-
-]
Debugging Ada
Programs

Using the XGC Ada Debugger

WWW.Xgc.com

Debugging Ada Programs

Using the XGC Ada Debugger

Order Number: XGC-ADA-GDB-040803

XGC Technology

London
UK
Web: <www. xgc. coms

Debugging Ada Programs: Using the XGC Ada Debugger
by Free Software Foundation and X GC Technology

Publication date August 2004
© 1998, 1999, 2000, 2001 XGC Technology
© 1988, 1989, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Acknowledgments

This guideis based on documentation distributed by the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

License

Thisguideisdistributed under the terms of the GNU Public license. Permission isgranted to make and distribute verbatim copies of thisdocument
provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified
versions of this document under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the
terms of apermission noticeidentical to thisone. Permission isgranted to copy and distribute trand ations of thisdocument into another language,
under the above conditions for modified versions.

Contents

Chapter 1

Chapter 2

Chapter 3

About this Guide ix

1 Audience ix

2 Related Documents X

3 Reader's Comments X

4 Documentation Conventions Xi

A Sample Debug Session 1

Getting In and Out of the Debugger 7

2.1 Invoking the Debugger 7
211 Choosing Files 8
21.2 Choosing Modes 9

2.2 Quitting the Debugger 10

2.3 Shell Commands 11

Debugger Commands 13
3.1 Command Syntax 13

Debugging Ada Programs

3.2 Command Completion 14
3.3 Getting Help 17

Chapter 4 Running Programs Under the Debugger 21

4.1 Compiling for Debugging 21
4.2 Starting your Program 22

Chapter 5 Sopping and Continuing 23

5.1 Breakpoints, Watchpoints, and Exceptions 24
511 Setting Breakpoints 24
512 Setting Watchpoints 29
5.1.3 Deleting Breakpoints 30
5.1.4 Disabling Breakpoints 31
515 Break Conditions 33
5.1.6 Breakpoint Command Lists 35
5.1.7 Breakpoint Menus 37
5.2 Continuing and Stepping 38

Chapter 6 Examining the Sack 43

6.1 Stack Frames 44

6.2 Backtraces 45

6.3 Selecting aFrame 46

6.4 Information about a Frame 47

Chapter 7 Examining Source Files 51

7.1 Printing Source Lines 51

7.2 Searching Source Files 54

7.3 Specifying Source Directories 54
7.4 Source and Machine Code 56

Chapter 8 Examining Data 59

8.1 Expressions 60

8.2 Program Variables 61
8.3 Artificial Arrays 63
8.4 Output Formats 65
8.5 Examining Memory 66
8.6 Automatic Display 69

Debugging Ada Programs

Chapter 9

Chapter 10

Chapter 11

Chapter 12

8.7 Print Settings 71

8.8 VaueHistory 78

8.9 ConvenienceVariables 80
8.10 Registers 82

Using the Debugger with Different Languages 85
9.1 Switching Between Source Languages 85

9.2
9.3

94

911

List of Filename Extensions and

Languages 86

912
9.13

Setting the Working Language 87
Having the Debugger Infer the Source

Language 87
Displaying the Language 87
Supported Languages 88

931
9.3.2

C and C++ operators 89
C and C++ Constants 92

TheAdaMode 93

94.1
94.2
9.4.3
94.4
9.4.5
9.4.6
9.4.7
9.4.8

OmissionsfromAda 94

Additionsto Ada 95

Stopping at the Beginning 96
Breaking on Ada Exceptions 97
Extensions for Ada Tasks 97
Debugging Generic Units 98

Set commands for Ada 100

Known Peculiarities of AdaMode 100

Examining the Symbol Table 103

Altering Execution 109

111
11.2
11.3
11.4
115

Assignment to Variables 109
Continuing at a Different Address 111
Returning from a Function 112
Calling Program Functions 112
Patching Programs 113

The Debugger Files 115

12.1 Commands to Specify Files 115
12.2 Errors Reading Symbol Files 118

Debugging Ada Programs

Chapter 13 Soecifying a Debugging Target 121

13.1 Active Targets 121
13.2 Commandsfor Managing Targets 122
13.3 Remote Debugging 123

Chapter 14 Controlling the Debugger 125

141 Prompt 125

14.2 Command Editing 126

14.3 Command History 126

144 Screen Size 128

145 Numbers 129

14.6 Optiona Warnings and Messages 130

Chapter 15 Canned Sequences of Commands 133

15.1 User-Defined Commands 133

15.2 User-Defined Command Hooks 135
15.3 Command Files 136

15.4 Commands for Controlled Output 137

Chapter 16 Using History Interactively 139

16.1 History Interaction 139
16.1.1 Event Designators 140
16.1.2 Word Designators 140
16.1.3 Moaodifiers 141

Index 143

Vi

Examples

9.1 Output frominfo tasks 98
9.2 Output frominfo queues 98

Vii

viii

About this Guide

This guide contains detailed target independent information about
the XGC Ada debugger, including all the command line options.
It includesthetext of the GNU debugger (GDB) user manual, with
examples for Ada 95.

When using the examples, the parameter pr ef i x should be replaced
with the prefix that is applicable for your product. You will find
thisinformation in the Getting Sarted manual.

1. Audience

This guide iswritten for the experienced programmer who is
already familiar with the Ada 95 and C programming languages
and with embedded systems programming in general. We assume
some knowledge of the target computer architecture.

About this Guide

2. Related Documents

Getting Started with XGC Ada describes how to to prepare and run
asimple program, and contains target dependent information that
supplements the other user manuals.

The XGC Ada Reference Manual Supplement containsinformation
required by the Ada Reference Manual.

The XGC Ada User Guide describesthe compiler and Adadutilities.

The XGC Utilities describes the assembler, linker and object code
utilities.

The XGC Libraries documentsthe library functions available with
al XGC compilers.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments in the following ways:
* Internet electronic mail: readers_comments@xgc.com

Please include the following information along with your
comments:

» Thefull title of the book and the order number. (The order
number is printed on the title page of this book.)

» The section humbers and page numbers of the information on
which you are commenting.

