are significant. Symbols are delimited by characters not
in that set, or by the beginning of a file (since the source program
must end with a newline, the end of a file is not a possible symbol
delimiter). See Chapter 6, Assembler Symbols [31] .

4.5. Statements

A statement ends at a newline character (“ \n ”)or line separator
character. (The line separator is usually “ ; ” , unless this conflicts
with the comment character; see Chapter 2, Overview [7] ..) The
newline or separator character is considered part of the preceding
statement. Newlines and separators within character constants are
an exception: they do not end statements.

19

Symbols

It is an error to end any statement with end-of-file: the last character
of any input file should be a newline.

You may write a statement on more than one line if you put a
backslash (\) immediately in front of any newlines within the
statement. When the assembler reads a backslashed newline both
characters are ignored. You can even put backslashed newlines in
the middle of symbol names without changing the meaning of your
source program.

An empty statement is allowed, and may include white-space. It
is ignored.

A statement begins with zero or more labels, optionally followed
by a key symbol that determines what kind of statement it is. The
key symbol determines the syntax of the rest of the statement. If
the symbol begins with a dot “ . ” then the statement is an assembler
directive: typically valid for any computer. If the symbol begins
with a letter the statement is an assembly language instruction: it
assembles into a machine language instruction. Different versions
of the assembler for different computers recognize different
instructions. In fact, the same symbol may represent a different
instruction in a different computer's assembly language.

A label is a symbol immediately followed by a colon (:).
White-space before a label or after a colon is permitted, but you
may not have white-space between a label's symbol and its colon.
See Section 6.1, “Labels” [31] .

label: .directive followed by something
 another_label: # This is an empty statement.
 instruction operand_1, operand_2, ...

4.6. Constants

A constant is a number, written so that its value is known by
inspection, without knowing any context. Like this:

.byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
 .ascii "Ring the bell\7" # A string constant.
 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
 .float 0f-314159265358979323846264338327\

20

Chapter 4. Assembler Syntax

 95028841971.693993751E-40 # - pi, a flonum.

4.6.1. Character Constants

There are two kinds of character constants. A character stands for
one character in one byte and its value may be used in numeric
expressions. String constants (properly called string literals) are
potentially many bytes and their values may not be used in
arithmetic expressions.

4.6.1.1. Strings

A string is written between double-quotes. It may contain
double-quotes or null characters. The way to get special characters
into a string is to escape these characters: precede them with a
backslash “ \ ” character. For example “ \\ ” represents one
backslash: the first \ is an escape that tells the assembler to interpret
the second character literally as a backslash (which prevents the
assembler from recognizing the second \ as an escape character).
The complete list of escapes follows.

\b

Mnemonic for backspace; for ASCII this is octal code 010.

\f

Mnemonic for FormFeed; for ASCII this is octal code 014.

\n

Mnemonic for newline; for ASCII this is octal code 012.

\r

Mnemonic for carriage-Return; for ASCII this is octal code
015.

\t

Mnemonic for horizontal Tab; for ASCII this is octal code 011.

21

Character Constants

. digit digit digit

An octal character code. The numeric code is 3 octal digits.
For compatibility with other UNIX systems, 8 and 9 are
accepted as digits: for example, \008 has the value 010, and
\009 the value 011.

\x hex-digits...

A hex character code. All trailing hex digits are combined.
Either upper or lower case x works.

\\

Represents one “ \ ” character.

\"

Represents one “ " ” character. Needed in strings to represent
this character, because an un-escaped “ " ” would end the string.

. anything-else
Any other character when escaped by \ gives a warning, but
assembles as if the “ \ ” was not present. The idea is that if you
used an escape sequence you clearly didn't want the literal
interpretation of the following character. However, the
assembler has no other interpretation, so the assembler knows
it is giving you the wrong code and warns you of the fact.

Which characters are escapable, and what those escapes represent,
varies widely among assemblers. The current set is what we think
the BSD 4.2 assembler recognizes, and is a subset of what most C
compilers recognize. If you are in doubt, do not use an escape
sequence.

4.6.1.2. Characters

A single character may be written as a single quote immediately
followed by that character. The same escapes apply to characters
as to strings. So if you want to write the character backslash, you
must write '\\ where the first \ escapes the second \. As you can
see, the quote is an acute accent, not a grave accent. A newline
immediately following an acute accent is taken as a literal character
and does not count as the end of a statement. The value of a
character constant in a numeric expression is the machine's

22

Chapter 4. Assembler Syntax

byte-wide code for that character. the assembler assumes your
character code is ASCII: 'A means 65, 'B means 66, and so on.

4.6.2. Number Constants

The assembler distinguishes three kinds of numbers according to
how they are stored in the target machine. Integers are numbers
that would fit into an int in the C language. Bignums are integers,
but they are stored in more than 32 bits. Flonums are floating point
numbers, described below.

4.6.2.1. Integers

A binary integer is “ 0b ” or “ 0B ” followed by zero or more of the
binary digits “ 01 ” .

An octal integer is “ 0 ” followed by zero or more of the octal digits
(“ 01234567 ”).

A decimal integer starts with a non-zero digit followed by zero or
more decimal digits (“ 0123456789 ”).

A hexadecimal integer is “ 0x ” or “ 0X ” followed by one or more
hexadecimal digits chosen from “ 0123456789abcdefABCDEF ” .

To denote a negative integer, use the prefix operator - discussed
under expressions (see Section 7.2.3, “Prefix Operator” [36]).

4.6.2.2. Bignums

A bignum has the same syntax and semantics as an integer except
that the number (or its negative) takes more than 32 bits to represent
in binary. The distinction is made because in some places integers
are permitted while bignums are not.

4.6.2.3. Flonums

A flonum represents a floating point number. The translation is
indirect: a decimal floating point number from the text is converted
by the assembler to a generic binary floating point number of more
than sufficient precision. This generic floating point number is
converted to a particular computer's floating point format (or
formats) by a portion of the assembler specialized to that computer.

A flonum is written by writing (in order)

23

Number Constants

• The digit “ 0 ” .

• A letter, to tell the assembler the rest of the number is a flonum.
e is recommended. Case is not important.

• An optional sign: either “ + ” or -.

• An optional integer part: zero or more decimal digits.

• An optional fractional part: “ . ” followed by zero or more
decimal digits.

• An optional exponent, consisting of:

• An “ E ” or “ e ” .

• Optional sign: either “ + ” or -.

• One or more decimal digits.

At least one of the integer part or the fractional part must be present.
The floating point number has the usual base-10 value.

The assembler does all processing using integers. Flonums are
computed independently of any floating point hardware in the
computer running the assembler .

24

Chapter 4. Assembler Syntax

Sections and RelocationChapter 5

5.1. Background

Roughly, a section is a range of addresses, with no gaps; all data
between those addresses is treated the same for some particular
purpose. For example, there may be a read only section.

The linker reads many object files (partial programs) and combines
their contents to form a runnable program. When the assembler
emits an object file, the partial program is assumed to start at
address 0x00000000. The linker assigns the final addresses for the
partial program, so that different partial programs do not overlap.
This is actually an oversimplification, but it suffices to explain how
the assembler uses sections.

The linker moves blocks of bytes of your program to their run-time
addresses. These blocks slide to their run-time addresses as rigid
units; their length does not change and neither does the order of
bytes within them. Such a rigid unit is called a section. Assigning
run-time addresses to sections is called relocation. It includes the
task of adjusting mentions of object-file addresses so they refer to
the proper run-time addresses.

25

An object file written by the assembler has at least three sections,
any of which may be empty. These are named text, data and bss
sections.

When it generates COFF output, the assembler can also generate
whatever other named sections you specify using the “ .section ”
directive (see .section [65]). If you do not use any directives that
place output in the “ .text ” or “ .data ” sections, these sections
still exist, but are empty.

Within the object file, the text section starts at address 0x00000000,
the data section follows, and the bss section follows the data section.

To let the linker know which data changes when the sections are
relocated, and how to change that data, the assembler also writes
to the object file details of the relocation needed. To perform
relocation the linker must know, each time an address in the object
file is mentioned:

• Where in the object file is the beginning of this reference to an
address?

• How long (in bytes) is this reference?

• Which section does the address refer to? What is the numeric
value of

 (address) (start-address of section)?

• Is the reference to an address "Program-Counter relative"?

In fact, every address the assembler ever uses is expressed as

 (section) + (offset into section)

Further, most expressions the assembler computes have this
section-relative nature.

In this manual we use the notation {secname N} to mean "offset N
into section secname."

26

Chapter 5. Sections and Relocation

Apart from text, data and bss sections you need to know about the
absolute section. When the linker mixes partial programs, addresses
in the absolute section remain unchanged. For example, address
{absolute 0} is relocated to run-time address 0 by the linker
.Although the linker never arranges two partial programs' data
sections with overlapping addresses after linking, by definition
their absolute sections must overlap. Address {absolute 239} in
one part of a program is always the same address when the program
is running as address {absolute 239} in any other part of the
program.

The idea of sections is extended to the undefined section. Any
address whose section is unknown at assembly time is by definition
rendered {undefined U} where U is filled in later. Since numbers
are always defined, the only way to generate an undefined address
is to mention an undefined symbol. A reference to a named common
block would be such a symbol: its value is unknown at assembly
time so it has section undefined.

By analogy, the word section is used to describe groups of sections
in the linked program. The linker puts all partial programs' text
sections in contiguous addresses in the linked program. It is
customary to refer to the text section of a program, meaning all the
addresses of all partial programs' text sections. Likewise for data
and bss sections.

Some sections are manipulated by the linker ;others are invented
for use of the assembler and have no meaning except during
assembly.

5.2. Linker Sections

The linker deals with just four kinds of sections, summarized below.

named sections

These sections hold your program. the assembler and the linker
treat them as separate but equal sections. Anything you can
say of one section is true another.

bss section

This section contains zeroed bytes when your program begins
running. It is used to hold uninitialized variables or common

27

Linker Sections

storage. The length of each partial program's bss section is
important, but because it starts out containing zeroed bytes
there is no need to store explicit zero bytes in the object file.
The bss section was invented to eliminate those explicit zeros
from object files.

absolute section

Address 0 of this section is always relocated to runtime address
0. This is useful if you want to refer to an address that the linker
must not change when relocating. In this sense we speak of
absolute addresses being un-relocatable: they do not change
during relocation.

undefined section

This section is a catch-all for address references to objects not
in the preceding sections.

An idealized example of three relocatable sections follows. The
example uses the traditional section names “ .text ” and “ .data ”
.Memory addresses are on the horizontal axis.

5.3. Sub-Sections

You may have separate groups of data in named sections that you
want to end up near to each other in the object file, even though
they are not contiguous in the assembler source. The assembler
allows you to use subsections for this purpose. Within each section,
there can be numbered subsections with values from 0 to 8192.
Objects assembled into the same subsection go into the object file
together with other objects in the same subsection. For example,
a compiler might want to store constants in the text section, but
might not want to have them interspersed with the program being
assembled. In this case, the compiler could issue a “ .text 0 ” before
each section of code being output, and a “ .text 1 ” before each
group of constants being output.

Subsections are optional. If you do not use subsections, everything
goes in subsection number zero.

Each subsection is zero-padded up to a multiple of four bytes.

28

Chapter 5. Sections and Relocation

Subsections appear in your object file in numeric order, lowest
numbered to highest. (All this to be compatible with other people's
assemblers.) The object file contains no representation of
subsections; the linker and other programs that manipulate object
files see no trace of them. They just see all your text subsections
as a text section, and all your data subsections as a data section.

To specify which subsection you want subsequent statements
assembled into, use a numeric argument to specify it, in a “ .text
expression ” or a “ .data expression ” statement. When generating
COFF output, you can also use an extra subsection argument with
arbitrary named sections: “ .section name, expression ” . Expression
should be an absolute expression. (See Chapter 7, Assembler
Expressions [35] .) If you just say “ .text ” then “ .text 0 ” is
assumed. Likewise “ .data ” means “ .data 0 ” .Assembly begins
in text 0. For instance:

.text 0 # The default subsection is text 0 anyway.
 .ascii "This lives in the first text subsection. *"
 .text 1
 .ascii "But this lives in the second text subsection."
 .data 0
 .ascii "This lives in the data section,"
 .ascii "in the first data subsection."
 .text 0
 .ascii "This lives in the first text section,"
 .ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every
byte assembled into that section. Because subsections are merely
a convenience restricted to the assembler there is no concept of a
subsection location counter. There is no way to directly manipulate
a location counter but the .align directive changes it, and any label
definition captures its current value. The location counter of the
section where statements are being assembled is said to be the
active location counter.

5.4. bss Section

The bss section is used for local common variable storage. You
may allocate address space in the bss section, but you may not
dictate data to load into it before your program executes. When

29

bss Section

your program starts running, all the contents of the bss section are
zeroed bytes.

The .lcomm directive defines a symbol in the bss section; see
.lcomm [55] .

The .comm directive may be used to declare a common symbol,
which is another form of uninitialized symbol; see .comm [43] .

When assembling for a target that supports multiple sections, such
as ELF or COFF, you may switch into the .bss section and define
symbols as usual; see .section [65] . You may only assemble zero
values into the section. Typically the section will only contain
symbol definitions and .skip directives (see .skip [68]).

30

Chapter 5. Sections and Relocation

Assembler SymbolsChapter 6

Symbols are a central concept: the programmer uses symbols to
name things, the linker uses symbols to link, and the debugger uses
symbols to debug.

6.1. Labels

A label is written as a symbol immediately followed by a colon “
: ” . The symbol then represents the current value of the active
location counter, and is, for example, a suitable instruction operand.
You are warned if you use the same symbol to represent two
different locations: the first definition overrides any other
definitions.

6.2. Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol,
followed by an equals sign “ = ” , followed by an expression (see
Chapter 7, Assembler Expressions [35]). This is equivalent to using
the .set directive. See .set [67] .

31

6.3. Symbol Names

Symbol names begin with a letter or with one of “ ._ ” .On most
machines, you can also use “ $ ” in symbol names; exceptions are
noted in See Chapter 2, Overview [7] .That character may be
followed by any string of digits, letters, dollar signs (unless
otherwise noted in Chapter 2, Overview [7]), and underscores.

Case of letters is significant: foo is a different symbol name than
Foo.

Each symbol has exactly one name. Each name in an assembly
language program refers to exactly one symbol. You may use that
symbol name any number of times in a program.

Local Symbol Names

Local symbols help compilers and programmers use names
temporarily. There are ten local symbol names, which are re-used
throughout the program. You may refer to them using the names
“ 0 ” “ 1 ” ... “ 9 ” .To define a local symbol, write a label of the
form “ N: ” (where N represents any digit). To refer to the most
recent previous definition of that symbol write “ Nb ” ,using the
same digit as when you defined the label. To refer to the next
definition of a local label, write “ Nf ” where N gives you a choice
of 10 forward references. The “ b ” stands for "backwards" and the
“ f ” stands for "forwards".

There is no restriction on how you can use these labels, but
remember that at any point in the assembly you can refer to at most
10 prior local labels and to at most 10 forward local labels.

Local symbol names are only a notation device. They are
immediately transformed into more conventional symbol names
before the assembler uses them. The symbol names stored in the
symbol table, appearing in error messages and optionally emitted
to the object file have these parts:

L

All local labels begin with “ L ” .Normally both the assembler
and the linker forget symbols that start with “ L ” .These labels
are used for symbols you are never intended to see. If you use
the -L option then the assembler retains these symbols in the

32

Chapter 6. Assembler Symbols

object file. If you also instruct the linker to retain these
symbols, you may use them in debugging.

digit

If the label is written “ 0: ” then the digit is “ 0 ” .If the label
is written “ 1: ” then the digit is “ 1 ” .And so on up through “
9: ” .

A

This unusual character is included so you do not accidentally
invent a symbol of the same name. The character has ASCII
value “ \001 ” .

ordinal number

This is a serial number to keep the labels distinct. The first “
0: ” gets the number “ 1 ” ;The 15th “ 0: ” gets the number “
15 ” ;etc.. Likewise for the other labels “ 1: ” through “ 9: ” .

For instance, the first 1: is named L1C-A1, the 44th 3: is named
L3C-A44.

6.4. The Special Dot Symbol

The special symbol “ . ” refers to the current address that the
assembler is assembling into. Thus, the expression “ melvin: .long
. ” defines melvin to contain its own address. Assigning a value
to . is treated the same as a .org directive. Thus, the expression “
.=.+4 ” is the same as saying “ .space 4 ” .

6.5. Symbol Attributes

Every symbol has, as well as its name, the attributes “Value” and
“Type”. Depending on output format, symbols can also have
auxiliary attributes.

If you use a symbol without defining it, the assembler assumes
zero for all these attributes, and probably won't warn you. This
makes the symbol an externally defined symbol, which is generally
what you would want.

33

The Special Dot Symbol

6.5.1. Value

The value of a symbol is (usually) 32 bits. For a symbol which
labels a location in the text, data, bss or absolute sections the value
is the number of addresses from the start of that section to the label.
Naturally for text, data and bss sections the value of a symbol
changes as the linker changes section base addresses during linking.
Absolute symbols' values do not change during linking: that is why
they are called absolute.

The value of an undefined symbol is treated in a special way. If it
is 0 then the symbol is not defined in this assembler source file,
and the linker tries to determine its value from other files linked
into the same program. You make this kind of symbol simply by
mentioning a symbol name without defining it. A non-zero value
represents a .comm common declaration. The value is how much
common storage to reserve, in bytes (addresses). The symbol refers
to the first address of the allocated storage.

6.5.2. Type

The type attribute of a symbol contains relocation (section)
information, any flag settings indicating that a symbol is external,
and (optionally), other information for linkers and debuggers. The
exact format depends on the object-code output format in use.

6.5.3. Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol
attributes; like the primary symbol attributes, they are set between
.def and .endef directives.

Primary Attributes. The symbol name is set with .def; the
value and type, respectively, with .val and .type.

Auxiliary Attributes. The the assembler directives .dim, .line,
.scl, .size, and .tag can generate auxiliary symbol table information
for COFF.

34

Chapter 6. Assembler Symbols

Assembler ExpressionsChapter 7

An expression specifies an address or numeric value. White-space
may precede and/or follow an expression.

The result of an expression must be an absolute number, or else an
offset into a particular section. If an expression is not absolute, and
there is not enough information when the assembler sees the
expression to know its section, a second pass over the source
program might be necessary to interpret the expression but the
second pass is currently not implemented. The assembler aborts
with an error message in this situation.

7.1. Empty Expressions

An empty expression has no value: it is just white-space or null.
Wherever an absolute expression is required, you may omit the
expression, and the assembler assumes a value of (absolute) 0. This
is compatible with other assemblers.

7.2. Integer Expressions

An integer expression is one or more arguments delimited by
operators.

35

7.2.1. Arguments

Arguments are symbols, numbers or subexpressions. In other
contexts arguments are sometimes called arithmetic operands. In
this manual, to avoid confusing them with the “instruction
operands” of the machine language, we use the term “argument”
to refer to parts of expressions only, reserving the word “operand”
to refer only to machine instruction operands.

Symbols are evaluated to yield {section NNN} where section is
one of text, data, bss, absolute, or undefined. NNN is a signed, 2's
complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned
that only the low order 32 bits are used, and the assembler pretends
these 32 bits are an integer. You may write integer-manipulating
instructions that act on exotic constants, compatible with other
assemblers.

Subexpressions are a left parenthesis “ (” followed by an integer
expression, followed by a right parenthesis “) ” ;or a prefix
operator followed by an argument.

7.2.2. Operators

Operators are arithmetic functions, like + or %. Prefix operators are
followed by an argument. Infix operators appear between their
arguments. Operators may be preceded and/or followed by
white-space.

7.2.3. Prefix Operator

The assembler has the following prefix operators. They each take
one argument, which must be absolute.

-
Negation. Two's complement negation.

~

Complementation. Bitwise not.

36

Chapter 7. Assembler Expressions

7.2.4. Infix Operators

Infix operators take two arguments, one on either side. Operators
have precedence, but operations with equal precedence are
performed left to right. Apart from + or -, both arguments must be
absolute, and the result is absolute.

1. Highest Precedence

*

Multiplication.

/

Division. Truncation is the same as the C operator “ / ”

%

Remainder.

< , <<
Shift Left. Same as the C operator “ << ” .

> , >>
Shift Right. Same as the C operator “ >> ” .

2. Intermediate precedence

|

Bitwise Inclusive Or.

&

Bitwise And.

^

Bitwise Exclusive Or.

!

Bitwise Or Not.

3. Lowest Precedence

+

Addition. If either argument is absolute, the result has the
section of the other argument. You may not add together
arguments from different sections.

37

Infix Operators

-

Subtraction. If the right argument is absolute, the result has
the section of the left argument. If both arguments are in
the same section, the result is absolute. You may not subtract
arguments from different sections.

In short, it's only meaningful to add or subtract the offsets in an
address; you can only have a defined section in one of the two
arguments.

38

Chapter 7. Assembler Expressions

Assembler DirectivesChapter 8

All assembler directives have names that begin with a period (“ .
”). The rest of the name is letters, usually in lower case.

This chapter discusses directives that are available regardless of
the target machine configuration for the GNU assembler. Some
machine configurations provide additional directives. See Chapter 2,
Overview [7] .

.abort

abort

Synopsis

.abort

Description

This directive stops the assembly immediately. It is for
compatibility with other assemblers. The original idea was that the
assembly language source would be piped into the assembler. If

39

the sender of the source quit, it could use this directive tells the
assembler to quit also. One day .abort will not be supported.

.ABORT

ABORT

Synopsis

.ABORT

Description

When producing COFF output, the assembler accepts this directive
as a synonym for “ .abort ” .

.align

align

Synopsis

.align abs-expr, abs-expr, abs-expr

Description

Pad the location counter (in the current subsection) to a particular
storage boundary. The first expression (which must be absolute)
is the alignment required, as described below.