» Theversion of the software that you are using.

Technical support enquiries should be directed to the XGC web
site [http://www.xgc.com/] or by email to support@xgc.com/.

readers_comments@xgc.com
http://www.xgc.com/
http://www.xgc.com/
http://www.xgc.com/
support@xgc.com/

Documentation Conventions

4. Documentation Conventions
This guide uses the foll owing typographic conventions:

%, $
A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

A number sign represents the superuser prompt.

$ vi hello.c
Boldface type in interactive examples indicates typed user
input.

file
Italic or slanted type indicates variable values, place-holders,
and function argument names.

LIL{1}

In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated.

cat(1)
A cross-reference to areference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mbl/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Xi

About this Guide

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

Xii

Chapter 1 A Sample Debug Session

You can use this manual at your leisure to read all about the
debugger. However, a handful of commands are enough to get
started using the debugger. Thischapter illustrates those commands.

The benchmark program Whetstone is frequently used to measure
the performance of floating-point operations. We run Whetstone
on the target to compare its performance with other computers.
Theworkings of Whetstone are abit of amystery, but by using the
debugger we can get an insight.

Thefirst step isto compile the Whetstone source with the debug
option switched on. There is no need to compile with minimal
optimization since the debugger is able to cope with most
optimizations.

$ prefix-gcc -g whetstone.adb -0 whetstone

Note that prefi x should be replaced with the prefix for your
product.

Chapter 1. A Sample Debug Session

The code we wish to look at starts on line 306, just after the array
el has been set up. Hereis part of the Ada source file showing line
306 and some of the surrounding lines.

300
301 -- Modul
302 el :
303 el
304 el
305 el
306 fo
307 e
308 e

2: conputations with array el enments

L I 1 I ¢}
' ' [N
o

We start the debugger using the following command. You may use
the -g option to suppress the banner:

$ prefix-gdb whetstone

XGC target-ada Version 1.5 (debugger)
Copyright (c) 1996, 2001, XGC Technol ogy.
Based on gdb version 4.17.gnat.3.11

Copyright (c) 1998 Free Software Foundation..

(gdb)

The easiest way to get to line 306 isto set abreakpoint onthat line,
then use the run command. Breakpoints are set using the break
command. We can check what breakpoints are set using the info
command.

(gdb) break whetstone. adb: 306
Breakpoint 1 at Oxee2: file whetstone.adb, |ine 306
(gdb) info breakpoints

Num Type Di sp Enb Address \What
1 breakpoint keep y 0x00000ee2 in whetstone at whetstone. adb: 3
(gdb)

So far we have been working with the exec target. Thisisthe
executable file whet st one cited on the comand line that invoked
the debugger. Using just thisfile, and no target at all, we can look

at the values of symbols, inspect the source code, and the generated
code, and check the values of static variables.

In order to run the program we must switch to areal or simulated
target. The debugger supports both. The simulator target is called
simand areal target is called r enot e. The debugger will
automatically switch to the simulator and load the program into
the smulator if we enter the run command at this point.

(gdb) run

Starting program .../exanpl es/ whetstone
Connected to the simulator.

Loadi ng sections:

| dx Nane Si ze VMVA LMA File off Algn
0 .init 00000408 00000000 00000000 00001000 2**1
CONTENTS, ALLOC, LOAD, CODE
1 .text 00001890 00000408 00000408 00001408 2**1
CONTENTS, ALLOC, LOAD, CODE
2 .rdata 000003ce 00001c98 00001c98 00002c98 2**1
CONTENTS, ALLOC, LOAD, READONLY
3 .data 0000038a 00010000 00002066 00004000 2**1

CONTENTS, ALLOC, LOAD, DATA
Start address 0x0
Transfer rate: 73600 bhits in <1 sec.
\Whet st one: Fl oating point benchnark

Breakpoi nt 1, whetstone () at whetstone. adb: 306
306 for i in1l.. n2loop

(gdb)

What we want to do now is see how the value of el changes aswe
go round the loop. We can print the initial value using the print
command. Note that arrays (and structures) may be printed with a
single command.

(gdb) print el(1)

$1 =1
(gdb) print el(2)
$2 =-1

(gdb) print el
$2=(1=>1, 221 3= -1 4= -1)
(gdb)

Chapter 1. A Sample Debug Session

We can then step through the program one line at atime using the
next command. Like many other commands, the next command
repeats when we press Enter. Therefore, after the first next
command, we just hit Enter.

(gdb) next

307 el (1) ;= (el (1) +el (2) +el (3) - el (4)) *t;
(gdb) enter

308 el (2) ;= (el (1) +el (2) - el (3) +el (4)) *t;
(gdb) enter

309 el (3) ;= (el (1) - el (2) +el (3) +el (4)) *t;
(gdb) enter

310 el (4) = (-el (1) +el (2) +el (3) +el (4)) *t;
(gdb)

Let's check the value of €l. Thistime well use the abbreviation.

(gdb) p el
$3 = (1 =>0, 2 =>-0.499975026, 3 => -0.749975085, 4 => -1)

If we need to check the value of el each time round the loop, itis
tedious to have to step through each line then type the print
command at the end of theloop. Instead we can place a breakpoint
at the end of the loop and use the continue command to execute to
the end of theloop. Furthermore, we can use the display command
to print the value of €l each time the program stops.

(gdb) br

Breakpoint 2 at Oxf2e: file whetstone.adb, line 310

(gdb) display el

1: el = (1 =0, 2 =>-0.499975026, 3 => -0.749975085, 4 => -1)

Use the continue command to run the program to the next
breakpoint. Then press Enter to repeat the continue command.
Note that continue may be abbreviated to c.

(gdb) c
Cont i nui ng.

Breakpoint 2, whetstone () at whetstone. adb: 310

310 el (4) = (-el (1) +el (2) +el (3) +el (4)) *t;
1: el = (1 =>-0.0625123829, 2 => -0.468692422, 3 => -0.734320521, 4
(gdb) Enter

Cont i nui ng.