The second expression (also absolute) gives the fill value to be
stored in the padding bytes. It (and the comma) may be omitted.
If it is omitted, the padding bytes are normally zero. However, on
some systems, if the section is marked as containing code and the
fill value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is
present, it is the maximum number of bytes that should be skipped
by this alignment directive. If doing the alignment would require
skipping more bytes than the specified maximum, then the

40

Chapter 8. Assembler Directives

alignment is not done at all. You can omit the fill value (the second
argument) entirely by simply using two commas after the required
alignment; this can be useful if you want the alignment to be filled
with no-op instructions when appropriate.

The assembler also provides .balign and .p2align directives,
described later, which have a consistent behavior across all
architectures.

.app-file

app-file

Synopsis

.app-file string

Description

.app-file (which may also be spelled “ .file ”)tells the assembler
that we are about to start a new logical file. string is the new file
name. In general, the filename is recognized whether or not it is
surrounded by quotes “ " ” ;but if you wish to specify an empty
file name is permitted, you must give the quotes-"". This statement
may go away in future: it is only recognized to be compatible with
old the assembler programs.

.ascii

ascii

Synopsis

.ascii "string"...

41

Description

.ascii expects zero or more string literals (see Section 4.6.1.1,
“Strings” [21])separated by commas. It assembles each string (with
no automatic trailing zero byte) into consecutive addresses.

.asciz

asciz

Synopsis

.asciz "string"...

Description

.asciz is just like .ascii, but each string is followed by a zero byte.
The "z" in “ .asciz ” stands for "zero".

.balign[wl]

balign[wl]

Synopsis

.balign[wl] abs-expr, abs-expr, abs-expr

Description

Pad the location counter (in the current subsection) to a particular
storage boundary. The first expression (which must be absolute)
is the alignment request in bytes. For example, “ .balign 8 ”
advances the location counter until it is a multiple of 8. If the
location counter is already a multiple of 8, no change is needed.

The second expression (also absolute) gives the fill value to be
stored in the padding bytes. It (and the comma) may be omitted.
If it is omitted, the padding bytes are normally zero. However, on

42

Chapter 8. Assembler Directives

some systems, if the section is marked as containing code and the
fill value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is
present, it is the maximum number of bytes that should be skipped
by this alignment directive. If doing the alignment would require
skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second
argument) entirely by simply using two commas after the required
alignment; this can be useful if you want the alignment to be filled
with no-op instructions when appropriate.

The .balignw and .balignl directives are variants of the .balign
directive. The .balignw directive treats the fill pattern as a two byte
word value. The .balignl directives treats the fill pattern as a four
byte longword value. For example, .balignw 4,0x368d will align
to a multiple of 4. If it skips two bytes, they will be filled in with
the value 0x368d (the exact placement of the bytes depends upon
the endianness of the processor). If it skips 1 or 3 bytes, the fill
value is undefined.

.byte

byte

Synopsis

.byte expressions

Description

.byte expects zero or more expressions, separated by commas.
Each expression is assembled into the next byte.

.comm

comm

43

Synopsis

.comm symbol, length

Description

.comm declares a named common area in the bss section. Normally
the linker reserves memory addresses for it during linking, so no
partial program defines the location of the symbol. Use .comm to
tell the linker that it must be at least length bytes long. The linker
allocates space for each .comm symbol that is at least as long as
the longest .comm request in any of the partial programs linked.
length is an absolute expression.

.data

data

Synopsis

.data subsection

Description

.data tells the assembler to assemble the following statements onto
the end of the data subsection numbered subsection (which is an
absolute expression). If subsection is omitted, it defaults to zero.

.def

def

Synopsis

.def name

44

Chapter 8. Assembler Directives

Description

Begin defining debugging information for a symbol name; the
definition extends until the .endef directive is encountered.

.dim

dim

Synopsis

.dim

Description

This directive is generated by compilers to include auxiliary
debugging information in the symbol table. It is only permitted
inside .def/.endef pairs.

.double

double

Synopsis

.double flonums

Description

.double expects zero or more flonums, separated by commas. It
assembles floating point numbers. See Chapter 2, Overview [7] .

.eject

eject

45

Synopsis

.eject

Description

Force a page break at this point, when generating assembly listings.

.else

else

Synopsis

.else

Description

.else is part of the the assembler support for conditional assembly;
see .if [51] .It marks the beginning of a section of code to be
assembled if the condition for the preceding .if was false.

.endef

endef

Synopsis

.endef

Description

This directive flags the end of a symbol definition begun with .def.

.endif

endif

46

Chapter 8. Assembler Directives

Synopsis

.endif

Description

.endif is part of the the assembler support for conditional assembly;
it marks the end of a block of code that is only assembled
conditionally. See .if [51] .

.equ

equ

Synopsis

.equ symbol, expression

Description

This directive sets the value of symbol to expression. It is
synonymous with “ .set ” ;see .set [67] .

.equiv

equiv

Synopsis

.equiv symbol, expression

Description

The .equiv directive is like .equ and .set, except that the assembler
will signal an error if symbol is already defined.

Except for the contents of the error message, this is roughly
equivalent to

47

.ifdef SYM
 .err
 .endif
 .equ SYM,VAL

.err

err

Synopsis

.err

Description

If the assembler assembles a .err directive, it will print an error
message and, unless the -Z option was used, it will not generate
an object file. This can be used to signal error an conditionally
compiled code.

.extern

extern

Synopsis

.extern

Description

.extern is accepted in the source program for compatibility with
other assemblers but it is ignored. the assembler treats all undefined
symbols as external.

.file

file

48

Chapter 8. Assembler Directives

Synopsis

.file string

Description

.file (which may also be spelled “ .app-file ”)tells the assembler
that we are about to start a new logical file. string is the new file
name. In general, the filename is recognized whether or not it is
surrounded by quotes “ " ” ;but if you wish to specify an empty
file name, you must give the quotes-"". This statement may go
away in future: it is only recognized to be compatible with old the
assembler programs.

.fill

fill

Synopsis

.fill repeat, size, value

Description

result, size and value are absolute expressions. This emits repeat
copies of size bytes. Repeat may be zero or more. Size may be
zero or more, but if it is more than 8, then it is deemed to have the
value 8, compatible with other people's assemblers. The contents
of each repeat bytes is taken from an 8-byte number. The highest
order 4 bytes are zero. The lowest order 4 bytes are value rendered
in the byte-order of an integer on the computer the assembler is
assembling for. Each size bytes in a repetition is taken from the
lowest order size bytes of this number. Again, this bizarre behavior
is compatible with other people's assemblers.

size and value are optional. If the second comma and value are
absent, value is assumed zero. If the first comma and following
tokens are absent, size is assumed to be 1.

49

.float

float

Synopsis

.float flonums

Description

This directive assembles zero or more flonums, separated by
commas. It has the same effect as .single. The exact kind of floating
point numbers emitted depends on how the assembler is configured.
See Chapter 2, Overview [7] .

.global

global

Synopsis

.global symbol .globl symbol

Description

.global makes the symbol visible to the linker. If you define symbol
in your partial program, its value is made available to other partial
programs that are linked with it. Otherwise, symbol takes its
attributes from a symbol of the same name from another file linked
into the same program.

Both spellings (“ .globl ” and “ .global ”)are accepted, for
compatibility with other assemblers.

.hword

hword

50

Chapter 8. Assembler Directives

Synopsis

.hword expressions

Description

This expects zero or more expressions, and emits a 16 bit number
for each.

This directive is a synonym for “ .short ” ;depending on the target
architecture, it may also be a synonym for “ .word ” .

.ident

ident

Synopsis

.ident

Description

This directive is used by some assemblers to place tags in object
files. the assembler simply accepts the directive for source-file
compatibility with such assemblers, but does not actually emit
anything for it.

.if

if

Synopsis

.if absolute expression

51

Description

The .if marks the beginning of a section of code which is only
considered part of the source program being assembled if the
argument (which must be an absolute expression)is non-zero.
The end of the conditional section of code must be marked by
.endif (see .endif [46]); optionally, you may include code for the
alternative condition, flagged by .else (see .else [46]).

The following variants of .if are also supported:

.ifdef symbol

Assembles the following section of code if the specified symbol
has been defined.

.ifndef symbol , .ifnotdef symbol

Assembles the following section of code if the specified symbol
has not been defined. Both spelling variants are equivalent.

.include

include

Synopsis

.include "file"

Description

This directive provides a way to include supporting files at specified
points in your source program. The code from file is assembled
as if it followed the point of the .include; when the end of the
included file is reached, assembly of the original file continues.
You can control the search paths used with the -I command-line
option (see Chapter 3, Assembler Command-Line Options [11]).
Quotation marks are required around file.

52

Chapter 8. Assembler Directives

.int

int

Synopsis

.int expressions

Description

Expect zero or more expressions, of any section, separated by
commas. For each expression, emit a number that, at run time, is
the value of that expression. The byte order and bit size of the
number depends on what kind of target the assembly is for.

.irp

irp

Synopsis

.irp symbol, values...

Description

Evaluate a sequence of statements assigning different values to
symbol. The sequence of statements starts at the .irp directive, and
is terminated by an .endr directive. For each value, symbol is set
to value, and the sequence of statements is assembled. If no value
is listed, the sequence of statements is assembled once, with symbol
set to the null string. To refer to symbol within the sequence of
statements, use \symbol.

For example, assembling

 .irp param,1,2,3
 move d\param,sp@-
 .endr

53

is equivalent to assembling

 move d1,sp@-
 move d2,sp@-
 move d3,sp@-

.irpc

irpc

Synopsis

.irpc symbol,values...

Description

Evaluate a sequence of statements assigning different values to
symbol. The sequence of statements starts at the .irpc directive,
and is terminated by an .endr directive. For each character in value,
symbol is set to the character, and the sequence of statements is
assembled. If no value is listed, the sequence of statements is
assembled once, with symbol set to the null string. To refer to
symbol within the sequence of statements, use \symbol.

For example, assembling

 .irpc param,123
 move d\param,sp@-
 .endr

is equivalent to assembling

 move d1,sp@-
 move d2,sp@-
 move d3,sp@-

54

Chapter 8. Assembler Directives

.lcomm

lcomm

Synopsis

.lcomm symbol, length

Description

Reserve length (an absolute expression) bytes for a local common
denoted by symbol. The section and value of symbol are those of
the new local common. The addresses are allocated in the bss
section, so that at run-time the bytes start off zeroed. symbol is not
declared global (see .global [50]), so is normally not visible to the
linker.

.lflags

lflags

Synopsis

.lflags

Description

The assembler accepts this directive, for compatibility with other
assemblers, but ignores it.

.line

line

Synopsis

.line line-number

55

Description

Even though this is a directive associated with the a.out or b.out
object-code formats, the assembler still recognizes it when
producing COFF output, and treats “ .line ” as though it were the
COFF “ .ln ” if it is found outside a .def/.endef pair.

Inside a .def, “ .line ” is, instead, one of the directives used by
compilers to generate auxiliary symbol information for debugging.

.linkonce

linkonce

Synopsis

.linkonce [type]

Description

Mark the current section so that the linker only includes a single
copy of it. This may be used to include the same section in several
different object files, but ensure that the linker will only include it
once in the final output file. The .linkonce directive must be used
for each instance of the section. Duplicate sections are detected
based on the section name, so it should be unique.

This directive is only supported by a few object file formats; as of
this writing, the only object file format which supports it is the
Portable Executable format used on Windows NT.

The type argument is optional. If specified, it must be one of the
following strings. For example:

.linkonce same_size

Not all types may be supported on all object file formats.

discard
Silently discard duplicate sections. This is the default.

56

Chapter 8. Assembler Directives

one_only
Warn if there are duplicate sections, but still keep only one
copy.

same_size
Warn if any of the duplicates have different sizes.

same_contents
Warn if any of the duplicates do not have exactly the same
contents.

.ln

ln

Synopsis

.ln line-number

Description

“ .ln ” is a synonym for “ .line ” .

.list

list

Synopsis

.list

Description

Control (in conjunction with the .nolist directive) whether or not
assembly listings are generated. These two directives maintain an
internal counter (which is zero initially). .list increments the
counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

57

By default, listings are disabled. When you enable them (with the
-a command line option; see Chapter 3, Assembler Command-Line
Options [11]), the initial value of the listing counter is one.

.long

long

Synopsis

.long expressions

Description

.long is the same as “ .int ” ,see .int [53] .

.macro

macro

Synopsis

.macro

Description

The commands .macro and .endm allow you to define macros that
generate assembly output. For example, this definition specifies a
macro sum that puts a sequence of numbers into memory:

 .macro sum from=0, to=5
 .long \from
 .if \to-\from
 sum "(\from+1)",\to
 .endif
 .endm

58

Chapter 8. Assembler Directives

With that definition, “ SUM 0,5 ” is equivalent to this assembly
input:

 .long 0
 .long 1
 .long 2
 .long 3
 .long 4
 .long 5

.macro macname , .macro macname macargs ...

Begin the definition of a macro called macname. If your macro
definition requires arguments, specify their names after the
macro name, separated by commas or spaces. You can supply
a default value for any macro argument by following the name
with “ =deflt ” . For example, these are all valid .macro
statements:

.macro comm
Begin the definition of a macro called comm, which takes
no arguments.

.macro plus1 p, p1 , .macro plus1 p p1
Either statement begins the definition of a macro called
plus1, which takes two arguments; within the macro
definition, write “ \p ” or “ \p1 ” to evaluate the arguments.

.macro reserve_str p1=0 p2
Begin the definition of a macro called reserve_str, with
two arguments. The first argument has a default value, but
not the second. After the definition is complete, you can
call the macro either as “ reserve_str a,b ” (with “ \p1
” evaluating to a and “ \p2 ” evaluating to b), or as “
reserve_str ,b ” (with “ \p1 ” evaluating as the default,
in this case “ 0 ” ,and “ \p2 ” evaluating to b).

When you call a macro, you can specify the argument values
either by position, or by keyword. For example, “ sum 9,17 ”
is equivalent to “ sum to=17, from=9 ” .

.endm
Mark the end of a macro definition.

59

.exitm
Exit early from the current macro definition.

\@

The assembler maintains a counter of how many macros it has
executed in this pseudo-variable; you can copy that number to
your output with “ \@ ” ,but only within a macro definition .

.nolist

nolist

Synopsis

.nolist

Description

Control (in conjunction with the .list directive) whether or not
assembly listings are generated. These two directives maintain an
internal counter (which is zero initially). .list increments the
counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

.octa

octa

Synopsis

.octa bignums

Description

This directive expects zero or more bignums, separated by commas.
For each bignum, it emits a 16-byte integer.

The term “octa” comes from contexts in which a “word” is two
bytes; hence octa-word for 16 bytes.

60

Chapter 8. Assembler Directives

.org

org

Synopsis

.org new-lc, fill

Description

Advance the location counter of the current section to new-lc.
new-lc is either an absolute expression or an expression with the
same section as the current subsection. That is, you can't use .org
to cross sections: if new-lc has the wrong section, the .org directive
is ignored. To be compatible with former assemblers, if the section
of new-lc is absolute, the assembler issues a warning, then pretends
the section of new-lc is the same as the current subsection.

.org may only increase the location counter, or leave it unchanged;
you cannot use .org to move the location counter backwards.

Because the assembler tries to assemble programs in one pass,
new-lc may not be undefined. If you really detest this restriction
we eagerly await a chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not to
the start of the subsection. This is compatible with other people's
assemblers.

When the location counter (of the current subsection) is advanced,
the intervening bytes are filled with fill which should be an
absolute expression. If the comma and fill are omitted, fill
defaults to zero.

.p2align[wl]

p2align[wl]

Synopsis

.p2align[wl] abs-expr, abs-expr, abs-expr

61

Description

Pad the location counter (in the current subsection) to a particular
storage boundary. The first expression (which must be absolute)
is the number of low-order zero bits the location counter must have
after advancement. For example “ .p2align 3 ” advances the
location counter until it a multiple of 8. If the location counter is
already a multiple of 8, no change is needed.

The second expression (also absolute) gives the fill value to be
stored in the padding bytes. It (and the comma) may be omitted.
If it is omitted, the padding bytes are normally zero. However, on
some systems, if the section is marked as containing code and the
fill value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is
present, it is the maximum number of bytes that should be skipped
by this alignment directive. If doing the alignment would require
skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second
argument) entirely by simply using two commas after the required
alignment; this can be useful if you want the alignment to be filled
with no-op instructions when appropriate.

The .p2alignw and .p2alignl directives are variants of the .p2align
directive. The .p2alignw directive treats the fill pattern as a two
byte word value. The .p2alignl directives treats the fill pattern as
a four byte longword value. For example, .p2alignw 2,0x368d will
align to a multiple of 4. If it skips two bytes, they will be filled in
with the value 0x368d (the exact placement of the bytes depends
upon the endianness of the processor). If it skips 1 or 3 bytes, the
fill value is undefined.

.psize

psize

Synopsis

.psize lines, columns

62

Chapter 8. Assembler Directives

Description

Use this directive to declare the number of lines and, optionally,
the number of columns to use for each page, when generating
listings.

If you do not use .psize, listings use a default line-count of 60. You
may omit the comma and columns specification; the default width
is 200 columns.

The assembler generates form feeds whenever the specified number
of lines is exceeded (or whenever you explicitly request one, using
.eject).

If you specify lines as 0, no form feeds are generated save those
explicitly specified with .eject.

.quad

quad

Synopsis

.quad bignums

Description

.quad expects zero or more bignums, separated by commas. For
each bignum, it emits an 8-byte integer. If the bignum won't fit in
8 bytes, it prints a warning message; and just takes the lowest order
8 bytes of the bignum. The term "quad" comes from contexts in
which a "word" is two bytes; hence quad-word for 8 bytes.

.rept

rept

Synopsis

.rept count

63

Description

Repeat the sequence of lines between the .rept directive and the
next .endr directive count times.

For example, assembling

 .rept 3
 .long 0
 .endr

is equivalent to assembling

 .long 0
 .long 0
 .long 0

.sbttl

sbttl

Synopsis

.sbttl "sub heading"

Description

Use sub heading as the title (third line, immediately after the title
line) when generating assembly listings.

This directive affects subsequent pages, as well as the current page
if it appears within ten lines of the top of a page.

.scl

scl

64

Chapter 8. Assembler Directives

Synopsis

.scl class

Description

Set the storage-class value for a symbol. This directive may only
be used inside a .def/.endef pair. Storage class may flag whether
a symbol is static or external, or it may record further symbolic
debugging information.

.section

section

Synopsis

.section name, subsection

Description

Assemble the following code into end of subsection numbered
subsection in the COFF named section name. If you omit
subsection, the assembler uses subsection number zero. “ .section
.text ” is equivalent to the .text directive; “ .section .data ” is
equivalent to the .data directive.

For COFF targets, the .section directive is used in one of the
following ways:

 .section name[, "flags"]
 .section name[, subsegment]

If the optional argument is quoted, it is taken as flags to use for the
section. Each flag is a single character. The following flags are
recognized:

b

bss section (uninitialized data)

65

n

section is not loaded

d , w
writable section

d

data section

r

read-only section

x

executable section

For ELF targets, the .section directive is used in one of the
following ways:

 .section name[, "flags"]
 .section name[, subsegment]

If the optional argument is quoted, it is taken as flags to use for the
section. Each flag is a single character. The following flags are
recognized:

a

allocate only

w

writable section

d

data section (same as >w)

r

read-only section

x

executable section

If no flags are specified, the default flags depend upon the section
name. If the section name is not recognized, the default will be for
the section to be loaded and writable.

66

Chapter 8. Assembler Directives

If the optional argument to the .section directive is not quoted, it
is taken as a subsegment number (see Section 5.3,
“Sub-Sections” [28]).

.set

set

Synopsis

.set symbol, expression

Description

Set the value of symbol to expression. This changes symbol's value
and type to conform to expression. If symbol was flagged as
external, it remains flagged. (See Section 6.5, “Symbol
Attributes” [33] .)

You may .set a symbol many times in the same assembly.

If you .set a global symbol, the value stored in the object file is the
last value stored into it.

.short

short

Synopsis

.short expressions

Description

.short is normally the same as “ .word ” .See .word [73] .

In some configurations, however, .short and .word generate
numbers of different lengths; see Chapter 2, Overview [7] .

67

.single

single

Synopsis

.single flonums

Description

This directive assembles zero or more flonums, separated by
commas. It has the same effect as .float. See Chapter 2,
Overview [7] .

.size

size

Synopsis

.size

Description

This directive is generated by compilers to include auxiliary
debugging information in the symbol table. It is only permitted
inside .def/.endef pairs.

.skip

skip

Synopsis

.skip size, fill

68

Chapter 8. Assembler Directives

Description

This directive emits size bytes, each of value fill. Both size and
fill are absolute expressions. If the comma and fill are omitted,
fill is assumed to be zero. This is the same as “ .space ” .

.space

space

Synopsis

.space size, fill

Description

This directive emits size bytes, each of value fill. Both size and
fill are absolute expressions. If the comma and fill are omitted,
fill is assumed to be zero. This is the same as “ .skip ” .

.stabd, .stabn, .stabs

.stabd, .stabn, .stabs

Synopsis

.stabd, .stabn, .stabs

Description

There are three directives that begin “ .stab ” .All emit symbols
(see Chapter 6, Assembler Symbols [31]), for use by symbolic
debuggers. The symbols are not entered in the the assembler hash
table: they cannot be referenced elsewhere in the source file. Up
to five fields are required:

string

This is the symbol's name. It may contain any character except
“ \000 ” ,so is more general than ordinary symbol names. Some

69

debuggers used to code arbitrarily complex structures into
symbol names using this field.

type

An absolute expression. The symbol's type is set to the low 8
bits of this expression. Any bit pattern is permitted, but the
linker and debuggers choke on silly bit patterns.

other

An absolute expression. The symbol's “other” attribute is set
to the low 8 bits of this expression.

desc

An absolute expression. The symbol's descriptor is set to the
low 16 bits of this expression.

value

An absolute expression which becomes the symbol's value.

If a warning is detected while reading a .stabd, .stabn, or .stabs
statement, the symbol has probably already been created; you get
a half-formed symbol in your object file. This is compatible with
earlier assemblers!

.stabd type, other, desc
The “name” of the symbol generated is not even an empty
string. It is a null pointer, for compatibility. Older assemblers
used a null pointer so they didn't waste space in object files
with empty strings.

The symbol's value is set to the location counter, relocatably.
When your program is linked, the value of this symbol is the
address of the location counter when the .stabd was assembled.

.stabn type, other, desc, value
The name of the symbol is set to the empty string "".

.stabs string , type, other, desc, value
All five fields are specified.

.string

string

70

Chapter 8. Assembler Directives

Synopsis

.string "str"

Description

Copy the characters in str to the object file. You may specify more
than one string to copy, separated by commas. Unless otherwise
specified for a particular machine, the assembler marks the end of
each string with a zero byte. You can use any of the escape
sequences described in Section 4.6.1.1, “Strings” [21] .

.tag

tag

Synopsis

.tag structname

Description

This directive is generated by compilers to include auxiliary
debugging information in the symbol table. It is only permitted
inside .def/.endef pairs. Tags are used to link structure definitions
in the symbol table with instances of those structures.

.text

text

Synopsis

.text subsection

71

Description

Tells the assembler to assemble the following statements onto the
end of the text subsection numbered subsection, which is an
absolute expression. If subsection is omitted, subsection number
zero is used.

.title

title

Synopsis

.title "heading"

Description

Use heading as the title (second line, immediately after the source
file name and page number) when generating assembly listings.

This directive affects subsequent pages, as well as the current page
if it appears within ten lines of the top of a page.

.type

type

Synopsis

.type int

Description

This directive, permitted only within .def/.endef pairs, records the
integer int as the type attribute of a symbol table entry.

72

Chapter 8. Assembler Directives

.val

val

Synopsis

.val addr

Description

This directive, permitted only within .def / .endef pairs, records
the address addr as the value attribute of a symbol table entry.

.word

word

Synopsis

.word expressions

Description

This directive expects zero or more expressions, of any section,
separated by commas.

For each expression, the assembler emits a 16 or 32-bit number,
according to the target word size.

73

74

II
Using the Linker

Linker OverviewChapter 9

The linker combines a number of object and archive files, relocates
their data and ties up symbol references. It is usually the last step
in a compilation.

The linker accepts Linker Command Language files written in a
superset of AT&T's Link Editor Command Language syntax, to
provide explicit and total control over the linking process.

The linker uses the general-purpose BFD libraries to operate on
object files. This allows the linker to read, combine, and write
object files in many different formats for example, COFF or Intel
Hex. Different formats may be linked together to produce any
available kind of object file. See Appendix A, BFD [171] ,for more
information.

Aside from its flexibility, the linker is more helpful than other
linkers in providing diagnostic information. Many linkers abandon
execution immediately upon encountering an error; whenever
possible, the linker continues executing, allowing you to identify
other errors (or, in some cases, to get an output file in spite of the
error).

77

78

Linker InvocationChapter 10

The linker is meant to cover a broad range of situations, and to be
as compatible as possible with other linkers. As a result, you have
many choices to control its behavior.

10.1. Command Line Options

The linker supports a plethora of command-line options, but in
practice few of them are used in any particular context. For
example, to link a file hello.o:

$

prefix-ld -o output crt0.o hello.o -lc

This tells the linker to produce a file called output as the result of
linking the file crt0.o with hello.o and the library libc.a, which
will come from the standard search directories. (See the discussion
of the -l option below.)

79

The command-line options to the linker may be specified in any
order, and may be repeated at will. Repeating most options with a
different argument will either have no further effect, or override
prior occurrences (those further to the left on the command line)
of that option. Options that may be meaningfully specified more
than once are noted in the descriptions below.

Non-option arguments are objects files that are to be linked
together. They may follow, precede, or be mixed in with
command-line options, except that an object file argument may
not be placed between an option and its argument.

Usually the linker is invoked with at least one object file, but you
can specify other forms of binary input files using -l, -R, and the
script command language. If no binary input files at all are
specified, the linker does not produce any output, and issues the
message “ No input files ” .

If the linker can not recognize the format of an object file, it will
assume that it is a linker script. A script specified in this way
augments the main linker script used for the link (either the default
linker script or the one specified by using -T). This feature permits
the linker to link against a file that appears to be an object or an
archive, but actually merely defines some symbol values, or uses
INPUT or GROUP to load other objects. Note that specifying a
script in this way should only be used to augment the main linker
script; if you want to use some command that logically can only
appear once, such as the SECTIONS or MEMORY command,
you must replace the default linker script using the -T option. See
Chapter 11, Linker Command Language [97] .

For options whose names are a single letter, option arguments either
must follow the option letter without intervening white-space, or
be given as separate arguments immediately following the option
that requires them.

For options whose names are multiple letters, either one dash or
two can precede the option name; for example, --oformat and
--oformat are equivalent. Arguments to multiple-letter options
must either be separated from the option name by an equals sign,
or be given as separate arguments immediately following the option
that requires them. For example, --oformat srec and
--oformat=srec are equivalent. Unique abbreviations of the names
of multiple-letter options are accepted.

80

Chapter 10. Linker Invocation

-b input-format , --format= input-format

The linker is configured to support more than one kind of object
file. You can use the -b option to specify the binary format for
input object files that follow this option on the command line.
You don't usually need to specify this, as the linker should be
configured to expect as a default input format the most usual
format on each machine. input-format is a text string, the name
of a particular format supported by the BFD libraries. (You
can list the available binary formats with objdump -i .) See
Appendix A, BFD [171] .

You may want to use this option if you are linking files with
an unusual binary format. You can also use -b to switch formats
explicitly (when linking object files of different formats), by
including “ -b input-format ” before each group of object
files in a particular format.

The default format is taken from the environment variable
GNUPREFIX. See Section 10.2, “Environment Variables” [95]
.You can also define the input format from a script, using the
command PREFIX; see Section 11.7, “Option Commands” [125]
.

-d , -dc , -dp
These three options are equivalent; multiple forms are
supported for compatibility with other linkers. They assign
space to common symbols even if a relocatable output file is
specified (with -r). The script command
FORCE_COMMON_ALLOCATION has the same effect.
See Section 11.7, “Option Commands” [125] .

-e entry , --entry= entry

Use entry as the explicit symbol for beginning execution of
your program, rather than the default entry point. See
Section 11.5, “The Entry Point” [120] ,for a discussion of
defaults and other ways of specifying the entry point.

-E , --export-dynamic
When creating a dynamically linked executable, add all
symbols to the dynamic symbol table. Normally, the dynamic
symbol table contains only symbols that are used by a dynamic
object. This option is needed for some uses of dlopen.

81

Command Line Options

-f , --auxiliary name
When creating an ELF shared object, set the internal
DT_AUXILIARY field to the specified name. This tells the
dynamic linker that the symbol table of the shared object should
be used as an auxiliary filter on the symbol table of the shared
object name.

If you later link a program against this filter object, then, when
you run the program, the dynamic linker will see the
DT_AUXILIARY field. If the dynamic linker resolves any
symbols from the filter object, it will first check whether there
is a definition in the shared object name. If there is one, it will
be used instead of the definition in the filter object. The shared
object name need not exist. Thus the shared object name may
be used to provide an alternative implementation of certain
functions, perhaps for debugging or for machine specific
performance.

This option may be specified more than once. The
DT_AUXILIARY entries will be created in the order in which
they appear on the command line.

-F name , --filter name

When creating an ELF shared object, set the internal
DT_FILTER field to the specified name. This tells the dynamic
linker that the symbol table of the shared object that is being
created should be used as a filter on the symbol table of the
shared object name.

If you later link a program against this filter object, then, when
you run the program, the dynamic linker will see the
DT_FILTER field. The dynamic linker will resolve symbols
according to the symbol table of the filter object as usual, but
it will actually link to the definitions found in the shared object
name. Thus the filter object can be used to select a subset of the
symbols provided by the object name.

Some older linkers used the -F option throughout a compilation
tool chain for specifying object-file format for both input and
output object files. The XGC linker uses other mechanisms for
this purpose: the -b, --format, --oformat options, the PREFIX
command in linker scripts, and the GNUPREFIX environment
variable. The linker will ignore the -F option when not creating
an ELF shared object.

82

Chapter 10. Linker Invocation

--force-exe-suffix

Make sure that an output file has a .exe suffix.

If a successfully built fully linked output file does not have a
.exe or .dll suffix, this option forces the linker to copy the
output file to one of the same name with a .exe suffix. This
option is useful when using unmodified UNIX makefiles on a
Microsoft Windows host, since some versions of Windows
won't run an image unless it ends in a .exe suffix.

-g
Ignored. Provided for compatibility with other tools.

-G value , --gpsize= value

Set the maximum size of objects to be optimized using the GP
register to size. This is only meaningful for object file formats
such as ECOFF, which supports putting large and small objects
into different sections. This is ignored for other object file
formats.

-h name , -soname= name

When creating an ELF shared object, set the internal
DT_SOGNAT field to the specified name. When an executable
is linked with a shared object that has a DT_SOGNAT field,
then when the executable is run the dynamic linker will attempt
to load the shared object specified by the DT_SOGNAT field
rather than the using the file name given to the linker.

-i
Perform an incremental link (same as option -r).

-l archive , --library= archive

Add archive file archive to the list of files to link. This option
may be used any number of times. The linker will search its
path-list for occurrences of libarchive.a for every archive
specified.

On systems that support shared libraries, the linker may also
search for libraries with extensions other than .a. Specifically,
on ELF and Sun-OS systems, the linker will search a directory
for a library with an extension of .so before searching for one
with an extension of .a. By convention, a .so extension
indicates a shared library.

83

Command Line Options

The linker will search an archive only once, at the location
where it is specified on the command line. If the archive defines
a symbol that was undefined in some object which appeared
before the archive on the command line, the linker will include
the appropriate file(s) from the archive. However, an undefined
symbol in an object appearing later on the command line will
not cause the linker to search the archive again.

See the -(option for a way to force the linker to search archives
multiple times.

You may list the same archive multiple times on the command
line.

-L searchdir , --library-path= searchdir

Add path searchdir to the list of paths that the linker will
search for archive libraries and the linker control scripts. You
may use this option any number of times. The directories are
searched in the order in which they are specified on the
command line. Directories specified on the command line are
searched before the default directories. All -L options apply
to all -l options, regardless of the order in which the options
appear.

The default set of paths searched (without being specified with
-L) depends on which emulation mode the linker is using, and
in some cases also on how it was configured. See Section 10.2,
“Environment Variables” [95] .

The paths can also be specified in a link script with the
SEARCH_DIR command. Directories specified this way are
searched at the point in which the linker script appears in the
command line.

-m emulation

Emulate the emulation linker. You can list the available
emulations with the --verbose or -V options. The default
depends on how the linker was configured.

-M , --print-map
Print (to the standard output) a link map diagnostic information
about where symbols are mapped by the linker ,and information
on global common storage allocation.

84

Chapter 10. Linker Invocation

-n , --nmagic
Set the text segment to be read only, and mark the output as
NMAGIC if possible.

-N , --omagic
Set the text and data sections to be readable and writable. Also,
do not page-align the data segment. If the output format
supports UNIX style magic numbers, mark the output as
OMAGIC.

-o output , --output= output

Use output as the name for the program produced by the linker;
if this option is not specified, the name a.out is used by default.
The script command OUTPUT can also specify the output file
name.

-r , --relocatable
Generate relocatable output that is, generate an output file that
can in turn serve as input to the linker .This is often called
partial linking .As a side effect, in environments that support
standard UNIX magic numbers, this option also sets the output
file's magic number to OMAGIC. If this option is not specified,
an absolute file is produced. When linking C++ programs, this
option will not resolve references to constructors; to do that,
use -Ur.

This option does the same thing as -i.

-R filename , --just-symbols= filename

Read symbol names and their addresses from filename, but do
not relocate it or include it in the output. This allows your
output file to refer symbolically to absolute locations of
memory defined in other programs. You may use this option
more than once.

For compatibility with other ELF linkers, if the -R option is
followed by a directory name, rather than a file name, it is
treated as the -rpath option.

-s , --strip-all
Omit all symbol information from the output file.

-S , --strip-debug
Omit debugger symbol information (but not all symbols) from
the output file.

85

Command Line Options

-t , --trace
Print the names of the input files as the linker processes them.

-T commandfile , --script= commandfile

Read link commands from the file commandfile. These
commands replace the linker's default link script (rather than
adding to it), so commandfile must specify everything necessary
to describe the target format. You must use this option if you
want to use a command that can only appear once in a linker
script, such as the SECTIONS or MEMORY command. See
Chapter 11, Linker Command Language [97] .If commandfile
does not exist, the linker looks for it in the directories specified
by any preceding -L options. Multiple -T options accumulate.

-u symbol , --undefined= symbol

Force symbol to be entered in the output file as an undefined
symbol. Doing this may, for example, trigger linking of
additional modules from standard libraries. -u may be repeated
with different option arguments to enter additional undefined
symbols.

-v , --version , -V
Display the version number for the linker .The -V option also
lists the supported emulations.

-x , --discard-all
Delete all local symbols.

-X , --discard-locals
Delete all temporary local symbols. For most targets, this is
all local symbols whose names begin with “ L ” .

-y symbol , --trace-symbol= symbol

Print the name of each linked file in which symbol appears.
This option may be given any number of times. On many
systems it is necessary to prepend an underscore.

This option is useful when you have an undefined symbol in
your link but don't know where the reference is coming from.

-Y path
Add path to the default library search path. This option exists
for Solaris compatibility.

-z keyword
This option is ignored for Solaris compatibility.

86

Chapter 10. Linker Invocation

-(archives -) , --start-group archives --end-group
The archives should be a list of archive files. They may be
either explicit file names, or -l options.

The specified archives are searched repeatedly until no new
undefined references are created. Normally, an archive is
searched only once in the order that it is specified on the
command line. If a symbol in that archive is needed to resolve
an undefined symbol referred to by an object in an archive that
appears later on the command line, the linker would not be
able to resolve that reference. By grouping the archives, they
all be searched repeatedly until all possible references are
resolved.

Using this option has a significant performance cost. It is best
to use it only when there are unavoidable circular references
between two or more archives.

-assert keyword
This option is ignored for Sun-OS compatibility.

-Bdynamic , -dy , -call_shared
Link against dynamic libraries. This is only meaningful on
platforms for which shared libraries are supported. This option
is normally the default on such platforms. The different variants
of this option are for compatibility with various systems. You
may use this option multiple times on the command line: it
affects library searching for -l options that follow it.

-Bstatic , -dn , -non_shared , -static
Do not link against shared libraries. This is only meaningful
on platforms for which shared libraries are supported. The
different variants of this option are for compatibility with
various systems. You may use this option multiple times on
the command line: it affects library searching for -l options
that follow it.

-Bsymbolic
When creating a shared library, bind references to global
symbols to the definition within the shared library, if any.
Normally, it is possible for a program linked against a shared
library to override the definition within the shared library. This
option is only meaningful on ELF platforms that support shared
libraries.

87

Command Line Options

--cref
Output a cross reference table. If a linker map file is being
generated, the cross reference table is printed to the map file.
Otherwise, it is printed on the standard output.

The format of the table is intentionally simple, so that it may
be easily processed by a script if necessary. The symbols are
printed out, sorted by name. For each symbol, a list of file
names is given. If the symbol is defined, the first file listed is
the location of the definition. The remaining files contain
references to the symbol.

--defsym symbol=expression

Create a global symbol in the output file, containing the
absolute address given by expression. You may use this option
as many times as necessary to define multiple symbols in the
command line. A limited form of arithmetic is supported for
the expression in this context: you may give a hexadecimal
constant or the name of an existing symbol, or use + and - to
add or subtract hexadecimal constants or symbols. If you need
more elaborate expressions, consider using the linker command
language from a script (see Section 11.2.6, “Assignment:
Defining Symbols” [101]). Note: there should be no white space
between symbol, the equals sign (=), and expression.

--dynamic-linker file
Set the name of the dynamic linker. This is only meaningful
when generating dynamically linked ELF executables. The
default dynamic linker is normally correct; don't use this unless
you know what you are doing.

-EB
Link big-endian objects. This affects the default output format.

-EL
Link little-endian objects. This affects the default output format.

--help
Print a summary of the command-line options on the standard
output and exit.

-Map mapfile
Print to the file mapfile a link map -- diagnostic information
about where symbols are mapped by the linker, and information
on global common storage allocation.

88

Chapter 10. Linker Invocation

--no-keep-memory
The linker normally optimizes for speed over memory usage
by caching the symbol tables of input files in memory. This
option tells the linker to instead optimize for memory usage,
by rereading the symbol tables as necessary. This may be
required if the linker runs out of memory space while linking
a large executable.

--no-whole-archive
Turn off the effect of the --whole-archive option for subsequent
archive files.

--noinhibit-exec
Retain the executable output file whenever it is still usable.
Normally, the linker will not produce an output file if it
encounters errors during the link process; it exits without
writing an output file when it issues any error whatsoever.

--oformat output-format
The linker may be configured to support more than one kind
of object file. If the linker is configured this way, you can use
the --oformat option to specify the binary format for the output
object file. Even when the linker is configured to support
alternative object formats, you don't usually need to specify
this, as the linker should be configured to produce as a default
output format the most usual format on each machine.
output-format is a text string, the name of a particular format
supported by the BFD libraries. (You can list the available
binary formats with “ objdump -i ” .) The script command
OUTPUT_FORMAT can also specify the output format, but this
option overrides it. See Appendix A, BFD [171] .

-qmagic
This option is ignored for Linux compatibility.

-Qy
This option is ignored for SVR4 compatibility.

--relax
An option with machine dependent effects.

On some platforms, the --relax option performs global
optimizations that become possible when the linker resolves
addressing in the program, such as relaxing address modes and
synthesizing new instructions in the output object file.

89

Command Line Options

--retain-symbols-file filename
Retain only the symbols listed in the file filename, discarding
all others. filename is simply a flat file, with one symbol name
per line. This option is especially useful in environments where
a large global symbol table is accumulated gradually, to
conserve run-time memory.

--retain-symbols-file does not discard undefined symbols, or
symbols needed for relocations.

You may only specify --retain-symbols-file once in the
command line. It overrides -s and -S.

--sort-common
This option tells the linker to sort the common symbols by size
when it places them in the appropriate output sections. First
come all the one byte symbols, then all the two bytes, then all
the four bytes, and then everything else. This is to prevent gaps
between symbols due to alignment constraints.

--split-by-file
Similar to --split-by-reloc but creates a new output section for
each input file.

--split-by-reloc count
Tries to creates extra sections in the output file so that no single
output section in the file contains more than count relocations.
This is useful when generating huge relocatable for
down-loading into certain real time kernels with the COFF
object file format; since COFF cannot represent more than
65535 relocations in a single section. Note that this will fail to
work with object file formats that do not support arbitrary
sections. The linker will not split up individual input sections
for redistribution, so if a single input section contains more
than count relocations one output section will contain that
many relocations.

--stats
Compute and display statistics about the operation of the linker,
such as execution time and memory usage.

--traditional-format
For some targets, the output of the linker is different in some
ways from the output of some existing linker. This switch
requests the linker to use the traditional format instead.

90

Chapter 10. Linker Invocation

For example, on Sun-OS, the linker combines duplicate entries
in the symbol string table. This can reduce the size of an output
file with full debugging information by over 30 percent.
Unfortunately, the Sun-OS dbx program can not read the
resulting program (gdb has no trouble). The
--traditional-format switch tells the linker to not combine
duplicate entries.

-Tbss org , -Tdata org , -Ttext org
Use org as the starting address for--respectively--the bss, data,
or the text segment of the output file. org must be a single
hexadecimal integer; for compatibility with other linkers, you
may omit the leading “ 0x ” usually associated with
hexadecimal values.

-Ur
For anything other than C++ programs, this option is equivalent
to -r: it generates relocatable output that is, an output file that
can in turn serve as input to the linker. When linking C++
programs, -Ur does resolve references to constructors, unlike
-r. It does not work to use -Ur on files that were themselves
linked with -Ur; once the constructor table has been built, it
cannot be added to. Use -Ur only for the last partial link, and
-r for the others.

--verbose
Display the version number for the linker and list the linker
emulations supported. Display which input files can and cannot
be opened. Display the linker script if using a default built in
script.

--version-script= version-scriptfile

Specify the name of a version script to the linker. This is
typically used when creating shared libraries to specify
additional information about the version hierarchy for the
library being created. This option is only meaningful on ELF
platforms that support shared libraries. See Section 11.6,
“Version Script” [121] .

--warn-common
Warn when a common symbol is combined with another
common symbol or with a symbol definition. UNIX linkers
allow this somewhat sloppy practice, but linkers on some other
operating systems do not. This option allows you to find
potential problems from combining global symbols.

91

Command Line Options

Unfortunately, some C libraries use this practice, so you may
get some warnings about symbols in the libraries as well as in
your programs.

There are three kinds of global symbols, illustrated here by C
examples:

“ int i = 1; ”
A definition, which goes in the initialized data section of
the output file.

“ extern int i; ”
An undefined reference, which does not allocate space.
There must be either a definition or a common symbol for
the variable somewhere.

“ int i; ”
A common symbol. If there are only (one or more)
common symbols for a variable, it goes in the uninitialized
data area of the output file. The linker merges multiple
common symbols for the same variable into a single
symbol. If they are of different sizes, it picks the largest
size. The linker turns a common symbol into a declaration,
if there is a definition of the same variable.

The --warn-common option can produce five kinds of
warnings. Each warning consists of a pair of lines: the first
describes the symbol just encountered, and the second describes
the previous symbol encountered with the same name. One or
both of the two symbols will be a common symbol.

1. Turning a common symbol into a reference, because there
is already a definition for the symbol.

file(section): warning: common of `symbol'
 overridden by definition

file(section): warning: defined here

2. Turning a common symbol into a reference, because a later
definition for the symbol is encountered. This is the same
as the previous case, except that the symbols are encountered
in a different order.