Breakpoint 2, whetstone () at whetstone. adb: 310

310 el (4) = (-el (1) +el (2) +el (3) +el (4)) *t;
1: el = (1 => -0.0664326251, 2 => -0.466705739, 3 => -0.733313918, 4
(gdb) Enter

To finish the debugging session use the quit command. You may
abbreviate quit to .

(gdb) q
The programis running. Quit anyway (and kill it)? (y or n) y
$

Chapter 2 Getting In and Out of the
Debugger

This chapter discusses how to start the debugger and how to get
out of it. The essentials are:

« typethe command pref i x-gdb to start the debugger.

 typequit or Ctrl+d to exit.

2.1. Invoking the Debugger

Invoke the debugger by entering the command pr ef i x-gdb. Once
started, the debugger reads commands from the terminal until you
tell it to exit.

You can also run the debugger with avariety of arguments and
options, to specify more of your debugging environment at the
outset.

The most usual way to start the debugger is with one argument,
specifying an executable program:

Chapter 2. Getting In and Out of the Debugger

$ prefix-gdb program

You can run the debugger without printing the front material, which
describes warranty, by specifying -silent:

$ prefix-gdb -silent

You can further control how the debugger starts up by using
command-line options. The debugger itself can remind you of the
options available.

Type

$ prefix-gdb -help

to display all available options and briefly describe their use
(pref i x-gdb -h isashorter equivalent).

All options and command line arguments you give are processed
in sequentid order. The order makes adifference when the -x option
isused.

2.1.1. Choosing Files

When the debugger starts, it reads any argument other than options
as specifying an executablefile. Thisisthe sameasif the argument
was specified by the -se option.

Many options have both long and short forms; both are shown in
the following list. The debugger also recognizes the long forms if
you truncate them, so long as enough of the option is present to be
unambiguous. (If you prefer, you can flag option arguments with
-- rather than -, though we illustrate the more usual convention.)

-symbolsfile, -sfile
Read symbol table from filefile.

-execfile, -efile
Usefilefi | e asthe executablefileto execute when appropriate.

Choosing Modes

-sefile
Read symbol table from filefi| e and use it as the executable
file.

-command file, -xfile
Execute debug commands from filefi | e. See Section 15.3,
“Command Files’ [136].

-directory directory, -ddirectory
Add di rect ory to the path to search for source files.

-r , -readnow
Read each symboal file's entire symbol tableimmediately, rather
than the default, which isto read it incrementally, asitis
needed. This makes startup slower, but makes future operations
faster.

2.1.2. Choosing Modes

You can run the debugger in various alternative modes—for
example, in batch mode or quiet mode.

-nx, -n
Do not execute commands from any initialization files
(normally called . gdbi ni t). Normally, the commandsin these
filesare executed after all the command options and arguments
have been processed. See Section 15.3, “ Command Files’ [136].

-quiet , -q
Do not print the introductory and copyright messages. These
messages are al so suppressed in batch mode.

-batch
Run in batch mode. Exit with status O after processing all the
command files specified with -x (and all commands from
initialization files, if not inhibited with -n). Exit with nonzero
statusif an error occurs in executing the debug commandsin
the command files.

Chapter 2. Getting In and Out of the Debugger

Batch mode may be useful for running the debugger as afilter,
for example to download and run a program on another
computer; in order to make this more useful, the message

Programexited nornally.

(whichisordinarily issued whenever aprogram running under
the debugger control terminates) is not issued when running
in batch mode.

-cd directory
Run the debugger using di rect ory asits working directory,
instead of the current directory.

-fullname, -f
Emacs sets this option when it runs the debugger as a
subprocess. It tells the debugger to output the full file name
and line number in a standard, recognizabl e fashion each time
astack frameis displayed (which includes each time your
program stops). This recognizable format looks like two \ 032
characters, followed by thefile name, line number and character
position separated by colons, and anewline. The Emacs-to-gdb
interface program uses the two \ 032 characters asasignal to
display the source code for the frame.

-b bps
Set the line speed (baud rate or bits per second) of any serial
interface used by the debugger for remote debugging.

-tty devi ce
Run using devi ce for your program'’s standard input and output.

2.2. Quitting the Debugger
quit

To exit the debugger, use the quit command (abbreviated q),
or type an end-of-file character (usually Ctrl+D). If you do
not supply expr essi on, the debugger will terminate normally;

10

Shell Commands

otherwise, it will terminate using the result of expr essi on as
the error code.

An interrupt (often Ctrl+C) does not exit from the debugger, but
rather terminates the action of any the debugger command that is
in progress and returns to the debugger command level. It is safe
to type the interrupt character at any time because the debugger
does not allow it to take effect until atime when it is safe.

2.3. Shell Commands

If you need to execute occasional shell commands during your
debugging session, there is no need to leave or suspend the
debugger; you can just use the shell command.

shell command string

Invoke the standard shell to executecommand st ri ng. I it exists,
the environment variable SHELL determines which shell to
run. Otherwise, the debugger uses /bin/sh.

The utility make is often needed in development environments.
You do not have to use the shell command for this purpose in the
debugger:

make nake- ar gs

Execute the make program with the specified arguments. This
is equivalent to shell make neke- ar gs.

11

12

Chapter 3 Debugger Commands

You can abbreviate a debugger command to thefirst few letters of
the command name, if that abbreviation is unambiguous; and you
can repeat certain debugger commands by typing just Enter. You
can also use the Tab key to get the debugger to fill out the rest of
aword in acommand (or to show you the alternatives available,
if thereis more than one possibility).

3.1. Command Syntax

A debugger command isasingleline of input. Thereisno limit on
how long it can be. It starts with a command name, which is
followed by arguments whose meaning depends on the command
name. For example, the command step accepts an argument which
isthe number of timesto step, asin step 5. You can also use the
step command with no arguments. Some command names do not
alow any arguments.

Debugger command names may always be truncated if that
abbreviation is unambiguous. Other possible command

13

Chapter 3. Debugger Commands

abbreviations are listed in the documentation for individual
commands. In some cases, even ambiguous abbreviations are
alowed; for example, sis specialy defined as equivalent to step
even though there are other commands whose names start with s.
You can test abbreviations by using them as argumentsto the help
command.