92

Chapter 10. Linker Invocation

file(section):
 warning: definition of `symbol' overriding
 common file(section):
 warning: common is here

3. Merging a common symbol with a previous same-sized
common symbol.

file(section):
 warning: multiple common of `symbol'

file(section): warning:
 previous common is here

4. Merging a common symbol with a previous larger common
symbol.

file(section):
 warning: common of `symbol' overridden by larger
 common file(section):
 warning: larger common is here

5. Merging a common symbol with a previous smaller common
symbol. This is the same as the previous case, except that
the symbols are encountered in a different order.

file(section): warning: common of `symbol'
 overriding smaller common

file(section): warning: smaller common is here

93

Command Line Options

--warn-constructors
Warn if any global constructors are used. This is only useful
for a few object file formats. For formats like COFF or ELF,
the linker can not detect the use of global constructors.

--warn-multiple-gp
Warn if multiple global pointer values are required in the output
file. This is only meaningful for certain processors, such as the
Alpha. Specifically, some processors put large-valued constants
in a special section. A special register (the global pointer) points
into the middle of this section, so that constants can be loaded
efficiently via a base-register relative addressing mode. Since
the offset in base-register relative mode is fixed and relatively
small (e.g., 16 bits), this limits the maximum size of the
constant pool. Thus, in large programs, it is often necessary to
use multiple global pointer values in order to be able to address
all possible constants. This option causes a warning to be issued
whenever this case occurs.

--warn-once
Only warn once for each undefined symbol, rather than once
per module that refers to it.

--warn-section-align
Warn if the address of an output section is changed because
of alignment. Typically, the alignment will be set by an input
section. The address will only be changed if it not explicitly
specified; that is, if the SECTIONS command does not specify a
start address for the section (see Section 11.4, “Specifying
Output Sections” [108]).

--whole-archive
For each archive mentioned on the command line after the
--whole-archive option, include every object file in the archive
in the link, rather than searching the archive for the required
object files. This is normally used to turn an archive file into
a shared library, forcing every object to be included in the
resulting shared library. This option may be used more than
once.

--wrap symbol
Use a wrapper function for symbol. Any undefined reference
to symbol will be resolved to __wrap_symbol .Any undefined
reference to __real_symbol will be resolved to symbol.

94

Chapter 10. Linker Invocation

This can be used to provide a wrapper for a system function.
The wrapper function should be called __wrap_symbol .If it
wishes to call the system function, it should call
__real_symbol .

Here is a trivial example:

void *
 __wrap_malloc (int c)
 {
 printf ("malloc called with %ld\n", c);
 return __real_malloc (c);
 }

If you link other code with this file using --wrap malloc, then
all calls to malloc will call the function __wrap_malloc instead.
The call to __real_malloc in __wrap_malloc will call the real
malloc function.

You may wish to provide a __real_malloc function as well,
so that links without the --wrap option will succeed. If you do
this, you should not put the definition of __real_malloc in the
same file as __wrap_malloc; if you do, the assembler may
resolve the call before the linker has a chance to wrap it to
malloc.

10.2. Environment Variables

You can change the behavior of the linker with the environment
variable GNUPREFIX.

GNUPREFIX determines the input-file object format if you don't use
-b (or its synonym --format). Its value should be one of the BFD
names for an input format (see Appendix A, BFD [171]). If there
is no GNUPREFIX in the environment, the linker uses the natural
format of the target. If GNUPREFIX is set to default then BFD
attempts to discover the input format by examining binary input
files; this method often succeeds, but there are potential ambiguities,
since there is no method of ensuring that the magic number used
to specify object-file formats is unique. However, the configuration
procedure for BFD on each system places the conventional format
for that system first in the search-list, so ambiguities are resolved
in favor of convention.

95

Environment Variables

96

Linker Command
Language

Chapter 11

The command language provides explicit control over the link
process, allowing complete specification of the mapping between
the linker's input files and its output. It controls:

• input files

• file formats

• output file layout

• addresses of sections

• placement of common blocks

You may supply a command file (also known as a linker script) to
the linker either explicitly through the -T option, or implicitly as
an ordinary file. Normally you should use the -T option. An implicit
linker script should only be used when you want to augment, rather
than replace, the default linker script; typically an implicit linker
script would consist only of INPUT or GROUP commands.

If the linker opens a file that it cannot recognize as a supported
object or archive format, nor as a linker script, it reports an error.

97

11.1. Linker Scripts

The linker command language is a collection of statements; some
are simple keywords setting a particular option, some are used to
select and group input files or name output files; and two statement
types have a fundamental and pervasive impact on the linking
process.

The most fundamental command of the linker command language
is the SECTIONS command (see Section 11.4, “Specifying Output
Sections” [108]). Every meaningful command script must have a
SECTIONS command: it specifies a "picture" of the output file's
layout, in varying degrees of detail. No other command is required
in all cases.

The MEMORY command complements SECTIONS by describing the
available memory in the target architecture. This command is
optional; if you don't use a MEMORY command, the linker assumes
sufficient memory is available in a contiguous block for all output.
See Section 11.3, “Memory Layout” [107] .

You may include comments in linker scripts just as in C: delimited
by “ /* ” and “ */ ” .As in C, comments are syntactically equivalent
to white-space.

11.2. Expressions

Many useful commands involve arithmetic expressions. The syntax
for expressions in the command language is identical to that of C
expressions, with the following features:

• All expressions evaluated as integers and are of “long” or
“unsigned long” type.

• All constants are integers.

• All of the C arithmetic operators are provided.

• You may reference, define, and create global variables.

• You may call special purpose built-in functions.

98

Chapter 11. Linker Command Language

11.2.1. Integers

An octal integer is “ 0 ” followed by zero or more of the octal digits
(“ 01234567 ”).

_as_octal = 0157255;

A decimal integer starts with a non-zero digit followed by zero or
more digits (“ 0123456789 ”).

_as_decimal = 57005;

A hexadecimal integer is “ 0x ” or “ 0X ” followed by one or more
hexadecimal digits chosen from “ 0123456789abcdefABCDEF ” .

_as_hex = 0xdead;

To write a negative integer, use the prefix operator - (see
Section 11.2.4, “Operators” [101]).

_as_neg = -57005;

Additionally the suffixes K and M may be used to scale a constant
by respectively. For example, the following all refer to the same
quantity:

 _fourk_1 = 4K;
 _fourk_2 = 4096;
 _fourk_3 = 0x1000;

11.2.2. Symbol Names

Unless quoted, symbol names start with a letter, underscore, or
point and may include any letters, underscores, digits, points, and
hyphens. Unquoted symbol names must not conflict with any
keywords. You can specify a symbol that contains odd characters
or has the same name as a keyword, by surrounding the symbol
name in double quotes:

99

Integers

 "SECTION" = 9;
 "with a space" = "also with a space" + 10;

Since symbols can contain many non-alphabetic characters, it is
safest to delimit symbols with spaces. For example, “ A-B ” is one
symbol, whereas “ A- B ” is an expression involving subtraction.

11.2.3. The Location Counter

The special linker variable dot “ . ” always contains the current
output location counter. Since the . always refers to a location in
an output section, it must always appear in an expression within a
SECTIONS command. The . symbol may appear anywhere that an
ordinary symbol is allowed in an expression, but its assignments
have a side effect. Assigning a value to the . symbol will cause the
location counter to be moved. This may be used to create holes in
the output section. The location counter may never be moved
backwards.

SECTIONS
 {
 output :
 {
 file1(.text)
 . = . + 1000;
 file2(.text)
 . += 1000;
 file3(.text)
 } = 0x1234;
 }

In the previous example, file1 is located at the beginning of the
output section, then there is a 1000 byte gap. Then file2 appears,
also with a 1000 byte gap following before file3 is loaded. The
notation “ =0x1234 ” specifies what data to write in the gaps (see
Section 11.4.4, “Optional Section Attributes” [116]).

100

Chapter 11. Linker Command Language

11.2.4. Operators

The linker recognizes the standard C set of arithmetic operators,
with the standard bindings and precedence levels:

OperatorsAssociativityPrecedence

 (Highest)

!- ~aleft1

*/ %left2

+-left3

>> <<left4

== != > < <= >=left5

&left6

|left7

&&left8

||left9

?:right10

&= += -= *= /=bright11

 (Lowest)
aPrefix operators
b See Section 11.2.6, “Assignment: Defining Symbols” [101]

11.2.5. Evaluation

The linker uses lazy evaluation for expressions; it only calculates
an expression when absolutely necessary. The linker needs the
value of the start address, and the lengths of memory regions, in
order to do any linking at all; these values are computed as soon
as possible when the linker reads in the command file. However,
other values (such as symbol values) are not known or needed until
after storage allocation. Such values are evaluated later, when other
information (such as the sizes of output sections) is available for
use in the symbol assignment expression.

11.2.6. Assignment: Defining Symbols

You may create global symbols, and assign values (addresses) to
global symbols, using any of the C assignment operators:

101

Operators

symbol = expression ;

symbol &= expression ;

symbol += expression ;

symbol -= expression ;

symbol *= expression ;

symbol /= expression ;

Two things distinguish assignment from other operators in linker
expressions.

• Assignment may only be used at the root of an expression; “
a=b+3; ” is allowed, but “ a+b=3; ” is an error.

• You must place a trailing semicolon (;) at the end of an
assignment statement.

Assignment statements may appear:

• as commands in their own right in the linker script; or

• as independent statements within a SECTIONS command; or

• as part of the contents of a section definition in a SECTIONS
command.

The first two cases are equivalent in effect both define a symbol
with an absolute address. The last case defines a symbol whose
address is relative to a particular section (see Section 11.4,
“Specifying Output Sections” [108]).

When a linker expression is evaluated and assigned to a variable,
it is given either an absolute or a relocatable type. An absolute
expression type is one in which the symbol contains the value that
it will have in the output file; a relocatable expression type is one
in which the value is expressed as a fixed offset from the base of
a section.

The type of the expression is controlled by its position in the script
file. A symbol assigned within a section definition is created relative
to the base of the section; a symbol assigned in any other place is
created as an absolute symbol. Since a symbol created within a
section definition is relative to the base of the section, it will remain
relocatable if relocatable output is requested. A symbol may be
created with an absolute value even when assigned to within a
section definition by using the absolute assignment function

102

Chapter 11. Linker Command Language

ABSOLUTE. For example, to create an absolute symbol whose address
is the last byte of an output section named .data:

SECTIONS{ ...
 .data :
 {
 *(.data)
 _edata = ABSOLUTE(.) ;
 }
 ... }

The linker tries to put off the evaluation of an assignment until all
the terms in the source expression are known (see Section 11.2.5,
“Evaluation” [101]). For instance, the sizes of sections cannot be
known until after allocation, so assignments dependent upon these
are not performed until after allocation. Some expressions, such
as those depending upon the location counter dot, “ . ” must be
evaluated during allocation. If the result of an expression is
required, but the value is not available, then an error results. For
example, a script like the following

SECTIONS { ...
 text 9+this_isnt_constant :
 { ...
 }
 ... }

will cause the error message “Non constant expression for initial
address ” .

In some cases, it is desirable for a linker script to define a symbol
only if it is referenced, and only if it is not defined by any object
included in the link. For example, traditional linkers defined the
symbol “ etext ” .However, ANSI C requires that the user be able
to use “ etext ” as a function name without encountering an error.
The PROVIDE keyword may be used to define a symbol, such as “
etext ” ,only if it is referenced but not defined. The syntax is
PROVIDE(symbol = expression) .

103

Assignment: Defining Symbols

11.2.7. Arithmetic Functions

The command language includes a number of built-in functions
for use in link script expressions.

ABSOLUTE(exp)

Return the absolute (non-relocatable, as opposed to
non-negative) value of the expression exp. Primarily useful to
assign an absolute value to a symbol within a section definition,
where symbol values are normally section-relative.

ADDR(section)

Return the absolute address of the named section. Your script
must previously have defined the location of that section. In
the following example, symbol_1 and symbol_2 are assigned
identical values:

SECTIONS{ ...
 .output1 :
 {
 start_of_output_1 = ABSOLUTE(.);
 ...
 }
 .output :
 {
 symbol_1 = ADDR(.output1);
 symbol_2 = start_of_output_1;
 }
 ... }

LOADADDR(section)

Return the absolute load address of the named section. This
is normally the same as ADDR, but it may be different if the AT
keyword is used in the section definition (see Section 11.4.4,
“Optional Section Attributes” [116]).

ALIGN(exp)

Return the result of the current location counter (.) aligned to
the next exp boundary. exp must be an expression whose value
is a power of two. This is equivalent to

104

Chapter 11. Linker Command Language

 (. + exp - 1) & ~(exp - 1)

ALIGN doesn't change the value of the location counter it just
does arithmetic on it. As an example, to align the output .data
section to the next 0x2000 byte boundary after the preceding
section and to set a variable within the section to the next
0x8000 boundary after the input sections:

SECTIONS{ ...
 .data ALIGN(0x2000): {
 *(.data)
 variable = ALIGN(0x8000);
 }
 ... }

The first use of ALIGN in this example specifies the location of
a section because it is used as the optional start attribute of a
section definition (see Section 11.4.4, “Optional Section
Attributes” [116]). The second use simply defines the value of
a variable.

The built-in NEXT is closely related to ALIGN.

DEFINED(symbol)

Return 1 if symbol is in the linker global symbol table and is
defined, otherwise return 0. You can use this function to
provide default values for symbols. For example, the following
command-file fragment shows how to set a global symbol
begin to the first location in the .text section but if a symbol
called begin already existed, its value is preserved:

SECTIONS{ ...
 .text : {
 begin = DEFINED(begin) ? begin : . ;
 ...
 }
 ... }

105

Arithmetic Functions

NEXT(exp)

Return the next unallocated address that is a multiple of exp.
This function is closely related to ALIGN(exp) ; unless you
use the MEMORY command to define discontinuous memory for
the output file, the two functions are equivalent.

SIZEOF(section)

Return the size in bytes of the named section, if that section
has been allocated. In the following example, symbol_1 and
symbol_2 are assigned identical values:

SECTIONS{ ...
 .output {
 .start = . ;
 ...
 .end = . ;
 }
 symbol_1 = .end - .start ;
 symbol_2 = SIZEOF(.output);
 ... }

SIZEOF_HEADERS , sizeof_headers
Return the size in bytes of the output file's headers. You can
use this number as the start address of the first section, if you
choose, to facilitate paging.

MAX(exp1, exp2)

Returns the maximum of exp1 and exp2.

MIN(exp1, exp2)

Returns the minimum of exp1 and exp2.

11.2.8. Semicolons

Semicolons (;) are required in the following places. In all other
places they can appear for esthetic reasons but are otherwise
ignored.

Assignment

Semicolons must appear at the end of assignment expressions.
See Section 11.2.6, “Assignment: Defining Symbols” [101] .

106

Chapter 11. Linker Command Language

11.3. Memory Layout

The linker's default configuration permits allocation of all available
memory. You can override this configuration by using the MEMORY
command. The MEMORY command describes the location and size
of blocks of memory in the target. By using it carefully, you can
describe which memory regions may be used by the linker, and
which memory regions it must avoid. The linker does not shuffle
sections to fit into the available regions, but does move the
requested sections into the correct regions and issue errors when
the regions become too full.

A command file may contain at most one use of the MEMORY
command; however, you can define as many blocks of memory
within it as you wish. The syntax is:

MEMORY
 {

name (attr) : ORIGIN = origin, LENGTH = len
 ...
 }

name

is a name used internally by the linker to refer to the region.
Any symbol name may be used. The region names are stored
in a separate name space, and will not conflict with symbols,
file names or section names. Use distinct names to specify
multiple regions.

(attr)

is an optional list of attributes, permitted for compatibility with
the AT&T linker but not used by the linker beyond checking
that the attribute list is valid. Valid attribute lists must be made
up of the characters "LIRWX". If you omit the attribute list, you
may omit the parentheses around it as well.

origin

is the start address of the region in physical memory. It is an
expression that must evaluate to a constant before memory
allocation is performed. The keyword ORIGIN may be
abbreviated to org or o (but not, for example, “ ORG ”).

107

Memory Layout

len

is the size in bytes of the region (an expression). The keyword
LENGTH may be abbreviated to len or l.

For example, to specify that memory has two regions available for
allocation one starting at 0 for 256 kilobytes, and the other starting
at 0x40000000 for four megabytes:

MEMORY
 {
 rom : ORIGIN = 0, LENGTH = 256K
 ram : org = 0x40000000, l = 4M
 }

Once you have defined a region of memory named mem, you can
direct specific output sections there by using a command ending
in “ >mem ” within the SECTIONS command (see Section 11.4.4,
“Optional Section Attributes” [116]). If the combined output
sections directed to a region are too big for the region, the linker
will issue an error message.

11.4. Specifying Output Sections

The SECTIONS command controls exactly where input sections are
placed into output sections, their order in the output file, and to
which output sections they are allocated.

You may use at most one SECTIONS command in a script file, but
you can have as many statements within it as you wish. Statements
within the SECTIONS command can do one of three things:

• define the entry point;

• assign a value to a symbol;

• describe the placement of a named output section, and which
input sections go into it.

You can also use the first two operations defining the entry point
and defining symbols outside the SECTIONS command: see
Section 11.5, “The Entry Point” [120] and Section 11.2.6,
“Assignment: Defining Symbols” [101] .They are permitted here as
well for your convenience in reading the script, so that symbols

108

Chapter 11. Linker Command Language

and the entry point can be defined at meaningful points in your
output-file layout.

If you do not use a SECTIONS command, the linker places each input
section into an identically named output section in the order that
the sections are first encountered in the input files. If all input
sections are present in the first file, for example, the order of
sections in the output file will match the order in the first input file.

11.4.1. Section Definitions

The most frequently used statement in the SECTIONS command is
the section definition ,which specifies the properties of an output
section: its location, alignment, contents, fill pattern, and target
memory region. Most of these specifications are optional; the
simplest form of a section definition is

SECTIONS { ...
secname : {
contents

 }
 ... }

secname is the name of the output section, and contents a
specification of what goes there for example, a list of input files
or sections of input files (see Section 11.4.2, “Section
Placement” [110]). As you might assume, the white-space shown
is optional. You do need the colon “ : ” and the braces “ {} ”
,however.

secname must meet the constraints of your output format. In formats
that only support a limited number of sections, such as a.out, the
name must be one of the names supported by the format (a.out,
for example, allows only .text, .data or .bss). If the output format
supports any number of sections, but with numbers and not names
(as is the case for Oasys), the name should be supplied as a quoted
numeric string. A section name may consist of any sequence of
characters, but any name that does not conform to the standard
linker symbol name syntax must be quoted. See Section 6.3,
“Symbol Names” [32] ,Symbols.

109

Section Definitions

The special secname “ /DISCARD/ ” may be used to discard input
sections. Any sections that are assigned to an output section named
“ /DISCARD/ ” are not included in the final link output.

The linker will not create output sections that do not have any
contents. This is for convenience when referring to input sections
that may or may not exist. For example,

.foo { *(.foo) }

will only create a “ .foo ” section in the output file if there is a “
.foo ” section in at least one input file.

11.4.2. Section Placement

In a section definition, you can specify the contents of an output
section by listing particular input files, by listing particular
input-file sections, or by a combination of the two. You can also
place arbitrary data in the section, and define symbols relative to
the beginning of the section.

The contents of a section definition may include any of the
following kinds of statement. You can include as many of these as
you like in a single section definition, separated from one another
by white-space.

filename

You may simply name a particular input file to be placed in
the current output section; all sections from that file are placed
in the current section definition. If the file name has already
been mentioned in another section definition, with an explicit
section name list, then only those sections that have not yet
been allocated are used.

To specify a list of particular files by name:

.data : { afile.o bfile.o cfile.o }

The example also illustrates that multiple statements can be
included in the contents of a section definition, since each file
name is a separate statement.

110

Chapter 11. Linker Command Language

filename(section) , filename(section , section, ...)

, filename(section section ...)

You can name one or more sections from your input files, for
insertion in the current output section. If you wish to specify
a list of input-file sections inside the parentheses, you may
separate the section names by either commas or white-space.

* (section) , *(section, section, ...) , *(section section

...)

Instead of explicitly naming particular input files in a link
control script, you can refer to all files from the linker
command line: use “ * ” instead of a particular file name before
the parenthesized input-file section list.

If you have already explicitly included some files by name, “
* ” refers to all remaining files those whose places in the output
file have not yet been defined.

For example, to copy sections 1 through 4 from an Oasys file
into the .text section of an a.out file, and sections 13 and 14
into the .data section:

SECTIONS {
 .text :{
 *("1" "2" "3" "4")
 }

 .data :{
 *("13" "14")
 }
 }

“ [section ...] ” used to be accepted as an alternate way
to specify named sections from all unallocated input files.
Because some operating systems (VMS) allow brackets in file
names, that notation is no longer supported.

filename(COMMON) , *(COMMON)
Specify where in your output file to place uninitialized data
with this notation. *(COMMON) by itself refers to all uninitialized
data from all input files (so far as it is not yet allocated);
filename(COMMON) refers to uninitialized data from a particular
file. Both are special cases of the general mechanisms for
specifying where to place input-file sections: the linker permits

111

Section Placement

you to refer to uninitialized data as if it were in an input-file
section named COMMON, regardless of the input file's format.

In any place where you may use a specific file or section name,
you may also use a wild-card pattern. The linker handles wild-cards
much as the UNIX shell does. A “ * ” character matches any
number of characters. A “ ? ” character matches any single
character. The sequence “ [chars] ” will match a single instance
of any of the chars; the - character may be used to specify a range
of characters, as in “ [a-z] ” to match any lower case letter. A “ \
” character may be used to quote the following character.

When a file name is matched with a wild-card, the wild-card
characters will not match a “ / ” character (used to separate
directory names on UNIX). A pattern consisting of a single “ * ”
character is an exception; it will always match any file name. In a
section name, the wild-card characters will match a “ / ” character.

Wild-cards only match files that are explicitly specified on the
command line. The linker does not search directories to expand
wild-cards. However, if you specify a simple file name a name
with no wild-card characters in a linker script, and the file name
is not also specified on the command line, the linker will attempt
to open the file as though it appeared on the command line.

In the following example, the command script arranges the output
file into three consecutive sections, named .text, .data, and .bss,
taking the input for each from the correspondingly named sections
of all the input files:

SECTIONS {
 .text : { *(.text) }
 .data : { *(.data) }
 .bss : { *(.bss) *(COMMON) }
 }

The following example reads all of the sections from file all.o
and places them at the start of output section outputa, which starts
at location 0x10000. All of section .input1 from file foo.o follows
immediately, in the same output section. All of section .input2
from foo.o goes into output section outputb, followed by section
.input1 from foo1.o. All of the remaining .input1 and .input2
sections from any files are written to output section outputc.

112

Chapter 11. Linker Command Language

SECTIONS {
 outputa 0x10000 :
 {
 all.o
 foo.o (.input1)
 }
 outputb :
 {
 foo.o (.input2)
 foo1.o (.input1)
 }
 outputc :
 {
 *(.input1)
 *(.input2)
 }
 }

This example shows how wild-card patterns might be used to
partition files. All .text sections are placed in .text, and all .bss
sections are placed in .bss. For all files beginning with an upper
case character, the .data section is placed into .DATA; for all other
files, the .data section is placed into .data.

SECTIONS {
 .text : { *(.text) }
 .DATA : { [A-Z]*(.data) }
 .data : { *(.data) }
 .bss : { *(.bss) }
 }

11.4.3. Section Data Expressions

The foregoing statements arrange, in your output file, data
originating from your input files. You can also place data directly
in an output section from the link command script. Most of these
additional statements involve expressions (see Expressions,
Section 11.2, “Expressions” [98]). Although these statements are
shown separately here for ease of presentation, no such segregation
is needed within a section definition in the SECTIONS command;
you can intermix them freely with any of the statements we've just
described.

113

Section Data Expressions

CREATE_OBJECT_SYMBOLS

Create a symbol for each input file in the current section, set
to the address of the first byte of data written from that input
file. For instance, with a.out files it is conventional to have a
symbol for each input file. You can accomplish this by defining
the output .text section as follows:

SECTIONS {
 .text 0x2020 :
 {
 CREATE_OBJECT_SYMBOLS
 *(.text)
 _etext = ALIGN(0x2000);
 }
 ...
 }

If sample.ld is a file containing this script, and a.o, b.o, c.o,
and d.o are four input files with contents like the following--

/* a.c */

 afunction() { }
 int adata=1;
 int abss;

“ ld -M -T sample.ld a.o b.o c.o d.o ” would create a map
like this, containing symbols matching the object file names:

00000000 A __DYNAMIC
 00004020 B _abss
 00004000 D _adata
 00002020 T _afunction
 00004024 B _bbss
 00004008 D _bdata
 00002038 T _bfunction
 00004028 B _cbss
 00004010 D _cdata
 00002050 T _cfunction
 0000402c B _dbss
 00004018 D _ddata
 00002068 T _dfunction
 00004020 D _edata

114

Chapter 11. Linker Command Language

 00004030 B _end
 00004000 T _etext
 00002020 t a.o
 00002038 t b.o
 00002050 t c.o
 00002068 t d.o

symbol = expression ; , symbol f= expression ;

symbol is any symbol name (see Section 11.2.2, “Symbol
Names” [99]). "f=" refers to any of the operators &= += -=
*= /= which combine arithmetic and assignment.

When you assign a value to a symbol within a particular section
definition, the value is relative to the beginning of the section
(see Section 11.2.6, “Assignment: Defining Symbols” [101]).
If you write

SECTIONS {
 abs = 14 ;
 ...
 .data : { ... rel = 14 ; ... }
 abs2 = 14 + ADDR(.data);
 ...
 }

abs and rel do not have the same value; rel has the same value
as abs2.

BYTE(expression) , SHORT(expression) , LONG(expression)
, QUAD(expression)

By including one of these four statements in a section
definition, you can explicitly place one, two, four, or eight
bytes (respectively) at the current address of that section. QUAD
is only supported when using a 64-bit host or target.

Multiple-byte quantities are represented in whatever byte order
is appropriate for the output file format (see Appendix A,
BFD [171]).

FILL(expression)

Specify the “fill pattern” for the current section. Any otherwise
unspecified regions of memory within the section (for example,
regions you skip over by assigning a new value to the location

115

Section Data Expressions

counter “ . ”)are filled with the two least significant bytes
from the expression argument. A FILL statement covers
memory locations after the point it occurs in the section
definition; by including more than one FILL statement, you
can have different fill patterns in different parts of an output
section.

11.4.4. Optional Section Attributes

Here is the full syntax of a section definition, including all the
optional portions:

SECTIONS {
 ...

secname start BLOCK(align) (NOLOAD) : AT (ldadr)
 { contents } >region :phdr =fill
 ...
 }

secname and contents are required. See Section 11.4.1, “Section
Definitions” [109] ,and Section 11.4.2, “Section Placement” [110]
,for details on contents. The remaining elements start,
BLOCK(align) , (NOLOAD), AT (ldadr) , >region , :phdr
,and =fill are all optional.

start

You can force the output section to be loaded at a specified
address by specifying start immediately following the section
name. start can be represented as any expression. The
following example generates section output at location
0x40000000:

SECTIONS {
 ...
 output 0x40000000: {
 ...
 }
 ...
 }

116

Chapter 11. Linker Command Language

BLOCK(align)

You can include BLOCK() specification to advance the
location counter . prior to the beginning of the section, so that
the section will begin at the specified alignment. align is an
expression.

(NOLOAD)

Use “ (NOLOAD) ” to prevent a section from being loaded
into memory each time it is accessed. For example, in the script
sample below, the ROM segment is addressed at memory
location “ 0 ” and does not need to be loaded into each object
file:

SECTIONS {
 ROM 0 (NOLOAD) : { ... }
 ...
 }

AT (ldadr)

The expression ldadr that follows the AT keyword specifies
the load address of the section. The default (if you do not use
the AT keyword) is to make the load address the same as the
relocation address. This feature is designed to make it easy to
build a ROM image. For example, this SECTIONS definition
creates two output sections: one called “ .text ” , which starts
at 0x1000, and one called “ .mdata ” ,which is loaded at the end
of the “ .text ” section even though its relocation address is
0x2000. The symbol _data is defined with the value 0x2000:

SECTIONS
 {
 .text 0x1000 : { *(.text) _etext = . ; }
 .mdata 0x2000 :
 AT (ADDR(.text) + SIZEOF (.text))
 { _data = . ; *(.data); _edata = . ; }
 .bss 0x3000 :
 { _bstart = . ; *(.bss) *(COMMON) ; _bend = . ;}
 }

The run-time initialization code (for C programs, usually crt0)
for use with a ROM generated this way has to include

117

Optional Section Attributes

something like the following, to copy the initialized data from
the ROM image to its runtime address:

char *src = _etext;
 char *dst = _data;

 /* ROM has data at end of text; copy it. */
 while (dst < _edata) {
 *dst++ = *src++;
 }

 /* Zero bss */
 for (dst = _bstart; dst< _bend; dst++)
 *dst = 0;

>region

Assign this section to a previously defined region of memory.
See Section 11.3, “Memory Layout” [107] .

=fill

Including =fill in a section definition specifies the initial
fill value for that section. You may use any expression to
specify fill. Any unallocated holes in the current output
section when written to the output file will be filled with the
two least significant bytes of the value, repeated as necessary.
You can also change the fill value with a FILL statement in
the contents of a section definition.

11.4.5. Overlays

The OVERLAY command provides an easy way to describe
sections that are to be loaded as part of a single memory image but
are to be run at the same memory address. At run time, some sort
of overlay manager will copy the overlaid sections in and out of
the runtime memory address as required, perhaps by simply
manipulating addressing bits. This approach can be useful, for
example, when a certain region of memory is faster than another.

The OVERLAY command is used within a SECTIONS command.
It appears as follows:

118

Chapter 11. Linker Command Language

 OVERLAY start : [NOCROSSREFS] AT (ldaddr)
 {

secname1 { contents } :phdr =fill
secname2 { contents } :phdr =fill

 ...
 } >region :phdr =fill

Everything is optional except OVERLAY (a keyword), and each
section must have a name (secname1 and secname2 above). The
section definitions within the OVERLAY construct are identical
to those within the general SECTIONS construct (see Section 11.4,
“Specifying Output Sections” [108]), except that no addresses and
no memory regions may be defined for sections within an
OVERLAY.

The sections are all defined with the same starting address. The
load addresses of the sections are arranged such that they are
consecutive in memory starting at the load address used for the
OVERLAY as a whole (as with normal section definitions, the
load address is optional, and defaults to the start address; the start
address is also optional, and defaults to .).

If the NOCROSSREFS keyword is used, and there any references
among the sections, the linker will report an error. Since the sections
all run at the same address, it normally does not make sense for
one section to refer directly to another. See Section 11.7, “Option
Commands” [125] .

For each section within the OVERLAY, the linker automatically defines
two symbols. The symbol __load_start_secname is defined as
the starting load address of the section. The symbol
__load_stop_secname is defined as the final load address of the
section. Any characters within secname that are not legal within C
identifiers are removed. C (or assembler) code may use these
symbols to move the overlaid sections around as necessary.

At the end of the overlay, the value of . is set to the start address
of the overlay plus the size of the largest section.

Here is an example. Remember that this would appear inside a
SECTIONS construct.

119

Overlays

 OVERLAY 0x1000 : AT (0x4000)
 {
 .text0 { o1/*.o(.text) }
 .text1 { o2/*.o(.text) }
 }

This will define both .text0 and .text1 to start at address 0x1000.
.text0 will be loaded at address 0x4000, and .text1 will be loaded
immediately after .text0. The following symbols will be defined:
__load_start_text0, __load_stop_text0, __load_start_text1,
__load_stop_text1.

C code to copy overlay .text1 into the overlay area might look
like the following.

 extern char __load_start_text1, __load_stop_text1;
 memcpy ((char *) 0x1000, &__load_start_text1,
 &__load_stop_text1 - &__load_start_text1);

Note that the OVERLAY command is just syntactic sugar, since
everything it does can be done using the more basic commands.
The above example could have been written identically as follows.

 .text0 0x1000 : AT (0x4000) { o1/*.o(.text) }
 __load_start_text0 = LOADADDR (.text0);
 __load_stop_text0 = LOADADDR (.text0) + SIZEOF (.text0);
 .text1 0x1000 : AT (0x4000 + SIZEOF (.text0)) { o2/*.o(.text) }
 __load_start_text1 = LOADADDR (.text1);
 __load_stop_text1 = LOADADDR (.text1) + SIZEOF (.text1);
 . = 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.text1));

11.5. The Entry Point

The linker command language includes a command specifically
for defining the first executable instruction in an output file (its
entry point). Its argument is a symbol name:

120

Chapter 11. Linker Command Language

 ENTRY(symbol)

Like symbol assignments, the ENTRY command may be placed
either as an independent command in the command file, or among
the section definitions within the SECTIONS command whatever
makes the most sense for your layout.

ENTRY is only one of several ways of choosing the entry point.
You may indicate it in any of the following ways (shown in
descending order of priority: methods higher in the list override
methods lower down).

• the -e entry command-line option;

• the ENTRY(symbol) command in a linker control script;

• the value of the symbol start, if present;

• the address of the first byte of the .text section, if present;

• The address 0x00000000.

For example, you can use these rules to generate an entry point
with an assignment statement: if no symbol start is defined within
your input files, you can simply define it, assigning it an appropriate
value:

start = 0x2020;

The example shows an absolute address, but you can use any
expression. For example, if your input object files use some other
symbol-name convention for the entry point, you can just assign
the value of whatever symbol contains the start address to start:

start = other_symbol ;

11.6. Version Script

The linker command script includes a command specifically for
specifying a version script, and is only meaningful for ELF

121

Version Script

platforms that support shared libraries. A version script can be
build directly into the linker script that you are using, or you can
supply the version script as just another input file to the linker at
the time that you link. The command script syntax is:

VERSION { version script contents }

The version script can also be specified to the linker by means of
the --version-script linker command line option. Version scripts
are only meaningful when creating shared libraries.

The format of the version script itself is identical to that used by
Sun's linker in Solaris 2.5. Versioning is done by defining a tree
of version nodes with the names and interdependencies specified
in the version script. The version script can specify which symbols
are bound to which version nodes, and it can reduce a specified set
of symbols to local scope so that they are not globally visible
outside of the shared library.

The easiest way to demonstrate the version script language is with
a few examples.

VERS_1.1 {
 global:
 foo1;
 local:
 old*;
 original*;
 new*;
 };

 VERS_1.2 {
 foo2;
 } VERS_1.1;

 VERS_2.0 {
 bar1; bar2;
 } VERS_1.2;

In this example, three version nodes are defined. VERS_1.1 is the
first version node defined, and has no other dependencies. The
symbol foo1 is bound to this version node, and a number of symbols
that have appeared within various object files are reduced in scope
to local so that they are not visible outside of the shared library.

122

Chapter 11. Linker Command Language

Next, the node VERS_1.2 is defined. It depends upon VERS_1.1.
The symbol foo2 is bound to this version node.

Finally, the node VERS_2.0 is defined. It depends upon VERS_1.2.
The symbols bar1 and bar2 are bound to this version node.

Symbols defined in the library that aren't specifically bound to a
version node are effectively bound to an unspecified base version
of the library. It is possible to bind all otherwise unspecified
symbols to a given version node using global: * somewhere in the
version script.

Lexically the names of the version nodes have no specific meaning
other than what they might suggest to the person reading them.
The 2.0 version could just as well have appeared in between 1.1
and 1.2. However, this would be a confusing way to write a version
script.

When you link an application against a shared library that has
version-ed symbols, the application itself knows which version of
each symbol it requires, and it also knows which version nodes it
needs from each shared library it is linked against. Thus at runtime,
the dynamic loader can make a quick check to make sure that the
libraries you have linked against do in fact supply all of the version
nodes that the application will need to resolve all of the dynamic
symbols. In this way it is possible for the dynamic linker to know
with certainty that all external symbols that it needs will be
resolvable without having to search for each symbol reference.

The symbol versioning is in effect a much more sophisticated way
of doing minor version checking that Sun-OS does. The
fundamental problem that is being addressed here is that typically
references to external functions are bound on an as-needed basis,
and are not all bound when the application starts up. If a shared
library is out of date, a required interface may be missing; when
the application tries to use that interface, it may suddenly and
unexpectedly fail. With symbol versioning, the user will get a
warning when they start their program if the libraries being used
with the application are too old.

There are several GNU extensions to Sun's versioning approach.
The first of these is the ability to bind a symbol to a version node
in the source file where the symbol is defined instead of in the
versioning script. This was done mainly to reduce the burden on
the library maintainer. This can be done by putting something like:

123

Version Script

__asm__(".symver original_foo,foo@VERS_1.1");

in the C source file. This renamed the function original_foo to be
an alias for foo bound to the version node VERS_1.1. The local:
directive can be used to prevent the symbol original_foo from being
exported.

The second GNU extension is to allow multiple versions of the
same function to appear in a given shared library. In this way an
incompatible change to an interface can take place without
increasing the major version number of the shared library, while
still allowing applications linked against the old interface to
continue to function.

This can only be accomplished by using multiple .symver directives
in the assembler. An example of this would be:

__asm__(".symver original_foo,foo@");
 __asm__(".symver old_foo,foo@VERS_1.1");
 __asm__(".symver old_foo1,foo@VERS_1.2");
 __asm__(".symver new_foo,foo@@VERS_2.0");

In this example, foo@ represents the symbol foo bound to the
unspecified base version of the symbol. The source file that contains
this example would define 4 C functions: original_foo, old_foo,
old_foo1, and new_foo.

When you have multiple definitions of a given symbol, there needs
to be some way to specify a default version to which external
references to this symbol will be bound. This can be accomplished
with the foo@@VERS_2.0 type of .symver directive. Only one
version of a symbol can be declared 'default' in this manner -
otherwise you would effectively have multiple definitions of the
same symbol.

If you wish to bind a reference to a specific version of the symbol
within the shared library, you can use the aliases of convenience
(that is old_foo), or you can use the .symver directive to specifically
bind to an external version of the function in question.

124

Chapter 11. Linker Command Language

11.7. Option Commands

The command language includes a number of other commands that
you can use for specialized purposes. They are similar in purpose
to command-line options.

CONSTRUCTORS
When linking using the a.out object file format, the linker uses
an unusual set construct to support C++ global constructors
and destructors. When linking object file formats that do not
support arbitrary sections, such as ECOFF and XCOFF, the
linker will automatically recognize C++ global constructors
and destructors by name. For these object file formats, the
CONSTRUCTORS command tells the linker where this
information should be placed. The CONSTRUCTORS
command is ignored for other object file formats.

The symbol __CTOR_LIST__ marks the start of the global
constructors, and the symbol __DTOR_LIST marks the end.
The first word in the list is the number of entries, followed by
the address of each constructor or destructor, followed by a
zero word. The compiler must arrange to actually run the code.
For these object file formats xgc C++ calls constructors from
a subroutine __main; a call to __main is automatically inserted
into the startup code for main. xgc C++ runs destructors either
by using atexit, or directly from the function exit.

For object file formats such as COFF or ELF that support
multiple sections, XGC C++ will normally arrange to put the
addresses of global constructors and destructors into the .ctors
and .dtors sections. Placing the following sequence into your
linker script will build the sort of table that the C++ runtime
code expects to see.

 __CTOR_LIST__ = .;
 LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
 *(.ctors)
 LONG(0)
 __CTOR_END__ = .;
 __DTOR_LIST__ = .;
 LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
 *(.dtors)
 LONG(0)

125

Option Commands

 __DTOR_END__ = .;

Normally the compiler and linker will handle these issues
automatically, and you will not need to concern yourself with
them. However, you may need to consider this if you are using
C++ and writing your own linker scripts.

FLOAT , NOFLOAT
These keywords were used in some older linkers to request a
particular math subroutine library. The linker doesn't use the
keywords, assuming instead that any necessary subroutines
are in libraries specified using the general mechanisms for
linking to archives; but to permit the use of scripts that were
written for the older linkers, the keywords FLOAT and
NOFLOAT are accepted and ignored.

FORCE_COMMON_ALLOCATION
This command has the same effect as the -d command-line
option: to make the linker assign space to common symbols
even if a relocatable output file is specified (-r).

INCLUDE filename

Include the linker script filename at this point. The file will
be searched for in the current directory, and in any directory
specified with the -L option. You can nest calls to INCLUDE
up to 10 levels deep.

INPUT (file, file, ...) , INPUT (file file ...)
Use this command to include binary input files in the link,
without including them in a particular section definition.
Specify the full name for each file, including “ .a ” if required.

The linker searches for each file through the archive-library
search path, just as for files you specify on the command line.
See the description of -L in Section 10.1, “Command Line
Options” [79] .

If you use “ -l file ” ,the linker will transform the name to
libfile.a as with the command line argument -l.

GROUP (file, file, ...) , GROUP (file file ...)
This command is like INPUT, except that the named files
should all be archives, and they are searched repeatedly until

126

Chapter 11. Linker Command Language

no new undefined references are created. See the description
of -(in Section 10.1, “Command Line Options” [79] .

OUTPUT (filename)
Use this command to name the link output file filename. The
effect of OUTPUT(filename) is identical to the effect of “
-o filename ” ,which overrides it. You can use this command
to supply a default output-file name other than a.out.

OUTPUT_ARCH (bfdname)
Specify a particular output machine architecture, with one of
the names used by the BFD back-end routines (see Appendix A,
BFD [171]). This command is often unnecessary; the
architecture is most often set implicitly by either the system
BFD configuration or as a side effect of the
OUTPUT_FORMAT command.

OUTPUT_FORMAT (bfdname)
When the linker is configured to support multiple object code
formats, you can use this command to specify a particular
output format. bfdname is one of the names used by the BFD
back-end routines (see Appendix A, BFD [171]). The effect is
identical to the effect of the --oformat command-line option.
This selection affects only the output file; the related command
PREFIX affects primarily input files.

SEARCH_DIR (path)
Add path to the list of paths where the linker looks for archive
libraries. SEARCH_DIR(path) has the same effect as “ -L
path ” on the command line.

STARTUP (filename)
Ensure that filename is the first input file used in the link
process.

PREFIX (format)
When the linker is configured to support multiple object code
formats, you can use this command to change the input-file
object code format (like the command-line option -b or its
synonym --format). The argument format is one of the strings
used by BFD to name binary formats. If PREFIX is specified
but OUTPUT_FORMAT is not, the last PREFIX argument
is also used as the default format for the the linker output file.
See Appendix A, BFD [171] .

127

Option Commands

If you don't use the PREFIX command, the linker uses the
value of the environment variable GNUPREFIX, if available,
to select the output file format. If that variable is also absent,
the linker uses the default format configured for your machine
in the BFD libraries.

NOCROSSREFS (section section ...)
This command may be used to tell the linker to issue an error
about any references among certain sections.

In certain types of programs, particularly on embedded systems,
when one section is loaded into memory, another section will
not be. Any direct references between the two sections would
be errors. For example, it would be an error if code in one
section called a function defined in the other section.

The NOCROSSREFS command takes a list of section names.
If the linker detects any cross references between the sections,
it reports an error and returns a non-zero exit status. The
NOCROSSREFS command uses output section names, defined
in the SECTIONS command. It does not use the names of
input sections.

128

Chapter 11. Linker Command Language

III
Using the Object Code Utilities

The UtilitiesChapter 12

12.1. ar

prefix-ar [-]p[mod [relpos]] archive [member...]
prefix-ar -M [<mri-script>]

The ar program creates, modifies, and extracts from archives. An
archive is a single file holding a collection of other files in a
structure that makes it possible to retrieve the original individual
files (called members of the archive).