A blank line asinput to the debugger (typing just Enter) meansto
repeat the previous command. Certain commands (for example,
run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are
unlikely to want to repeat.

Thelist and x commands, when you repeat them with Enter,
construct new arguments rather than repeating exactly as typed.
This permits easy scanning of source or memory.

The debugger can also use Enter in another way: to partition
lengthy output, in away similar to the common utility more (see
Section 14.4, “Screen Size” [128]). Since it is easy to press one
Enter too many in this situation, the debugger disables command
repetition after any command that generates this sort of display.

Any text from a# to the end of the line is a comment; it does
nothing. Thisisuseful mainly in command files (see Section 15.3,
“Command Files’ [136]).

3.2. Command Completion

The debugger canfill in the rest of aword in acommand for you,
if thereisonly one possibility; it can also show you what the valid
possibilities are for the next word in acommand, at any time. This
works for commands, subcommands, and the names of symbols
in your program.

Press the Tab key whenever you want the debugger to fill out the
rest of aword. If thereis only one possibility, the debugger fillsin
theword, and waits for you to finish the command (or press Enter
to enter it). For example, if you type

14

Command Completion

(gdb) info bre Tab

The debugger fillsin the rest of the word breakpoints, since that
is the only info subcommand beginning with bre:

(gdb) info breakpoints

You can either pressEnter at thispoint, to run theinfo breakpoints
command, or backspace and enter something else, if breakpoints
does not look like the command you expected. (If you were sure
you wanted info breakpointsin the first place, you might as well
just type Enter immediately after info bre, to exploit command
abbreviations rather than command compl etion).

If there is more than one possibility for the next word when you
press Tab, the debugger sounds a bell. You can either supply more
characters and try again, or just press Tab a second time; the
debugger displays all the possible completions for that word. For
example, you might want to set a breakpoint on a subroutine whose
name begins with make_, but when you type b make Tab the
debugger just sounds the bell. Typing Tab again displays all the
function names in your program that begin with those characters,
for example:

(gdb) b nake_ Tab

the debugger sounds bell; press Tab again, to see

make_a_section fromfile make_environ
make_abs_section make_function_type

make_bl ockvect or make_poi nter_type

make_cl eanup make_reference_type
make_conmand make_synbol conpl etion_|ist
(gdb) b nake_

After displaying the available possibilities, the debugger copies
your partia input (b make_in the example) so you can finish the
command.

15

Chapter 3. Debugger Commands

If you just want to see the list of alternativesin the first place, you
can press M -? rather than pressing Tab twice. M-? means META
?.You can type this either by holding down a key designated as
the META shift on your keyboard (if there is one) while typing ?,
or as Esc followed by ?.

Sometimes the string you need, while logically a“word”, may
contain parentheses or other charactersthat the debugger normally
excludes from its notion of aword. To permit word completion to
work in this situation, you may enclose wordsin' (single quote
marks) in the debugger commands.

The most likely situation where you might need thisisin typing
the name of a C++ function. Thisis because C++ allows function
overloading (multiple definitions of the same function,
distinguished by argument type). For example, when you want to
set a breakpoint you may need to distinguish whether you mean
the version of name that takes an int parameter, name(int), or the
version that takes a float parameter, name(float). To use the
word-completion facilitiesin this situation, type asingle quote ' at
the beginning of the function name. This alerts the debugger that
it may need to consider more information than usual when you
press Tab or M eta+? to request word compl etion:

(gdb) b ' bubbl e(

Met a+?

bubbl e(doubl e, doubl e) bubbl e(int,int)
(gdb) b ' bubbl e(

In some cases, the debugger can tell that completing a name
reguires using quotes. When this happens, the debugger insertsthe
guote for you (while completing as much asit can) if you do not
type the quote in the first place:

(gdb) b bub Tab

the debugger alters your input line to the followi ng, and rings a bell|:

(gdb) b ' bubbl g

16

Getting Help

In general, the debugger can tell that aquote is needed (and inserts
it) if you have not yet started typing the argument list when you
ask for completion on an overloaded symbol.

3.3. Getting Help

You can always ask the debugger itself for information on its
commands, using the command help.

help , h

You can use help (abbreviated h) with no argumentsto display
ashort list of named classes of commands:

(gdb) help

Li st of classes of commands:

running -- Running the program

stack -- Examning the stack

data -- Examining data

breakpoi nts -- Making programstop at certain points
files -- Specifying and examning files

status -- Status inquiries

support -- Support facilities

user-defined -- User-defined commands

aliases -- Aliases of other commands

obscure -- Cbscure features

Type "hel p" followed by a class name for a |ist of
commands in that class.

Type "hel p" followed by command name for full
document ati on.

Conmand name abbreviations are allowed if unanbi guous.

(gdb)

help cl ass
Using one of the general help classes as an argument, you can
get alist of theindividual commandsin that class. For example,
here is the help display for the class status.

(gdb) help status
Status inquiries.

17

Chapter 3. Debugger Commands

Li st of commands:

show -- Generic command for showi ng things set

with "set"

info -- CGeneric command for printing status

Type "hel p" foll owed by conmand name for ful

document ation

Command name abbreviations are allowed if unanbi guous

(gdb)
help conmand
With acommand name as help argument, the debugger displays
a short paragraph on how to use that command.
completear gs
The completear gs command listsall the possible completions
for the beginning of acommand. Use ar gs to specify the
beginning of the command you want completed. For example:
conplete i
resultsin:
info
i nspect
i gnore

Thisisintended for use by Emacs.

In addition to help, you can use the debugger commands info and
show to inquire about the state of your program, or the state of the
debugger itself. Each command supports many topics of inquiry;
this manual introduces each of them in the appropriate context.
The listings under info and under show in the Index point to all
the sub-commands.

info

This command (abbreviated i) is for describing the state of
your program. For example, you can list the arguments given

18

Getting Help

to your program with info args, list the registers currently in
use with info registers, or list the breakpoints you have set
with info breakpoints. You can get a complete list of theinfo
sub-commands with help info.