The original files' contents, mode (permissions), time-stamp, owner,
and group are preserved in the archive, and can be restored on
extraction.

ar can maintain archives whose members have names of any length;
however, depending on how ar is configured on your system, a
limit on member-name length may be imposed for compatibility
with archive formats maintained with other tools. If it exists, the
limit is often 15 characters (typical of formats related to a.out) or
16 characters (typical of formats related to COFF).

131

ar is considered a binary utility because archives of this sort are
most often used as libraries holding commonly needed subroutines.

ar creates an index to the symbols defined in relocatable object
modules in the archive when you specify the modifier “ s ” .Once
created, this index is updated in the archive whenever ar makes a
change to its contents (save for the “ q ” update operation). An
archive with such an index speeds up linking to the library, and
allows routines in the library to call each other without regard to
their placement in the archive.

You may use “ nm -s ” or “ nm --print-armap ” to list this index
table. If an archive lacks the table, another form of ar called ranlib
can be used to add just the table.

ar is designed to be compatible with two different facilities. You
can control its activity using command-line options, like the
different varieties of ar on UNIX systems; or, if you specify the
single command-line option “ -M ” ,you can control it with a script
supplied via standard input, like the MRI "librarian" program.

12.1.1. Controlling ar on the command line

prefix-ar [-]p[mod [relpos]] archive [member...]

When you use ar in the UNIX style, ar insists on at least two
arguments to execute: one key letter specifying the operation
(optionally accompanied by other key-letters specifying modifiers),
and the archive name to act on.

Most operations can also accept further member arguments,
specifying particular files to operate on.

ar allows you to mix the operation code p and modifier flags mod
in any order, within the first command-line argument.

If you wish, you may begin the first command-line argument with
a dash.

The p key-letter specifies what operation to execute; it may be any
of the following, but you must specify only one of them:

132

Chapter 12. The Utilities

d
Delete modules from the archive. Specify the names of modules
to be deleted as member...; the archive is untouched if you
specify no files to delete.

If you specify the “ v ” modifier, ar lists each module as it is
deleted.

m
Use this operation to move members in an archive.

The ordering of members in an archive can make a difference
in how programs are linked using the library, if a symbol is
defined in more than one member.

If no modifiers are used with m, any members you name in
the member arguments are moved to the end of the archive; you
can use the “ a ” , “ b ” ,or “ i ” modifiers to move them to a
specified place instead.

p
Print the specified members of the archive, to the standard
output file. If the “ v ” modifier is specified, show the member
name before copying its contents to standard output.

If you specify no member arguments, all the files in the archive
are printed.

q
Quick append; add the files member... to the end of archive,
without checking for replacement.

The modifiers “ a ” , “ b ” ,and “ i ” do not affect this operation;
new members are always placed at the end of the archive.

The modifier “ v ” makes ar list each file as it is appended.

Since the point of this operation is speed, the archive's symbol
table index is not updated, even if it already existed; you can
use “ ar s ” or ranlib explicitly to update the symbol table
index.

r
Insert the files member... into archive (with replacement). This
operation differs from “ q ” in that any previously existing
members are deleted if their names match those being added.

133

Controlling ar on the command line

If one of the files named in member... does not exist, ar displays
an error message, and leaves undisturbed any existing members
of the archive matching that name.

By default, new members are added at the end of the file; but
you may use one of the modifiers “ a ” , “ b ” ,or “ i ” to request
placement relative to some existing member.

The modifier “ v ” used with this operation elicits a line of
output for each file inserted, along with one of the letters “ a
” or “ r ” to indicate whether the file was appended (no old
member deleted) or replaced.

t
Display a table listing the contents of archive, or those of the
files listed in member... that are present in the archive. Normally
only the member name is shown; if you also want to see the
modes (permissions), times-tamp, owner, group, and size, you
can request that by also specifying the “ v ” modifier.

If you do not specify a member, all files in the archive are listed.

If there is more than one file with the same name (say, “ fie ”
)in an archive (say “ b.a ”), “ ar t b.a fie ” lists only the first
instance; to see them all, you must ask for a complete listing in
our example, “ ar t b.a ” .

x
Extract members (named member) from the archive. You can
use the “ v ” modifier with this operation, to request that ar
list each name as it extracts it.

If you do not specify a member, all files in the archive are
extracted.

A number of modifiers (mod) may immediately follow the p
key-letter, to specify variations on an operation's behavior:

a
Add new files after an existing member of the archive. If you
use the modifier “ a ” ,the name of an existing archive member
must be present as the relpos argument, before the archive
specification.

134

Chapter 12. The Utilities

b
Add new files before an existing member of the archive. If you
use the modifier “ b ” ,the name of an existing archive member
must be present as the relpos argument, before the archive
specification. (same as “ i ”).

c
Create the archive. The specified archive is always created if
it did not exist, when you request an update. But a warning is
issued unless you specify in advance that you expect to create
it, by using this modifier.

f
Truncate names in the archive. ar will normally permit file
names of any length. This will cause it to create archives which
are not compatible with the native ar program on some systems.
If this is a concern, the “ f ” modifier may be used to truncate
file names when putting them in the archive.

i
Insert new files before an existing member of the archive. If
you use the modifier “ i ” ,the name of an existing archive
member must be present as the relpos argument, before the
archive specification. (same as “ b ”).

l
This modifier is accepted but not used.

o
Preserve the original dates of members when extracting them.
If you do not specify this modifier, files extracted from the
archive are stamped with the time of extraction.

s
Write an object-file index into the archive, or update an existing
one, even if no other change is made to the archive. You may
use this modifier flag either with any operation, or alone.
Running “ ar s ” on an archive is equivalent to running “
ranlib ” on it.

u
Normally, “ ar r ” ... inserts all files listed into the archive. If
you would like to insert only those of the files you list that are
newer than existing members of the same names, use this
modifier. The “ u ” modifier is allowed only for the operation

135

Controlling ar on the command line

“ r ” (replace). In particular, the combination “ qu ” is not
allowed, since checking the time stamps would lose any speed
advantage from the operation “ q ” .

v
This modifier requests the verbose version of an operation.
Many operations display additional information, such as
filenames processed, when the modifier “ v ” is appended.

V
This modifier shows the version number of ar.

12.1.2. Controlling ar with a script

prefix-ar -M [<script]

If you use the single command-line option “ -M ” with ar, you can
control its operation with a rudimentary command language. This
form of ar operates interactively if standard input is coming directly
from a terminal. During interactive use, ar prompts for input (the
prompt is “ AR > ”), and continues executing even after errors. If
you redirect standard input to a script file, no prompts are issued,
and ar abandons execution (with a nonzero exit code) on any error.

The ar command language is not designed to be equivalent to the
command-line options; in fact, it provides somewhat less control
over archives. The only purpose of the command language is to
ease the transition to ar for developers who already have scripts
written for the MRI "librarian" program.

The syntax for the ar command language is straightforward:

• commands are recognized in upper or lower case; for example,
LIST is the same as list. In the following descriptions,
commands are shown in upper case for clarity.

• a single command may appear on each line; it is the first word
on the line.

• empty lines are allowed, and have no effect.

136

Chapter 12. The Utilities

• comments are allowed; text after either of the characters “ * ”
or “ ; ” is ignored.

• Whenever you use a list of names as part of the argument to an
ar command, you can separate the individual names with either
commas or blanks. Commas are shown in the explanations below,
for clarity.

• “ + ” is used as a line continuation character; if “ + ” appears at
the end of a line, the text on the following line is considered part
of the current command.

Here are the commands you can use in ar scripts, or when using
ar interactively. Three of them have special significance:

OPEN or CREATE specify a current archive, which is a temporary
file required for most of the other commands.

SAVE commits the changes so far specified by the script. Prior to
SAVE, commands affect only the temporary copy of the current
archive.

ADDLIB archive , ADDLIB archive (module, module, ... module)
Add all the contents of archive (or, if specified, each named
module from archive) to the current archive.

Requires prior use of OPEN or CREATE.

ADDMOD member, member, ... member

Add each named member as a module in the current archive.

Requires prior use of OPEN or CREATE.

CLEAR
Discard the contents of the current archive, canceling the effect
of any operations since the last SAVE. May be executed (with
no effect) even if no current archive is specified.

CREATE archive

Creates an archive, and makes it the current archive (required
for many other commands). The new archive is created with
a temporary name; it is not actually saved as archive until you
use SAVE. You can overwrite existing archives; similarly, the
contents of any existing file named archive will not be
destroyed until SAVE.

137

Controlling ar with a script

DELETE module, module, ... module

Delete each listed module from the current archive; equivalent
to “ ar -d archive module ... module ” .

Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, ... module) , DIRECTORY
archive (module, ... module) outputfile

List each named module present in archive. The separate
command VERBOSE specifies the form of the output: when
verbose output is off, output is like that of “ ar -t archive

module... ” .When verbose output is on, the listing is like “ ar
-tv archive module... ” .

Output normally goes to the standard output stream; however,
if you specify outputfile as a final argument, ar directs the
output to that file.

END
Exit from ar, with a 0 exit code to indicate successful
completion. This command does not save the output file; if
you have changed the current archive since the last SAVE
command, those changes are lost.

EXTRACT module, module, ... module

Extract each named module from the current archive, writing
them into the current directory as separate files. Equivalent to
“ ar -x archive module... ” .

Requires prior use of OPEN or CREATE.

LIST
Display full contents of the current archive, in “verbose” style
regardless of the state of VERBOSE. The effect is like “ ar
tv archive ”).

Requires prior use of OPEN or CREATE.

OPEN archive

Opens an existing archive for use as the current archive
(required for many other commands). Any changes as the result
of subsequent commands will not actually affect archive until
you next use SAVE.

138

Chapter 12. The Utilities

REPLACE module, module, ... module

In the current archive, replace each existing module (named in
the REPLACE arguments) from files in the current working
directory. To execute this command without errors, both the
file, and the module in the current archive, must exist.

Requires prior use of OPEN or CREATE.

VERBOSE
Toggle an internal flag governing the output from
DIRECTORY. When the flag is on, DIRECTORY output
matches output from “ ar -tv ”

SAVE
Commit your changes to the current archive, and actually save
it as a file with the name specified in the last CREATE or
OPEN command.

Requires prior use of OPEN or CREATE.

12.2. nm

prefix-nm [-a | --debug-syms] [-g | --extern-only]
 [-B] [-C | --demangle] [-D | --dynamic]
 [-s | --print-armap] [-A | -o | --print-file-name]
 [-n | -v | --numeric-sort] [-p | --no-sort]
 [-r | --reverse-sort] [--size-sort] [-u | --undefined-only]
 [-t radix | --radix=radix] [-P | --portability]
 [--target=bfdname] [-f format | --format=format]
 [--defined-only] [-l | --line-numbers]
 [--no-demangle] [-V | --version] [--help] [objfile...]

nm lists the symbols from object files objfile.... If no object files
are listed as arguments, nm assumes a.out.

For each symbol, nm shows:

• The symbol value, in the radix selected by options (see below),
or hexadecimal by default.

139

nm

• The symbol type. At least the following types are used; others
are, as well, depending on the object file format. If lowercase,
the symbol is local; if uppercase, the symbol is global (external).

A
The symbol's value is absolute, and will not be changed by
further linking.

B
The symbol is in the uninitialized data section (known as
BSS).

C
The symbol is common. Common symbols are uninitialized
data. When linking, multiple common symbols may appear
with the same name. If the symbol is defined anywhere, the
common symbols are treated as undefined references. For
more details on common symbols, see the discussion of
-warn-common in Section 10.1, “Command Line
Options” [79] .

D
The symbol is in the initialized data section.

G
The symbol is in an initialized data section for small objects.
Some object file formats permit more efficient access to
small data objects, such as a global int variable as opposed
to a large global array.

I
The symbol is an indirect reference to another symbol. This
is a GNU extension to the a.out object file format which is
rarely used.

N
The symbol is a debugging symbol.

R
The symbol is in a read only data section.

S
The symbol is in an uninitialized data section for small
objects.

140

Chapter 12. The Utilities

T
The symbol is in the text (code) section.

U
The symbol is undefined.

W
The symbol is weak. When a weak defined symbol is linked
with a normal defined symbol, the normal defined symbol
is used with no error. When a weak undefined symbol is
linked and the symbol is not defined, the value of the weak
symbol becomes zero with no error.

-
The symbol is a stabs symbol in an a.out object file. In this
case, the next values printed are the stabs other field, the
stabs desc field, and the stab type. Stabs symbols are used
to hold debugging information; for more information, see
the stabs debug format ,included with the debugger source
files.

?
The symbol type is unknown, or object file format specific.

• The symbol name.

The long and short forms of options, shown here as alternatives,
are equivalent.

-A , -o , --print-file-name
Precede each symbol by the name of the input file (or archive
element) in which it was found, rather than identifying the
input file once only, before all of its symbols.

-a , --debug-syms
Display all symbols, even debugger-only symbols; normally
these are not listed.

-B
The same as “ --format=bsd ” (for compatibility with the MIPS
nm).

-C , --demangle
Decode (demangle) low-level symbol names into user-level
names. Besides removing any initial underscore prepended by
the system, this makes C++ function names readable. See

141

nm

Section 12.9, “c++filt” [159] ,for more information on
demangling.

--no-demangle
Do not demangle low-level symbol names. This is the default.

-D , --dynamic
Display the dynamic symbols rather than the normal symbols.
This is only meaningful for dynamic objects, such as certain
types of shared libraries.

-f format , --format=format

Use the output format format, which can be bsd, sysv, or
POSIX. The default is bsd. Only the first character of format
is significant; it can be either upper or lower case.

-g , --extern-only
Display only external symbols.

-l , --line-numbers
For each symbol, use debugging information to try to find a
filename and line number. For a defined symbol, look for the
line number of the address of the symbol. For an undefined
symbol, look for the line number of a relocation entry which
refers to the symbol. If line number information can be found,
print it after the other symbol information.

-n , -v , --numeric-sort
Sort symbols numerically by their addresses, rather than
alphabetically by their names.

-p , --no-sort
Do not bother to sort the symbols in any order; print them in
the order encountered.

-P , --portability
Use the POSIX.2 standard output format instead of the default
format. Equivalent to “ -f posix ” .

-s , --print-armap
When listing symbols from archive members, include the index:
a mapping (stored in the archive by ar or ranlib) of which
modules contain definitions for which names.

142

Chapter 12. The Utilities

-r , --reverse-sort
Reverse the order of the sort (whether numeric or alphabetic);
let the last come first.

--size-sort
Sort symbols by size. The size is computed as the difference
between the value of the symbol and the value of the symbol
with the next higher value. The size of the symbol is printed,
rather than the value.

-t radix , --radix=radix

Use radix as the radix for printing the symbol values. It must
be “ d ” for decimal, “ o ” for octal, or “ x ” for hexadecimal.

--target=bfdname

Specify an object code format other than your system's default
format. See Section 13.1, “Target Selection” [163] ,for more
information.

-u , --undefined-only
Display only undefined symbols (those external to each object
file).

--defined-only
Display only defined symbols for each object file.

-V , --version
Show the version number of nm and exit.

--help
Show a summary of the options to nm and exit.

12.3. objcopy

prefix-objcopy [-F bfdname | --target=bfdname]
 [-I bfdname | --input-target=bfdname]
 [-O bfdname | --output-target=bfdname]
 [-S | --strip-all] [-g | --strip-debug]
 [-K symbolname | --keep-symbol=symbolname]
 [-N symbolname | --strip-symbol=symbolname]
 [-x | --discard-all] [-X | --discard-locals]
 [-b byte | --byte=byte]
 [-i interleave | --interleave=interleave]

143

objcopy

 [-R sectionname | --remove-section=sectionname]
 [-p | --preserve-dates] [--debugging]
 [--gap-fill=val] [--pad-to=address]
 [--set-start=val] [--adjust-start=incr]
 [--adjust-vma=incr]
 [--adjust-section-vma=section{=,+,-}val]
 [--adjust-warnings] [--no-adjust-warnings]
 [--set-section-flags=section=flags]
 [--add-section=sectionname=filename]
 [--change-leading-char] [--remove-leading-char]
 [--weaken]
 [-v | --verbose] [-V | --version] [--help]

infile [outfile]

The objcopy utility copies the contents of an object file to another.
objcopy uses the BFD Library to read and write the object files.
It can write the destination object file in a format different from
that of the source object file. The exact behavior of objcopy is
controlled by command-line options.

objcopy creates temporary files to do its translations and deletes
them afterward. objcopy uses bfd to do all its translation work; it
has access to all the formats described in bfd and thus is able to
recognize most formats without being told explicitly. See
Appendix A, BFD [171] .

objcopy can be used to generate S-records by using an output target
of “ srec ” (e.g., use “ -O srec ”).

objcopy can be used to generate a raw binary file by using an
output target of “ binary ” (e.g., use “ -O binary ”). When
objcopy generates a raw binary file, it will essentially produce a
memory dump of the contents of the input object file. All symbols
and relocation information will be discarded. The memory dump
will start at the load address of the lowest section copied into the
output file.

When generating an S-record or a raw binary file, it may be helpful
to use “ -S ” to remove sections containing debugging information.
In some cases “ -R ” will be useful to remove sections which
contain information which is not needed by the binary file.

144

Chapter 12. The Utilities

infile , outfile

The source and output files, respectively. If you do not specify
outfile, objcopy creates a temporary file and destructively
renames the result with the name of infile.

-I bfdname , --input-target=bfdname

Consider the source file's object format to be bfdname, rather
than attempting to deduce it. See Section 13.1, “Target
Selection” [163] ,for more information.

-O bfdname , --output-target=bfdname

Write the output file using the object format bfdname. See
Section 13.1, “Target Selection” [163] ,for more information.

-F bfdname , --target=bfdname

Use bfdname as the object format for both the input and the
output file; that is, simply transfer data from source to
destination with no translation. See Section 13.1, “Target
Selection” [163] ,for more information.

-R sectionname , --remove-section=sectionname

Remove any section named sectionname from the output file.
This option may be given more than once. Note that using this
option inappropriately may make the output file unusable.

-S , --strip-all
Do not copy relocation and symbol information from the source
file.

-g , --strip-debug
Do not copy debugging symbols from the source file.

--strip-unneeded
Strip all symbols that are not needed for relocation processing.

-K symbolname , --keep-symbol=symbolname

Copy only symbol symbolname from the source file. This option
may be given more than once.

-N symbolname , --strip-symbol=symbolname

Do not copy symbol symbolname from the source file. This
option may be given more than once, and may be combined
with strip options other than -K.

-x , --discard-all
Do not copy non-global symbols from the source file.

145

objcopy

-X , --discard-locals
Do not copy compiler-generated local symbols. (These usually
start with “ L ” or “ . ” .)

-b byte , --byte=byte

Keep only every byteth byte of the input file (header data is
not affected). byte can be in the range from 0 to interleave-1,
where interleave is given by the “ -i ” or “ --interleave ”
option, or the default of 4. This option is useful for creating
files to program rom. It is typically used with an srec output
target.

-i interleave , --interleave=interleave

Only copy one out of every interleave bytes. Select which
byte to copy with the -b or “ --byte ” option. The default is 4.
objcopy ignores this option if you do not specify either “ -b ”
or “ --byte ” .

-p , --preserve-dates
Set the access and modification dates of the output file to be
the same as those of the input file.

--debugging
Convert debugging information, if possible. This is not the
default because only certain debugging formats are supported,
and the conversion process can be time consuming.

--gap-fill val

Fill gaps between sections with val. This is done by increasing
the size of the section with the lower address, and filling in the
extra space created with val.

--pad-to address

Pad the output file up to the virtual address address. This is
done by increasing the size of the last section. The extra space
is filled in with the value specified by “ --gap-fill ” (default
zero).

--set-start val

Set the address of the new file to val. Not all object file formats
support setting the start address.

--adjust-start incr

Adjust the start address by adding incr. Not all object file
formats support setting the start address.

146

Chapter 12. The Utilities

--adjust-vma incr

Adjust the address of all sections, as well as the start address,
by adding incr. Some object file formats do not permit section
addresses to be changed arbitrarily. Note that this does not
relocate the sections; if the program expects sections to be
loaded at a certain address, and this option is used to change
the sections such that they are loaded at a different address,
the program may fail.

--adjust-section-vma section{=,+,-}val

Set or adjust the address of the named section. If “ = ” is used,
the section address is set to val. Otherwise, val is added to or
subtracted from the section address. See the comments under
“ --adjust-vma ” ,above. If section does not exist in the input
file, a warning will be issued, unless “ --no-adjust-warnings
” is used.

--adjust-warnings
If “ --adjust-section-vma ” is used, and the named section
does not exist, issue a warning. This is the default.

--no-adjust-warnings
Do not issue a warning if “ --adjust-section-vma ” is used,
even if the named section does not exist.

--set-section-flags section=flags

Set the flags for the named section. The flags argument is a
comma separated string of flag names. The recognized names
are “ alloc ” , “ load ” , “ readonly ” , “ code ” , “ data ” ,and
“ rom ” .Not all flags are meaningful for all object file formats.

--add-section sectionname=filename

Add a new section named sectionname while copying the file.
The contents of the new section are taken from the file
filename. The size of the section will be the size of the file.
This option only works on file formats which can support
sections with arbitrary names.

--change-leading-char
Some object file formats use special characters at the start of
symbols. The most common such character is underscore,
which compilers often add before every symbol. This option
tells objcopy to change the leading character of every symbol
when it converts between object file formats. If the object file
formats use the same leading character, this option has no

147

objcopy

effect. Otherwise, it will add a character, or remove a character,
or change a character, as appropriate.

--remove-leading-char
If the first character of a global symbol is a special symbol
leading character used by the object file format, remove the
character. The most common symbol leading character is
underscore. This option will remove a leading underscore from
all global symbols. This can be useful if you want to link
together objects of different file formats with different
conventions for symbol names. This is different from
--change-leading-char because it always changes the symbol
name when appropriate, regardless of the object file format of
the output file.

--weaken
Change all global symbols in the file to be weak. This can be
useful when building an object which will be linked against
other objects using the -R option to the linker. This option is
only effective when using an object file format which supports
weak symbols.

-V , --version
Show the version number of objcopy.