You can assign the result of an expresson to an environment
variable with set. For example, you can set the debugger
prompt to adollar sign with set prompt $.

show

In contrast to info, show isfor describing the state of the
debugger itself. You can change most of the things you can
show, by using the related command set; for example, you can
control what number system isused for displayswith set radix,
or simply inquire which is currently in use with show radix.

To display al the settable parameters and their current values,
you can use show with no arguments; you may also use info
set. Both commands produce the same display.

Here are three miscellaneous show subcommands, all of which are
exceptional in lacking corresponding set commands:

show version

Show which version of the debugger is running. You should
include thisinformation in debugger bug reports. If multiple
versions of the debugger arein use at your site, you may
occasionally want to determine which version of the debugger
you are running; as the debugger evolves, new commands are
introduced, and old ones may wither away. The version number
is also announced when you start the debugger.

show copying

Display information about permission for copying the
debugger.

19

Chapter 3. Debugger Commands

show warranty

Display the GNU “NO WARRANTY” statement.

20

Chapter 4 Running Programs Under
the Debugger

If you intend to run a program under the debugger, you must first
generate debugging information when you compile it.

4.1. Compiling for Debugging

In order to debug a program effectively, you need to generate
debugging information when you compile it. This debugging
information is stored in the object file; it describes the data type
of each variable or function and the correspondence between source
line numbers and addresses in the executable code.

To request debugging information, specify the -g option when you
run the compiler.

The compiler supports -g with or without -O, making it possible
to debug optimized code. We recommend that you always use -g
whenever you compile a program. You may think your program
is correct, but there is no sense in pushing your luck.

21

Chapter 4. Running Programs Under the Debugger

When you debug a program compiled with -g -O, remember that
the optimizer is rearranging your code; the debugger shows you
what isreally there. Do not be too surprised when the execution
path does not exactly match your sourcefile! An extreme example:
if you define avariable, but never use it, the debugger never sees
that variable—because the compiler optimizes it out of existence.

Some things do not work as well with -g -O aswith -g -O0,
particularly on machines with instruction scheduling. If in doubt,
recompile with -g -O0, and if this fixes the problem, please report
it to us as abug (including atest case!).

4.2. Starting your Program

runargs, rargs

Use the run command to start your program under the
debugger. You must first specify the program name with an
argument to the debugger (see Chapter 2, Getting In and Out
of the Debugger [7]), or by using the file or exec-file
command (see Section 12.1, “Commands to Specify

Files’ [115]).

When you issue the run command, your program beginsto execute
immediately. See Chapter 5, Sopping and Continuing [23] for
discussion of how to arrange for your program to stop. Once your
program has stopped, you may call functionsin your program,
using the print or call commands. See Chapter 8, Examining
Data [59].

If the modification time of your symboal file has changed since the
last time the debugger read its symbols, the debugger discards its
symbol table, and reads it again. When it does this, the debugger
tries to retain your current breakpoints.

22

Chapter 5

Sopping and Continuing

Theprincipal purposesof using adebugger are so that you can stop
your program beforeit terminates; or so that, if your program runs
into trouble, you can investigate and find out why.

Inside the debugger, your program may stop for any of severa
reasons, such as a breakpoint, or reaching a new line after a
debugger command such as step. You may then examine and
change variables, set new breakpoints or remove old ones, and then
continue execution. Usually, the messages shown by the debugger
provide ample explanation of the status of your program—abut you
can also explicitly request thisinformation at any time.

info program

Display information about the status of your program: whether
itisrunning or not, and why it stopped.

23

Chapter 5. Stopping and Continuing

5.1. Breakpoints, Watchpoints, and Exceptions

A breakpoint makes your program stop whenever a certain point
in the program is reached. For each breakpoint, you can add
conditionsto control in finer detail whether your program stops.
You can set breakpoints with the break command and its variants
(see Section 5.1.1, “ Setting Breakpoints’ [24]), to specify the place
where your program should stop by line number, function name
or exact addressin the program.

A watchpoint isaspecial breakpoint that stopsyour program when
the value of an expression changes. You must use a different
command to set watchpoints (see Section 5.1.2, “ Setting
Watchpoints’ [29]), but aside from that, you can manage a
watchpoint like any other breakpoint: you enable, disable, and
del ete both breakpoints and watchpoints using the same commands.

You can arrange to have values from your program displayed
automatically whenever the debugger stops at a breakpoint. See
Section 8.6, “Automatic Display” [69].

The debugger assigns a number to each breakpoint or watchpoint
when you create it; these numbers are successive integers starting
with one. In many of the commandsfor controlling variousfeatures
of breakpoints, you use the breakpoint number to say which
breakpoint you want to change. Each breakpoint may be enabled
or disabled; if disabled, it has no effect on your program until you
enableit again.

5.1.1. Setting Breakpoints

Breakpoints are set with the break command (abbreviated b). The
debugger convenience variable $bpnum records the number of the
breakpointsyou've set most recently; see Section 8.9, “ Convenience
Variables’ [80], for adiscussion of what you can do with
convenience variables.

You have several waysto say where the breakpoint should go.

24

Setting Breakpoints

break function
Set abreakpoint at entry to function f uncti on. When using
source languages that permit overloading of symbols, such as
C++, funct i on may refer to more than one possible place to
break. See Section 5.1.7, “Breakpoint Menus® [37], for a
discussion of that situation.

break +of fset , break -of f set
Set a breakpoint some number of lines forward or back from
the position at which execution stopped in the currently selected
frame.

break |'i nenum
Set abreakpoint at linel i nenumin the current sourcefile. That
fileisthelast file whose source text was printed. This
breakpoint stops your program just before it executes any of
the code on that line.

break fil enane:l i nenum
Set abreakpoint at linel i nenumin sourcefilefil enane.

break fil ename:function
Set abreakpoint at entry to function f uncti on found in file
fil enane. Specifying afile name aswell as afunction name
is superfluous except when multiple files contain similarly
named functions.

break *address
Set abreakpoint at address addr ess. You can use this to set
breakpoints in parts of your program which do not have
debugging information or source files.

break

When called without any arguments, break sets a breakpoint
at the next instruction to be executed in the sel ected stack frame
(see Chapter 6, Examining the Stack [43]). In any selected
frame but the innermost, this makes your program stop as soon
as control returnsto that frame. Thisis similar to the effect of
afinish command in the frame inside the selected
frame—except that finish does not leave an active breakpoint.
If you use break without an argument in the innermost frame,

25

Chapter 5. Stopping and Continuing

the debugger stopsthe next timeit reachesthe current location;
this may be useful inside loops.

The debugger normally ignores breakpoints when it resumes
execution, until at least one instruction has been executed. If
it did not do this, you would be unable to proceed past a
breakpoint without first disabling the breakpoint. Thisrule
applies whether or not the breakpoint already existed when
your program stopped.

break ... if cond
Set a breakpoint with condition cond; evaluate the expression
cond each time the breakpoint is reached, and stop only if the
valueis nonzero—that is, if cond evaluates astrue. ... stands
for one of the possible arguments described above (or no
argument) specifying whereto break. See Section 5.1.5, “ Break
Conditions’ [33], for more information on breakpoint
conditions.

tbreak ar gs

Set a breakpoint enabled only for one stop. ar gs are the same
as for the break command, and the breakpoint is set in the
same way, but the breakpoint is automatically deleted after the
first time your program stops there. See Section 5.1.4,
“Disabling Breakpoints’ [31].

hbreak args

Set a hardware-assisted breakpoint. ar gs are the same as for
the break command and the breakpoint is set in the same way,
but the breakpoint requires hardware support and some target
hardware may not have this support. The main purpose of this
is EPROM/ROM code debugging, so you can set a breakpoint
at an instruction without changing the instruction. However
the hardware breakpoint registers can only take two data
breakpoints, and the debugger will reject thiscommand if more
than two are used. Delete or disable usused hardware
breakpoints before setting new ones. See Section 5.1.5, “ Break
Conditions’ [33].

26

Setting Breakpoints

thbreak ar gs

Set a hardware-assisted breakpoint enabled only for one stop.
args arethe same asfor the hbreak command and the
breakpoint is set in the same way. However, like the tbreak
command, the breakpoint is automatically deleted after the
first time your program stops there. Also, like the hbreak
command, the breakpoint requires hardware support and some
target hardware may not have this support. See Section 5.1.4,
“Disabling Breakpoints’ [31]. Also See Section 5.1.5, “Break
Conditions’ [33].

rbreak regex

Set breakpoints on all functions matching the regular expression
regex. This command sets an unconditional breakpoint on all
matches, printing alist of all breakpointsit set. Once these
breakpoints are set, they are treated just like the breakpoints
set with the break command. You can delete them, disable
them, or make them conditional the same way as any other
breakpoint.

When debugging C++ programs, rbreak is useful for setting
breakpoints on overloaded functions that are not members of
any special classes.

info breakpoints|[n] , infobreak [n] , infowatchpoints[n]

Print atable of all breakpoints and watchpoints set and not
deleted, with the following columns for each breakpoint:

Breakpoint Numbers

Type
Breakpoint or watchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted
when hit.

27

Chapter 5. Stopping and Continuing

Enabled or Disabled
Enabled breakpoints are marked with y. n marks
breakpoints that are not enabled.

Address
Where the breakpoint isin your program, as a memory
address

What
Where the breakpoint isin the source for your program,
asafile and line number.

If abreakpoint is conditional, info break shows the condition
on the line following the affected breakpoint; breakpoint
commands, if any, are listed after that.

info break with abreakpoint number n as argument lists only
that breakpoint. The convenience variable $ _and the default
examining-address for the x command are set to the address
of the last breakpoint listed (see Section 8.5, “Examining
Memory” [66]).

info break now displays a count of the number of times the
breakpoint has been hit. Thisisespecially useful in conjunction
with the ignore command. You can ignore alarge number of
breakpoint hits, look at the breakpoint info to see how many
times the breakpoint was hit, and then run again, ignoring one
less than that number. Thiswill get you quickly to the last hit
of that breakpoint.

The debugger allows you to set any number of breakpoints at the
same place in your program. Thereis nothing silly or meaningless
about this. When the breakpoints are conditional, thisis even useful
(see Section 5.1.5, “Break Conditions” [33]).

The debugger itself sometimes sets breakpoints in your program
for special purposes, such as proper handling of longjmp (in C
programs). These internal breakpoints are assigned negative
numbers, starting with -1; info break points does not display them.

You can see these breakpoints with the debugger maintenance
command maint info breakpoints.

28

Setting Watchpoints

maint info breakpoints

Using the same format as info breakpoints, display both the
breakpoints you've set explicitly, and those the debugger is
using for internal purposes. Internal breakpoints are shown
with negative breakpoint numbers. The type column identifies
what kind of breakpoint is shown:

breakpoint
Normal, explicitly set breakpoint.

watchpoint
Normal, explicitly set watchpoint.

longjmp
Internal breakpoint, used to handle correctly stepping
through longjmp calls.

longjmp resume
Internal breakpoint at the target of alongjmp.

until
Temporary internal breakpoint used by the debugger until
command.

finish
Temporary internal breakpoint used by the debugger finish
command.

5.1.2. Setting Watchpoints

You can use awatchpoint to stop execution whenever the value of
an expression changes, without having to predict a particul ar place
where this may happen.

Watchpoints currently execute two orders of magnitude more
slowly than other breakpoints, but this can bewell worth it to catch
errors where you have no clue what part of your program is the
culprit.