-v , --verbose
Verbose output: list all object files modified. In the case of
archives, “ objcopy -V ” lists all members of the archive.

--help
Show a summary of the options to objcopy.

12.4. objdump

prefix-objdump [-a | --archive-headers]
 [-b bfdname | --target=bfdname] [--debugging]
 [-C | --demangle] [-d | --disassemble]
 [-D | --disassemble-all] [--disassemble-zeroes]
 [-EB | -EL | --endian={big | little }]
 [-f | --file-headers]
 [-h | --section-headers | --headers] [-i | --info]
 [-j section | --section=section]
 [-l | --line-numbers] [-S | --source]

148

Chapter 12. The Utilities

 [-m machine | --architecture=machine]
 [-r | --reloc] [-R | --dynamic-reloc]
 [-s | --full-contents] [--stabs]
 [-t | --syms] [-T | --dynamic-syms] [-x | --all-headers]
 [-w | --wide] [--start-address=address]
 [--stop-address=address]
 [--prefix-addresses] [--[no-]show-raw-insn]
 [--adjust-vma=offset]
 [--version] [--help]

objfile...

objdump displays information about one or more object files. The
options control what particular information to display. This
information is mostly useful to programmers who are working on
the compilation tools, as opposed to programmers who just want
their program to compile and work.

objfile... are the object files to be examined. When you specify
archives, objdump shows information on each of the member
object files.

The long and short forms of options, shown here as alternatives,
are equivalent. At least one option besides “ -l ” must be given.

-a , --archive-header
If any of the objfile files are archives, display the archive
header information (in a format similar to “ ls -l ”). Besides
the information you could list with “ ar tv ” , “ objdump -a
” shows the object file format of each archive member.

--adjust-vma=offset

When dumping information, first add offset to all the section
addresses. This is useful if the section addresses do not
correspond to the symbol table, which can happen when putting
sections at particular addresses when using a format which can
not represent section addresses, such as a.out.

-b bfdname , --target=bfdname

Specify that the object-code format for the object files is
bfdname. This option may not be necessary; objdump can
automatically recognize many formats.

For example,

149

objdump

prefix-objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (“ -h
”)of fu.o, which is explicitly identified (“ -m ”)as a VAX
object file in the format produced by Oasys compilers. You
can list the formats available with the “ -i ” option. See
Section 13.1, “Target Selection” [163] ,for more information.

-C , --demangle
Decode (demangle) low-level symbol names into user-level
names. Besides removing any initial underscore prepended by
the system, this makes C++ function names readable. See
Section 12.9, “c++filt” [159] ,for more information on
demangling.

--debugging
Display debugging information. This attempts to parse
debugging information stored in the file and print it out using
a C like syntax. Only certain types of debugging information
have been implemented.

-d , --disassemble
Display the assembler mnemonics for the machine instructions
from objfile. This option only disassembles those sections
which are expected to contain instructions.

-D , --disassemble-all
Like “ -d ” ,but disassemble the contents of all sections, not
just those expected to contain instructions.

--prefix-addresses
When disassembling, print the complete address on each line.
This is the older disassembly format.

--disassemble-zeroes
Normally the disassembly output will skip blocks of zeroes.
This option directs the disassembler to disassemble those
blocks, just like any other data.

-EB , -EL , --endian={big|little}
Specify the endianness of the object files. This only affects
disassembly. This can be useful when disassembling a file

150

Chapter 12. The Utilities

format which does not describe endianness information, such
as S-records.

-f , --file-header
Display summary information from the overall header of each
of the objfile files.

-h , --section-header , --header
Display summary information from the section headers of the
object file.

File segments may be relocated to nonstandard addresses, for
example by using the “ -Ttext ” , “ -Tdata ” ,or “ -Tbss ”
options to ld. However, some object file formats, such as a.out,
do not store the starting address of the file segments. In those
situations, although ld relocates the sections correctly, using
“ objdump -h ” to list the file section headers cannot show
the correct addresses. Instead, it shows the usual addresses,
which are implicit for the target.

--help
Print a summary of the options to objdump and exit.

-i , --info
Display a list showing all architectures and object formats
available for specification with “ -b ” or “ -m ” .

-j name , --section=name

Display information only for section name.

-l , --line-numbers
Label the display (using debugging information) with the
filename and source line numbers corresponding to the object
code or relocs shown. Only useful with “ -d ” , “ -D ” ,or “ -r
” .

-m machine , --architecture=machine

Specify the architecture to use when disassembling object files.
This can be useful when disassembling object files which do
not describe architecture information, such as S-records. You
can list the available architectures with the “ -i ” option.

-r , --reloc
Print the relocation entries of the file. If used with “ -d ” or “
-D ” ,the relocations are printed interspersed with the
disassembly.

151

objdump

-R , --dynamic-reloc
Print the dynamic relocation entries of the file. This is only
meaningful for dynamic objects, such as certain types of shared
libraries.

-s , --full-contents
Display the full contents of any sections requested.

-S , --source
Display source code intermixed with disassembly, if possible.
Implies “ -d ” .

--show-raw-insn
When disassembling instructions, print the instruction in hex
as well as in symbolic form. This is the default except when
--prefix-addresses is used.

--no-show-raw-insn
When disassembling instructions, do not print the instruction
bytes. This is the default when --prefix-addresses is used.

--stabs
Display the full contents of any sections requested. Display
the contents of the .stab and .stab.index and .stab.excl sections
from an ELF file. This is only useful on systems (such as
Solaris 2.0) in which .stab debugging symbol-table entries are
carried in an ELF section. In most other file formats, debugging
symbol-table entries are interleaved with linkage symbols, and
are visible in the “ --syms ” output. For more information on
stabs symbols, see the stabs debugging format .

--start-address=address

Start displaying data at the specified address. This affects the
output of the -d, -r and -s options.

--stop-address=address

Stop displaying data at the specified address. This affects the
output of the -d, -r and -s options.

-t , --syms
Print the symbol table entries of the file. This is similar to the
information provided by the “ nm ” program.

-T , --dynamic-syms
Print the dynamic symbol table entries of the file. This is only
meaningful for dynamic objects, such as certain types of shared

152

Chapter 12. The Utilities

libraries. This is similar to the information provided by the “
nm ” program when given the “ -D ” (“ --dynamic ”)option.

--version
Print the version number of objdump and exit.

-x , --all-header
Display all available header information, including the symbol
table and relocation entries. Using “ -x ” is equivalent to
specifying all of “ -a -f -h -r -t ” .

-w

--wide
Format some lines for output devices that have more than 80
columns.

12.5. ranlib

prefix-ranlib [-vV] archive

ranlib generates an index to the contents of an archive and stores
it in the archive. The index lists each symbol defined by a member
of an archive that is a relocatable object file.

You may use “ nm -s ” or “ nm --print-armap ” to list this index.

An archive with such an index speeds up linking to the library and
allows routines in the library to call each other without regard to
their placement in the archive.

The ranlib program is another form of ar; running ranlib is
completely equivalent to executing “ ar -s ” .See Section 12.1,
“ar” [131] .

-v , -V
Show the version number of ranlib.

153

ranlib

12.6. size

prefix-size [-A | -B | --format=compatibility]
 [--help] [-d | -o | -x | --radix=number]
 [--target=bfdname] [-V | --version]

objfile...

The size utility lists the section sizes and the total size for each of
the object or archive files objfile in its argument list. By default,
one line of output is generated for each object file or each module
in an archive.

objfile... are the object files to be examined.

The command line options have the following meanings:

-A , -B , --format=compatibility

Using one of these options, you can choose whether the output
from size resembles output from System V size (using “ -A ”
,or “ --format=sysv ”), or Berkeley size (using “ -B ” ,or “
--format=berkeley ”). The default is the one-line format
similar to Berkeley's.

Here is an example of the Berkeley (default) format of output
from size:

prefix-size --format=Berkeley ranlib size
 text data bss dec hex filename
 294880 81920 11592 388392 5ed28 ranlib
 294880 81920 11888 388688 5ee50 size

This is the same data, but displayed closer to System V
conventions:

prefix-size --format=SysV ranlib size
 ranlib :
 section size addr
 .text 294880 8192

154

Chapter 12. The Utilities

 .data 81920 303104
 .bss 11592 385024
 Total 388392
 size :
 section size addr
 .text 294880 8192
 .data 81920 303104
 .bss 11888 385024
 Total 388688

--help
Show a summary of acceptable arguments and options.

-d , -o , -x , --radix=number

Using one of these options, you can control whether the size
of each section is given in decimal (“ -d ” ,or “ --radix=10 ”
); octal (“ -o ” ,or “ --radix=8 ”); or hexadecimal (“ -x ” ,or
“ --radix=16 ”). In “ --radix=number ” , only the three values
(8, 10, 16) are supported. The total size is always given in two
radices; decimal and hexadecimal for “ -d ” or “ -x ” output,
or octal and hexadecimal if you're using “ -o ” .

--target=bfdname

Specify that the object-code format for objfile is bfdname.
This option may not be necessary; size can automatically
recognize many formats. See Section 13.1, “Target
Selection” [163] ,for more information.

-V , --version
Display the version number of size.

12.7. strings

prefix-strings [-afov] [-min-len] [-n min-len] [-t radix] [-]
 [--all] [--print-file-name] [--bytes=min-len]
 [--radix=radix] [--target=bfdname]
 [--help] [--version] file...

For each file given, strings prints the printable character sequences
that are at least 4 characters long (or the number given with the

155

strings

options below) and are followed by an unprintable character. By
default, it only prints the strings from the initialized and loaded
sections of object files; for other types of files, it prints the strings
from the whole file.

strings is mainly useful for determining the contents of non-text
files.

-a , --all , -
Do not scan only the initialized and loaded sections of object
files; scan the whole files.

-f , --print-file-name
Print the name of the file before each string.

--help
Print a summary of the program usage on the standard output
and exit.

-n min-len , -min-len , --bytes=min-len

Print sequences of characters that are at least min-len characters
long, instead of the default 4.

-o
Like “ -t o ” .Some other versions of strings have “ -o ” act
like “ -t d ” instead. Since we can not be compatible with both
ways, we simply chose one.

-t radix , --radix=radix

Print the offset within the file before each string. The single
character argument specifies the radix of the offset-- “ o ” for
octal, “ x ” for hexadecimal, or “ d ” for decimal.

--target=bfdname

Specify an object code format other than your system's default
format. See Section 13.1, “Target Selection” [163] ,for more
information.

-v , --version
Print the program version number on the standard output and
exit.

156

Chapter 12. The Utilities

12.8. strip

prefix-strip [-F bfdname | --target=bfdname | --target=bfdname]
 [-I bfdname | --input-target=bfdname]
 [-O bfdname | --output-target=bfdname]
 [-s | --strip-all] [-S | -g | --strip-debug]
 [-K symbolname | --keep-symbol=symbolname]
 [-N symbolname | --strip-symbol=symbolname]
 [-x | --discard-all] [-X | --discard-locals]
 [-R sectionname | --remove-section=sectionname]
 [-o file] [-p | --preserve-dates]
 [-v | --verbose] [-V | --version] [--help]

objfile...

strip discards all symbols from object files objfile. The list of
object files may include archives. At least one object file must be
given.

strip modifies the files named in its argument, rather than writing
modified copies under different names.

-F bfdname , --target=bfdname

Treat the original objfile as a file with the object code format
bfdname, and rewrite it in the same format. See Section 13.1,
“Target Selection” [163] ,for more information.

--help
Show a summary of the options to strip and exit.

-I bfdname , --input-target=bfdname

Treat the original objfile as a file with the object code format
bfdname. See Section 13.1, “Target Selection” [163] ,for more
information.

-O bfdname , --output-target=bfdname

Replace objfile with a file in the output format bfdname. See
Section 13.1, “Target Selection” [163] ,for more information.

-R sectionname , --remove-section=sectionname

Remove any section named sectionname from the output file.
This option may be given more than once. Note that using this
option inappropriately may make the output file unusable.

157

strip

-s , --strip-all
Remove all symbols.

-g , -S , --strip-debug
Remove debugging symbols only.

--strip-unneeded
Remove all symbols that are not needed for relocation
processing.

-K symbolname , --keep-symbol=symbolname

Keep only symbol symbolname from the source file. This option
may be given more than once.

-N symbolname , --strip-symbol=symbolname

Remove symbol symbolname from the source file. This option
may be given more than once, and may be combined with strip
options other than -K.

-o file

Put the stripped output in file, rather than replacing the
existing file. When this argument is used, only one objfile
argument may be specified.

-p , --preserve-dates
Preserve the access and modification dates of the file.

-x , --discard-all
Remove non-global symbols.

-X , --discard-locals
Remove compiler-generated local symbols. (These usually
start with “ L ” or “ . ” .)

-V , --version
Show the version number for strip.

-v , --verbose
Verbose output: list all object files modified. In the case of
archives, “ strip -v ” lists all members of the archive.

158

Chapter 12. The Utilities

12.9. c++filt

prefix-c++filt [-_ | --strip-underscores]
 [-n | --no-strip-underscores]
 [-s format | --format=format]
 [--help] [--version] [symbol...]

The C++ language provides function overloading, which means
that you can write many functions with the same name (providing
each takes parameters of different types). All C++ function names
are encoded into a low-level assembly label (this process is known
as mangling). The c++filt program does the inverse mapping: it
decodes (demangles) low-level names into user-level names so
that the linker can keep these overloaded functions from clashing.

Every alphanumeric word (consisting of letters, digits, underscores,
dollars, or periods) seen in the input is a potential label. If the label
decodes into a C++ name, the C++ name replaces the low-level
name in the output.

You can use c++filt to decipher individual symbols:

prefix-c++filt symbol

If no symbol arguments are given, c++filt reads symbol names from
the standard input and writes the demangled names to the standard
output. All results are printed on the standard output.

-_ , --strip-underscores
On some systems, both the C and C++ compilers put an
underscore in front of every name. For example, the C name
foo gets the low-level name _foo. This option removes the
initial underscore. Whether c++filt removes the underscore by
default is target dependent.

-n , --no-strip-underscores
Do not remove the initial underscore.

159

c++filt

-s format , --format=format

nm can decode three different methods of mangling, used by
different C++ compilers. The argument to this option selects
which method it uses:

gnu
the one used by the compiler (the default method)

lucid
the one used by the Lucid compiler

arm
the one specified by the C++ Annotated Reference Manual

--help
Print a summary of the options to c++filt and exit.

--version
Print the version number of c++filt and exit.

12.10. addr2line

prefix-addr2line [-b bfdname | --target=bfdname]
 [-C | --demangle]
 [-e filename | --exe=filename]
 [-f | --functions] [-s | --basename]
 [-H | --help] [-V | --version]
 [addr addr ...]

addr2line translates program addresses into file names and line
numbers. Given an address and an executable, it uses the debugging
information in the executable to figure out which file name and
line number are associated with a given address.

The executable to use is specified with the -e option. The default
is a.out.

addr2line has two modes of operation.

In the first, hexadecimal addresses are specified on the command
line, and addr2line displays the file name and line number for each
address.

160

Chapter 12. The Utilities

In the second, addr2line reads hexadecimal addresses from
standard input, and prints the file name and line number for each
address on standard output. In this mode, addr2line may be used
in a pipe to convert dynamically chosen addresses.

The format of the output is “ FILENAME:LINENO ” .The file
name and line number for each address is printed on a separate
line. If the -f option is used, then each “ FILENAME:LINENO
” line is preceded by a “ FunctionNAME ” line which is the name
of the function containing the address.

If the file name or function name can not be determined, addr2line
will print two question marks in their place. If the line number can
not be determined, addr2line will print 0.

The long and short forms of options, shown here as alternatives,
are equivalent.

-b bfdname , --target=bfdname

Specify that the object-code format for the object files is
bfdname.

-C , --demangle
Decode (demangle) low-level symbol names into user-level
names. Besides removing any initial underscore prepended by
the system, this makes C++ function names readable. See
Section 12.9, “c++filt” [159] ,for more information on
demangling.

-e filename , --exe=filename

Specify the name of the executable for which addresses should
be translated. The default file is a.out.

-f , --functions
Display function names as well as file and line number
information.

-s , --basenames
Display only the base of each file name.

161

addr2line

162

Selecting the target
system

Chapter 13

You can specify three aspects of the target system to the object
code utilities, each in several ways:

• the target

• the architecture

• the linker emulation (which applies to the linker only)

In the following summaries, the lists of ways to specify values are
in order of decreasing precedence. The ways listed first override
those listed later.

13.1. Target Selection

A target is an object file format. A given target may be supported
for multiple architectures (see Section 13.2, “Architecture
selection” [165]). A target selection may also have variations for
different operating systems or architectures.

The command to list valid target values is “ prefix-objdump -i
” (the first column of output contains the relevant information).

163

Some sample values are: a.out-hp300bsd, ecoff-littlemips,
a.out-sunos-big.

You can also specify a target using a configuration triplet. This is
the same sort of name that is passed to configure to specify a target.
When you use a configuration triplet as an argument, it must be
fully canonicalized. You can see the canonical version of a triplet
by running the shell script config.sub which is included with the
sources.

objdump Target

Ways to specify:

1. command line option: “ -b ” or “ --target ”

2. environment variable GNUPREFIX

3. deduced from the input file

objcopy and strip Input Target

Ways to specify:

1. command line options: “ -I ” or “ --input-target ” ,or “ -F ” or
“ --target ”

2. environment variable GNUPREFIX

3. deduced from the input file

objcopy and strip Output Target

Ways to specify:

1. command line options: “ -O ” or “ --output-target ” ,or “ -F ”
or “ --target ”

2. the input target (see "objcopy and strip Input Target" above)

3. environment variable GNUPREFIX

4. deduced from the input file

164

Chapter 13. Selecting the target system

nm, size, and strings Target

Ways to specify:

1. command line option: “ --target ”

2. environment variable GNUPREFIX

3. deduced from the input file

Linker Input Target

Ways to specify:

1. command line option: “ -b ” or “ --format ” (see Section 10.1,
“Command Line Options” [79] .)

2. script command PREFIX (see Section 11.7, “Option
Commands” [125] .)

3. environment variable GNUPREFIX (see Section 10.2,
“Environment Variables” [95] .)

4. the default target of the selected linker emulation (see
Section 13.3, “Linker emulation selection” [166] .)

Linker Output Target

Ways to specify:

1. command line option: “ -oformat ” (see Section 10.1,
“Command Line Options” [79] .)

2. script command OUTPUT_FORMAT (see Section 11.7,
“Option Commands” [125] .)

3. the linker input target (see "Linker Input Target" above)

13.2. Architecture selection

An architecture is a type of cpu on which an object file is to run.
Its name may contain a colon, separating the name of the processor
family from the name of the particular cpu.

165

nm, size, and strings Target

The command to list valid architecture values is “ objdump -i ”
(the second column contains the relevant information).

Sample values: “ m68k:68020 ” , “ mips:3000 ” , “ sparc ” .

objdump Architecture

Ways to specify:

1. command line option: “ -m ” or “ --architecture ”

2. deduced from the input file

objcopy, nm, size, strings Architecture

Ways to specify:

1. deduced from the input file

Linker Input Architecture

Ways to specify:

1. deduced from the input file

Linker Output Architecture

Ways to specify:

1. script command OUTPUT_ARCH (see Section 11.7, “Option
Commands” [125] .)

2. the default architecture from the linker output target (see
Section 13.1, “Target Selection” [163] .)

13.3. Linker emulation selection

A linker emulation is a “personality” of the linker, which gives the
linker default values for the other aspects of the target system. In
particular, it consists of

166

Chapter 13. Selecting the target system

• the linker script

• the target

• several “hook” functions that are run at certain stages of the
linking process to do special things that some targets require

The command to list valid linker emulation values is “ prefix-ld
-V ” .

Sample values: “ coff_erc ” , “ coff_i186 ” , “ coff_1750 ” , “
coff_m68k ” .

Ways to specify:

1. command line option: “ -m ” (see Section 10.1, “Command Line
Options” [79] .)

2. environment variable LDEMULATION

3. compiled-in DEFAULT_EMULATION from Makefile, which
comes from EMUL in config/target.mt

167

Linker emulation selection

168

IV
Appendices

BFDAppendix A

The linker accesses object and archive files using the BFD libraries.
These libraries allow the linker to use the same routines to operate
on object files whatever the object file format. A different object
file format can be supported simply by creating a new BFD back
end and adding it to the library. To conserve runtime memory,
however, the linker and associated tools are usually configured to
support only a subset of the object file formats available. You can
use objdump -i (see Section 12.4, “objdump” [148])to list all the
formats available for your configuration.

One minor artifact of the BFD solution that you should bear in
mind is the potential for information loss. There are two places
where useful information can be lost using the BFD mechanism:
during conversion and during output. See Section A.1.1,
“Information Loss” [172] .

A.1. How it Works: An Outline of BFD

When an object file is opened, BFD subroutines automatically
determine the format of the input object file. They then build a
descriptor in memory with pointers to routines that will be used to
access elements of the object file's data structures.

171

As different information from the object files is required, BFD
reads from different sections of the file and processes them. For
example, a very common operation for the linker is processing
symbol tables. Each BFD back end provides a routine for converting
between the object file's representation of symbols and an internal
canonical format. When the linker asks for the symbol table of an
object file, it calls through a memory pointer to the routine from
the relevant BFD back end which reads and converts the table into
a canonical form. The linker then operates upon the canonical form.
When the link is finished and the linker writes the output file's
symbol table, another BFD back end routine is called to take the
newly created symbol table and convert it into the chosen output
format.

A.1.1. Information Loss

Information can be lost during output. The output formats
supported by BFD do not provide identical facilities, and
information which can be described in one form has nowhere to
go in another format. One example of this is alignment information
in b.out. There is nowhere in an a.out format file to store alignment
information on the contained data, so when a file is linked from
b.out and an a.out image is produced, alignment information will
not propagate to the output file. (The linker will still use the
alignment information internally, so the link is performed correctly).