29

Chapter 5. Stopping and Continuing

The debugger provides two special watchpoints that work at the
full speed of the simulator. These are known as hardware
breakpoints and will be used in preference to the much slower soft
watchpoints.

watch expr

Set awatchpoint for an expression. The debugger will break
when expr iswritteninto by the program and its val ue changes.
However, the hardware breakpoint registers can only take two
datawatchpoints, and both watchpoints must be the samekind.
For example, you can set two watchpoints with watch
commands, two with rwatch commands, or two with awatch
commands, but you cannot set one watchpoint with one
command and the other with adifferent command. the debugger
will reject the command if you try to mix watchpoints. Delete
or disable unused watchpoint commands before setting new
Oones.

rwatch expr

Set awatchpoint that will break when watch ar gs is read by
the program. If you use both watchpoints, both must be set
with the rwatch command.

awatch expr

Set awatchpoint that will break when ar gs isread and written
into by the program. If you use both watchpoints, both must
be set with the awatch command.

info watchpoints

This command prints alist of watchpoints and breakpoints; it
isthe same as info break.

5.1.3. Deleting Breakpoints

It is often necessary to eliminate a breakpoint or watchpoint once
it has done its job and you no longer want your program to stop

30

Disabling Breakpoints

there. Thisis called deleting the breakpoint. A breakpoint that has
been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to
where they are in your program. With the delete command you
can delete individual breakpoints or watchpoints by specifying
their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. The
debugger automatically ignores breakpoints on thefirst instruction
to be executed when you continue execution without changing the
execution address.

clear

Delete any breakpoints at the next instruction to be executed
in the selected stack frame (see Section 6.3, “Selecting a
Frame” [46]). When the innermost frame is selected, thisisa
good way to delete a breakpoint where your program just
stopped.

clear function, clear filenane:function
Delete any breakpoints set at entry to the function f unct i on.

clear | i nenum, clear filename:l i nenum
Delete any breakpoints set at or within the code of the specified
line.

delete [breakpoints] [bnurs...]

Delete the breakpoints or watchpoints of the numbers specified
asarguments. If no argument is specified, delete al breakpoints
(the debugger asks confirmation, unless you have set confirm
off). You can abbreviate this command as d.

5.1.4. Disabling Breakpoints

Rather than deleting a breakpoint or watchpoint, you might prefer
to disable it. This makes the breakpoint inoperative asif it had
been deleted, but remembers the information on the breakpoint so
that you can enable it again later.

31

Chapter 5. Stopping and Continuing

You disable and enabl e breakpoints and watchpoints with the
enable and disable commands, optionally specifying one or more
breakpoint numbers as arguments. Use info break or info watch
to print alist of breakpoints or watchpoints if you do not know
which numbersto use.

A breakpoint or watchpoint can have any of four different states
of enablement:

» Enabled. The breakpoint stops your program. A breakpoint set
with the break command starts out in this state.

 Disabled. The breakpoint has no effect on your program.

» Enabled once. The breakpoint stops your program, but then
becomes disabled. A breakpoint set with the tbreak command
starts out in this state.

» Enabled for deletion. The breakpoint stops your program, but
immediately after it does so it is deleted permanently.

You can use the following commands to enable or disable
breakpoints and watchpoints:

disable [breakpoints] [bnuns...]

Disable the specified breakpoints—or all breakpoints, if none
are listed. A disabled breakpoint has no effect but is not
forgotten. All options such as ignore-counts, conditions and
commands are remembered in case the breakpoint is enabled
again later. You may abbreviate disable as dis.

enable [breakpoints] [bnuns...]

Enable the specified breakpoints (or all defined breakpoints).
They become effective once again in stopping your program.

enable [breakpoints] once bnuns...
Enable the specified breakpoints temporarily. The debugger
disables any of these breakpoints immediately after stopping
your program.

32

Break Conditions

enable [breakpoints] delete bnuns...
Enabl e the specified breakpoints to work once, then die. The
debugger deletes any of these breakpoints as soon as your
program stops there.

Except for abreakpoint set with tbreak (see Section 5.1.1, “ Setting
Breakpoints’ [24]), breakpoints that you set areinitially enabled;
subsequently, they become disabled or enabled only when you use
one of the commands above. (The command until can set and
delete a breakpoint of its own, but it does not change the state of
your other breakpoints; see Section 5.2, “Continuing and

Stepping” [38].)

5.1.5. Break Conditions

The ssimplest sort of breakpoint breaks every time your program
reaches a specified place. You can aso specify acondition for a
breakpoint. A condition isjust a Boolean expression in your
programming language. A breakpoint with a condition evaluates
the expression each time your program reachesit, and your program
stops only if the conditionistrue.

Thisisthe converse of using assertions for program validation; in
that situation, you want to stop when the assertion isviolated—that
is, when the conditionisfalse. In C, if you want to test an assertion
expressed by the condition assert , you should set the condition !
assert on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need
them, since awatchpoint is inspecting the value of an expression
anyhow—nbut it might be simpler, say, to just set awatchpoint on
avariable name, and specify acondition that tests whether the new
valueis an interesting one.

Break conditions can have side effects, and may even call functions
in your program. This can be useful, for example, to activate
functions that log program progress, or to use your own print
functions to format special data structures. The effects are
completely predictable unless there is another enabled breakpoint
at the same address. (In that case, the debugger might see the other

33

Chapter 5. Stopping and Continuing

breakpoint first and stop your program without checking the
condition of this one.) Note that breakpoint commands are usually
more convenient and flexible for the purpose of performing side
effectswhen abreakpoint isreached (see Section 5.1.6, “ Breakpoint
Command Lists’ [35]).

Break conditions can be specified when a breakpoint is set, by
using if inthe argumentsto the break command. See Section 5.1.1,
“ Setting Breakpoints’ [24]. They can also be changed at any time
with the condition command. The watch command does not
recognize the if keyword; condition is the only way to impose a
further condition on awatchpoint.

condition bnumexpr essi on

Specify expr essi on as the break condition for breakpoint or
watchpoint number bnum After you set acondition, breakpoint
bnumstopsyour program only if the value of expr essi on istrue
(nonzero, in C). When you use condition, the debugger checks
expr essi on immediately for syntactic correctness, and to
determine whether symbolsin it have referents in the context
of your breakpoint. The debugger does not actualy evaluate
expr essi on at the time the condition command is given,
however. See Section 8.1, “Expressions’ [60].

condition bnum
Remove the condition from breakpoint number bnum It
becomes an ordinary unconditional breakpoint.