Another example is COFF section names. COFF files may contain
an unlimited number of sections, each one with a textual section
name. If the target of the link is a format which does not have many
sections (e.g., a.out) or has sections without names (e.g., the Oasys
format), the link cannot be done simply. You can circumvent this
problem by describing the desired input-to-output section mapping
with the linker command language.

Information can be lost during canonicalization. The BFD
internal canonical form of the external formats is not exhaustive;
there are structures in input formats for which there is no direct
representation internally. This means that the BFD back ends cannot
maintain all possible data richness through the transformation
between external to internal and back to external formats.

This limitation is only a problem when an application reads one
format and writes another. Each BFD back end is responsible for
maintaining as much data as possible, and the internal BFD

172

Appendix A. BFD

canonical form has structures which are opaque to the BFD core,
and exported only to the back ends. When a file is read in one
format, the canonical form is generated for BFD and the application.
At the same time, the back end saves away any information which
may otherwise be lost. If the data is then written back in the same
format, the back end routine will be able to use the canonical form
provided by the BFD core as well as the information it prepared
earlier. Since there is a great deal of commonality between back
ends, there is no information lost when linking or copying big
endian COFF to little endian COFF, or a.out to b.out. When a
mixture of formats is linked, the information is only lost from the
files whose format differs from the destination.

A.1.2. The BFD canonical object-file format

The greatest potential for loss of information occurs when there is
the least overlap between the information provided by the source
format, that stored by the canonical format, and that needed by the
destination format. A brief description of the canonical form may
help you understand which kinds of data you can count on
preserving across conversions.

files
Information stored on a per-file basis includes target machine
architecture, particular implementation format type, a demand
pageable bit, and a write protected bit. Information like UNIX
magic numbers is not stored here -- only the magic numbers'
meaning, so a ZMAGIC file would have both the demand pageable
bit and the write protected text bit set. The byte order of the
target is stored on a per-file basis, so that big- and little-endian
object files may be used with one another.

sections
Each section in the input file contains the name of the section,
the section's original address in the object file, size and
alignment information, various flags, and pointers into other
BFD data structures.

symbols
Each symbol contains a pointer to the information for the object
file which originally defined it, its name, its value, and various
flag bits. When a BFD back end reads in a symbol table, it
relocates all symbols to make them relative to the base of the
section where they were defined. Doing this ensures that each

173

The BFD canonical object-file format

symbol points to its containing section. Each symbol also has
a varying amount of hidden private data for the BFD back end.
Since the symbol points to the original file, the private data
format for that symbol is accessible. The linker can operate on
a collection of symbols of wildly different formats without
problems.

Normal global and simple local symbols are maintained on
output, so an output file (no matter its format) will retain
symbols pointing to functions and to global, static, and common
variables. Some symbol information is not worth retaining; in
a.out, type information is stored in the symbol table as long
symbol names. This information would be useless to most
COFF debuggers; the linker has command line switches to
allow users to throw it away.

There is one word of type information within the symbol, so
if the format supports symbol type information within symbols
(for example, COFF, IEEE, Oasys) and the type is simple
enough to fit within one word (nearly everything but
aggregates), the information will be preserved.

relocation level
Each canonical BFD relocation record contains a pointer to
the symbol to relocate to, the offset of the data to relocate, the
section the data is in, and a pointer to a relocation type
descriptor. Relocation is performed by passing messages
through the relocation type descriptor and the symbol pointer.
Therefore, relocations can be performed on output data using
a relocation method that is only available in one of the input
formats. For instance, Oasys provides a byte relocation format.
A relocation record requesting this relocation type would point
indirectly to a routine to perform this, so the relocation may
be performed on a byte being written to a 68k COFF file, even
though 68k COFF has no such relocation type.

line numbers
Object formats can contain, for debugging purposes, some
form of mapping between symbols, source line numbers, and
addresses in the output file. These addresses have to be
relocated along with the symbol information. Each symbol
with an associated list of line number records points to the first
record of the list. The head of a line number list consists of a
pointer to the symbol, which allows finding out the address of
the function whose line number is being described. The rest

174

Appendix A. BFD

of the list is made up of pairs: offsets into the section and line
numbers. Any format which can simply derive this information
can pass it successfully between formats (COFF, IEEE and
Oasys).

175

The BFD canonical object-file format

176

Symbols
", 99
#, 19
#APP, 18
#NO_APP, 18
*(COMMON), 111
*(section) , 111
-, 8
-(, 87
--version, 86
-a, 12
-ac, 12
-ad, 12
-ah, 12
-al, 12
-an, 12
-as, 12
-assert keyword , 87
-auxiliary, 82
-b format , 81
-Bdynamic, 87
-Bshareable, 90
-Bstatic, 87
-Bsymbolic, 87

-call_shared, 87
-cref, 88
-D, 12
-d, 81
-dc, 81
-defsym symbol=exp , 88
-discard-all, 86
-discard-locals, 86
-dn, 87
-dp, 81
-dy, 87
-dynamic-linker file , 88
-E, 81
-e entry , 81
-EB, 88
-EL, 88
-entry=entry , 81
-export-dynamic, 81
-f, 12, 82
-F, 82
-filter, 82
-force-exe-suffix, 83
-format=format , 81
-g, 83

Index

177

-G, 83
-gpsize, 83
-help, 88
-hname , 83
-i, 83
-I path , 13
-just-symbols=file , 85
-K, 13
-L, 13
-larchive , 83
-Ldir , 84
-library-path=dir , 84
-library=archive , 83
-M, 84
-m emulation , 84
-Map, 88
-n, 85
-N, 85
-nmagic, 85
-no-keep-memory, 89
-no-whole-archive, 89
-noinhibit-exec, 89
-non_shared, 87
-o, 13
-o output , 85
-oformat, 89
-omagic, 85
-output=output , 85
-print-map, 84
-qmagic, 89
-Qy, 89
-R, 14
-r, 85
-R file , 85
-relax, 89
-relocatable, 85
-s, 85
-S, 85
-script=script , 86
-shared, 90
-soname=name , 83
-sort-common, 90
-split-by-file, 90
-split-by-reloc, 90

-static, 87
-statistics, 14
-stats, 90
-strip-all, 85
-strip-debug, 85
-t, 86
-T script , 86
-Tbss org , 91
-Tdata org , 91
-trace, 86
-trace-symbol=symbol , 86
-Ttext org , 91
-u symbol , 86
-undefined=symbol , 86
-Ur, 91
-v, 14, 86
-V, 86
-verbose, 91
-version, 14
-version-script=version-scriptfile , 91
-W, 14
-warn-common, 91
-warn-constructors, 93
-warn-multiple-gp, 94
-warn-once, 94
-warn-section-align, 94
-whole-archive, 94
-wrap, 94
-x, 86
-X, 86
-Y path , 86
-y symbol , 86
-z keyword , 86
., 100
. (symbol) , 33
.bss section, 29
.comm

directive, 43
.endm, 59
.exitm, 60
.lcomm directive, 29
.macro macname , 59
.macro macname macargs ... , 59
.o, 9

178

Index

.stab, 152
0x, 99
: (label) , 20
;, 102
=fill , 118
>region , 118
[section...]

not supported, 111
\" (double-quote character) , 22
\@, 60
\\ (\ character) , 22
\b (backspace character) , 21
\ddd (octal character code) , 22
\f (form feed character) , 21
\n (newline character) , 21
\r (carriage return character) , 21
\t (tab) , 21
\xd... (hex character code) , 22

A
a.out, 9
absolute and relocatable symbols, 102
absolute section, 28
ABSOLUTE(exp) , 104
addition

permitted arguments, 37
ADDR(section) , 104
addr2line, 160
address to file name and line number,
160
addresses, 35

format of, 26
advancing location counter, 61
ALIGN(exp) , 104
aligning sections, 117
all header information

object file, 153
allocating memory, 107
ar, 131
ar compatibility, 132
architecture

for disassembly, 151
architectures available, 151
archive contents, 153

archive files
from cmd line, 83

archive headers, 149
archives, 131
arguments for addition, 37
arguments for subtraction, 38
arguments in expressions, 36
arithmetic, 98
arithmetic functions, 36
arithmetic operands, 36
arithmetic operators, 101
assembler

and linker, 25
assembly listings

enabling, 12
assigning values to symbols, 31, 47
assignment

in section defn, 115
assignment in scripts, 101
AT (ldadr) , 117
attributes

symbol, 33
auxiliary attributes

COFF symbols, 34
auxiliary symbol information

COFF, 45

B
back end, 171
backslash (\\) , 22
backspace (\b) , 21
BFD

canonical format, 173
big-endian objects, 88
bignums, 23
binary input files, 126
binary input format, 81
binary integers, 23
BLOCK(align) , 117
bss section, 27, 29
BYTE(expression) , 115

C
c++filt, 159

179

carriage return (\r) , 21
character

single, 22
character constants, 21
character escape codes, 21
characters used in symbols, 19
COFF

auxiliary symbol information, 45
debugging symbols, 44
structure debugging, 71
symbol storage class, 64
symbol type, 72
value attribute, 73

COFF named section, 65
COFF symbol attributes, 34
collections of files, 131
combining symbols

warnings on, 91
COMDAT, 56
comm

directive, 43
command files, 97
command line, 79
command line conventions, 8
commands

fundamental, 98
comments, 18, 98

removed by preprocessor, 17
common allocation, 81, 126
common sections, 56
common variable storage, 29
commons in output, 111
compatibility

ar, 132
conditional assembly, 51
constant

single character, 22
constants, 20

bignum, 23
character, 21
converted by preprocessor, 17
floating point, 23
integer, 23
number, 23

constants, string, 21
constructors, 91
CONSTRUCTORS, 125
constructors, arranging in link, 125
contents of a section, 110
contents of archive, 134
continuing statements, 20
CREATE_OBJECT_SYMBOLS, 114
creating archives, 135
cross reference table, 88
cross references, 128
current address, 33

advancing, 61
current output location, 100

D
data and text sections

joining, 14
dates in archive, 135
dbx, 90
debug symbols, 152
debugging COFF symbols, 44
debugging symbols, 141
decimal integers, 23, 99
default input format, 95
DEFINED(symbol) , 105
deleting from archive, 133
deleting local symbols, 86
demangling C++ symbols, 159
demangling in nm, 141
demangling in objdump, 150, 161
difference tables

warning, 13
direct output, 115
directive

abort , 39
ABORT , 40
align , 40
app-file , 41
ascii , 41
asciz , 42
balign , 42
balignl , 43
balignw , 43

180

Index

byte , 43
comm , 43
data , 44
def , 44
dim , 45
double , 45
eject , 45
else , 46
endef , 46
endif , 46
endm , 59
equ , 47
equiv , 47
err , 48
exitm , 60
extern , 48
file , 48
fill , 49
float , 50
global , 50
hword , 50
ident , 51
if , 51
ifdef , 52
ifndef , 52
ifnotdef , 52
include , 52
int , 53
irp , 53
irpc , 54
lcomm , 55
line , 55
linkonce , 56
list , 57
ln , 57
long , 58
macro, 59
nolist , 60
octa , 60
org , 61
p2align , 61
p2alignl , 62
p2alignw , 62
psize , 62

quad , 63
rept , 63
sbttl , 64
scl , 64
section , 65
set , 67
short , 67
single , 68
size , 68
skip , 68
space , 69
stabd , 70
stabn , 70
stabs , 70
string , 70
tag , 71
text , 71
title , 72
type , 72
val , 73
word , 73

directives
machine independent, 39

directives and instructions, 20
disassembling object code, 150
disassembly

with source, 152
disassembly architecture, 151
disassembly endianness, 150
discarding symbols, 157
discontinuous memory, 107
dot, 100
dot (symbol), 33
double-quote (\") , 22
dynamic linker

from command line, 88
dynamic relocation entries

in object file, 152
dynamic symbol table, 81
dynamic symbol table entries

printing, 152
dynamic symbols, 142

181

E
eight-byte integer, 63
ELF

object file format, 152
empty expressions, 35
emulation, 84
endianness, 88, 150
entry point

defaults, 121
from command line, 81

ENTRY(symbol) , 120
EOF

newline must precede, 19
error messages, 10
errors

continuing after, 15
escape codes

character, 21
expression

absolute, 104
expression arguments, 36
expression evaluation order, 101
expression syntax, 98
expressions, 35

empty, 35
integer, 35

expressions in a section, 113
external symbols, 142, 143, 143
extract from archive, 134

F
faster processing (-f) , 12
file name, 141

logical, 41, 48
filename , 110
filename symbols, 114
filename(section) , 111
files

including, 52
including in output sections, 110
input, 8

files and sections
section defn, 111

fill pattern

entire section, 118
FILL(expression) , 115
filling memory, 68, 69
first input file, 127
first instruction, 120
FLOAT, 126
floating point

numbers, 23
(double), 45
(single), 50

floating point numbers (single), 68
flonums, 23
FORCE_COMMON_ALLOCATION,
126
form feed (\f) , 21
format

BFD canonical, 173
output file, 127

format of error messages, 10
format of warning messages, 10
functions

in expressions, 36
functions in expression language, 104
fundamental script commands, 98

G
GNUPREFIX, 95, 127
GROUP (files) , 126
grouping data, 28
grouping input files, 126
groups of archives, 87

H
header

object file, 151
section, 151

header information
all, 153

header size, 106
help, 88
hex character code (\xd...) , 22
hexadecimal integers, 23, 99
holes, 100

filling, 115

182

Index

I
include directive search path , 13
INCLUDE filename , 126
including a linker script, 126
including an entire archive, 94
incremental link, 83
infix operators, 37
input, 8
INPUT (files) , 126
input file format, 127
input file line numbers, 9
input file name, 141
input filename symbols, 114
input files

displaying, 86
section defn, 110

input format, 81, 81
input sections to output section, 111
instructions and directives, 20
integer

16-byte, 60
8-byte, 63

integer expressions, 35
integer notation, 99
integer suffixes, 99
integers, 23

16-bit, 50
32-bit, 53
binary, 23
decimal, 23
hexadecimal, 23
octal, 23
one byte, 43

internal object file format, 173
invocation summary, 3

J
joining text and data sections, 14

K
K and M integer suffixes, 99

L
L

deleting symbols beginning, 86
l =, 108
label (:) , 20
labels, 31
layout of output file, 98
lazy evaluation, 101
lcomm directive, 29
ld, 9
len =, 108
LENGTH =, 108
length of symbols, 19
lflags directive (ignored) , 55
libraries, 131
line comment character, 18
line numbers

in input files, 9
in warnings/errors, 10

line separator character, 19
lines starting with # , 19
link map, 84, 88
linker, 9, 77

and assembler, 25
listing control

new page, 45
paper size, 62
subtitle, 64
title line, 72
turning off, 60
turning on, 57

listings
enabling, 12

listings strings, 155
little-endian objects, 88
load address

specifying, 117
LOADADDR(section) , 104
loading

preventing, 117
local common symbols, 55
local labels

retaining in output, 13
local symbol names, 32
local symbols

deleting, 86

183

location counter, 33, 100
advancing, 61
padding given number of bytes, 42

logical file name, 41, 48
logical line number, 55
logical line numbers, 19
LONG(expression) , 115

M
M and K integer suffixes, 99
machine architecture

output, 127
machine independent directives, 39
machine instructions, 150
machine-independent syntax, 17
macros, 58

count executed, 60
MAX, 106
MEMORY, 107
memory region attributes, 107
memory regions and sections, 118
memory usage, 89
merging text and data sections, 14
messages from the assembler , 10
MIN, 106
minus

permitted arguments, 38
moving in archive, 133
MRI compatibility, ar , 136
multi-line statements, 20

N
name duplication in archive, 134
name length, 131
named section (COFF), 65
named sections, 27
names, 99
names, symbol, 32
naming memory regions, 107
naming object file, 13
naming output sections, 109
naming the output file, 85, 127
negative integers, 99
new page

in listings, 45
newline

required at file end, 19
newline (\n) , 21
NEXT(exp) , 106
nm, 139
nm compatibility, 141, 142
nm format, 141, 142
NMAGIC, 85
NOCROSSREFS (sections) , 128
NOFLOAT, 126
NOLOAD, 117
Non constant expression, 103
null-terminated strings, 42
number constants, 23
number of macros executed, 60
numbered subsections, 28
numbers

16-bit, 50
numeric values, 35

O
o =, 107
objdump, 148
objdump -i, 171
object code format, 143, 149, 155, 156, 161
object file, 9

after errors, 15
all header information, 153
dynamic relocation entries, 152
ELF format, 152
format, 7, 173
formats available, 151
header, 151
information, 148
name, 13

object file management, 171
object file sections, 152
object files, 80

opening, 171
object formats available, 171
object size, 83
octal character code (\ddd) , 22
octal integers, 23, 99

184

Index

OMAGIC, 85
opening object files, 171
operands in expressions, 36
operations on archive, 132
operator precedence, 37
operators

in expressions, 36
permitted arguments, 37

Operators for arithmetic, 101
option summary, 3
options, 79

all versions of the assembler , 11
command line, 8

org =, 107
ORIGIN =, 107
OUTPUT (filename) , 127
output file, 9
output file after errors, 89
output file layout, 98
OUTPUT_ARCH (bfdname) , 127
OUTPUT_FORMAT (bfdname) ,
127
OVERLAY, 118
overlays, 118

P
padding

the location counter given number
of bytes, 42

padding the location counter, 40
padding the location counter given a
power of two, 61
page

in listings, 45
paper size

for listings, 62
partial link, 85
path for libraries, 127
paths for .include , 13
patterns

writing in memory, 49
plus

permitted arguments, 37
precedence in expressions, 101

precedence of operators, 37
precision

floating point, 23
PREFIX (format) , 127
prefix operators, 36
preprocessing, 17

turning on and off, 18
prevent unnecessary loading, 117
primary attributes

COFF symbols, 34
printing

strings, 155
wide output, 153

printing from archive, 133
provide, 103
pseudo-ops

machine independent, 39
purpose of the assembler , 7

Q
QUAD(expression) , 115
quick append to archive, 133
quoted symbol names, 99

R
radix for section sizes, 155
ranlib, 153
read-only text, 85
read/write from cmd line, 85
regions of memory, 107
relative placement in archive, 134
relaxing addressing modes, 89
relocatable and absolute symbols, 102
relocatable output, 85
relocation, 25
relocation entries

in object file, 151
relocation example, 28
removing symbols, 157
repeated names in archive, 134
replacement in archive, 133
retaining specified symbols, 90
rounding up location counter, 104
runtime library name, 83

185

S
scaled integers, 99
script files, 86
scripts, ar , 136
search directory

from cmd line, 84
search path

libraries, 127
search path for .include , 13
SEARCH_DIR (path) , 127
section

assigning to memory region, 118
section address, 104, 116
section addresses in objdump, 149
section alignment, 117
section alignment, warnings on, 94
section definition, 109
section defn

full syntax, 116
section fill pattern, 118
section headers, 151
section information, 151
section load address, 104
section size, 106
section sizes, 154
section start, 116
section-relative addressing, 26
sections, 25

full contents, 152
named, 27

SECTIONS, 108
segment origins

cmd line, 91
semicolon, 102
SHORT(expression) , 115
single character constant, 22
sixteen byte integer, 60
sixteen-bit integers, 50
size, 154
size display format , 154
size number format , 155
SIZEOF(section) , 106
SIZEOF_HEADERS, 106
sizeof_headers, 106

sorting symbols, 142
source disassembly, 152
source file name, 141
source filenames for object files, 151
source program, 8
space used

maximum for assembly, 14
specify load address, 117
stab, 152
stabx directives , 69
standard input

as input file, 8
standard the assembler sections , 25
start address

section, 116
start of execution, 120
start-address, 152
STARTUP (filename) , 127
statement on multiple lines, 20
statement separator character, 19
statements, structure of, 19
statistics

about assembly, 14
stop-address, 152
stopping the assembly, 39
string

copying to object file, 70
string constants, 21
string literals, 41
strings, 155

null-terminated, 42
printing, 155
zero-terminated, 42

strip, 157
strip all symbols, 85
strip debugger symbols, 85
stripping all but some symbols, 90
structure debugging

COFF, 71
subexpressions, 36
subtitles for listings, 64
subtraction

permitted arguments, 38
suffixes for integers, 99

186

Index

summary of options, 3
supporting files

including, 52
suppressing warnings, 14
symbol

common, 43
making visible to linker, 50

symbol = expression ; , 115
symbol attributes, 33

COFF, 34
symbol defaults, 105
symbol definition

scripts, 101
symbol f= expression ; , 115
symbol index, 132, 153

listing, 142
symbol line numbers, 142
symbol names, 32, 99

local, 32
temporary, 32

symbol storage class (COFF), 64
symbol table entries

printing, 152
symbol tracing, 86
symbol type, 34

COFF, 72
symbol value, 34

setting, 67
symbol values

assigning, 31
symbol versions, 121
symbol-only input, 85
symbolic debuggers

information for, 69
symbols, 31, 139

assigning values to, 47
discarding, 157
from command line, 88
local common, 55
relocatable and absolute, 102
retaining selectively, 90

syntax
machine-independent, 17

synthesizing linker, 89

T
tab (\t) , 21
temporary symbol names, 32
text and data sections

joining, 14
the assembler version, 14
time

total for assembly, 14
trusted compiler, 12
turning preprocessing on and off, 18
type of a symbol, 34

U
unallocated address

next, 106
undefined section, 28
undefined symbol, 86
undefined symbols, 143, 143

warnings on, 94
uninitialized data, 111
UNIX compatibility

ar, 132
unspecified memory, 115
updating an archive, 135
usage, 88

V
value attribute

COFF, 73
value of a symbol, 34
variables

defining, 101
verbose, 91
version, 86
version of the assembler , 14
version script, 121

symbol versions, 91
VERSION {script text}, 121
versions of symbols, 121
VMA in objdump, 149

W
warning for altered difference tables,
13

187

warning messages, 10
warnings

on combining symbols, 91
on section alignment, 94
on undefined symbols, 94
suppressing, 14

white-space, 18
removed by preprocessor, 17

wide output
printing, 153

writing archive index, 135
writing patterns in memory, 49

Z
zero-terminated strings, 42

188

Index