A special case of abreakpoint condition is to stop only when the
breakpoint has been reached a certain number of times. Thisis so
useful that thereis a specia way to do it, using the ignore count
of the breakpoint. Every breakpoint has an ignore count, whichis
an integer. Most of thetime, theignore count is zero, and therefore
has no effect. But if your program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements
the ignore count by one and continues. As aresult, if the ignore
count valueisn, the breakpoint does not stop the next n times your
program reachesit.

Breakpoint Command Lists

ignorebnumcount

Set the ignore count of breakpoint number bnumto count . The
next count times the breakpoint is reached, your program's
execution does not stop; other than to decrement the ignore
count, the debugger takes no action.

To make the breakpoint stop the next timeit isreached, specify
acount of zero.

When you use continue to resume execution of your program
from abreakpoint, you can specify an ignore count directly as
an argument to continue, rather than using ignore. See
Section 5.2, “Continuing and Stepping” [38].

If abreakpoint has a positive ignore count and a condition, the
condition is not checked. Once the ignore count reaches zero,
the debugger resumes checking the condition.

You could achieve the effect of the ignore count with a
condition such as $foo-- <= 0 using a debugger convenience
variable that is decremented each time. See Section 8.9,
“Convenience Variables’ [80].

5.1.6. Breakpoint Command Lists

You can give any breakpoint (or watchpoint) a series of commands
to execute when your program stops due to that breakpoint. For
example, you might want to print the values of certain expressions,
or enable other breakpoints.

commands [bnun] , ... command-list ..., end

Specify alist of commands for breakpoint number bnum The
commands themselves appear on the following lines. Type a
line containing just end to terminate the commands.

To remove all commands from a breakpoint, type commands
and follow it immediately with end; that is, give no commands.

35

Chapter 5. Stopping and Continuing

With no bnumargument, commandsrefersto thelast breakpoint
or watchpoint set (not to the breakpoint most recently
encountered).

Pressing Enter as a means of repeating the last the debugger
command is disabled within acommand- | i st .

You can use breakpoint commands to start your program up again.
Simply usethe continue command, or step, or any other command
that resumes execution.

Any other commands in the command list, after acommand that
resumes execution, are ignored. Thisis because any time you
resume execution (even with asimple next or step), you may
encounter another breakpoi nt—which could haveits own command
list, leading to ambiguities about which list to execute.

If the first command you specify in acommand list is silent, the
usual message about stopping at a breakpoint is not printed. This
may be desirable for breakpointsthat are to print aspecific message
and then continue. If none of the remaining commands print
anything, you see no sign that the breakpoint was reached. silent
is meaningful only at the beginning of abreakpoint command list.

The commands echo, output, and printf allow you to print
precisely controlled output, and are often useful in silent
breakpoints. See Commands for controlled output: Output.

For example, here is how you could use breakpoint commands to
print the value of x at entry to foo whenever X is positive.

break foo

conmands
silent
printf
cont
end

"y

if x>0

is %@\ n",x

One application for breakpoint commands is to compensate for
one bug so you can test for another. Put a breakpoint just after the
erroneous line of code, give it a condition to detect the casein

36

Breakpoint Menus

which something erroneous has been done, and give it commands
to assign correct values to any variables that need them. End with
the continue command so that your program does not stop, and
start with the silent command so that no output is produced. Here
isan example:

break 403
conmands
silent
set X =y
cont

end

+4

5.1.7. Breakpoint Menus

Some programming languages (notably C++ and Ada) permit a
single function name to be defined several times, for application
in different contexts. Thisis called overloading. When a function
name is overloaded, break f uncti on isnot enough to tell the
debugger where you want a breakpoint. If you realize thisisa
problem, you can use something like break f uncti on(t ypes) to
specify which particular version of the function you want.
Otherwise, the debugger offers you a menu of numbered choices
for different possible breakpoints, and waitsfor your selection with
the prompt >. The first two options are aways [0] cancel and [1]
all. Typing 1 sets a breakpoint at each definition of f uncti on, and
typing O aborts the break command without setting any new
breakpoints.

For example, the following session excerpt shows an attempt to
set abreakpoint at the overloaded symbol String::after. We choose
three particular definitions of that function name:

(gdb) b String::after

[0] cancel

[1] all

[2] file:String.cc; line nunber: 867
[3] file:String.cc; line nunber: 860
[4] file:String.cc; line nunber: 875

37

Chapter 5. Stopping and Continuing

[5] file:String.cc; line nunber: 853

[6] file:String.cc; |ine nunber: 846

[7] file:String.cc; line nunber: 735

>246

Breakpoint 1 at Oxb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at Oxafcc: file String.cc, |ine 846.
Ml tipl e breakpoints were set.

Use the "delete" command to del ete unwanted
breakpoi nt s.

(gdb)

5.2. Continuing and Stepping

Continuing means resuming program execution until your program
completesnormally. In contrast, stepping means executing just one
more “step” of your program, where “step” may mean either one
line of source code, or one machineinstruction (depending on what
particular command you use). Either when continuing or when

stepping, your program may stop even sooner, due to abreakpoint.

continue i gnore-count], c[ignore-count], fg[ignore-count]

Resume program execution, at the addresswhere your program
last stopped; any breakpoints set at that address are bypassed.
The optional argument i gnor e- count alows you to specify a
further number of timesto ignore abreakpoint at thislocation;
its effect is like that of ignore (see Section 5.1.5, “Break
Conditions’ [33]).

The argument i gnor e- count is meaningful only when your
program stopped due to a breakpoint. At other times, the
argument to continueisignored.

The synonyms ¢ and fg are provided purely for convenience,
and have exactly the same behavior as continue.

To resume execution at a different place, you can usereturn (see
Section 11.3, “Returning from aFunction” [112]) to go back to the
calling function; or jump (see Section 11.2, “Continuing at a

38

Continuing and Stepping

Different Address’ [111]) to go to an arbitrary location in your
program.

A typical technique for using stepping isto set a breakpoint (see
Breakpoints; watchpoints; and exceptions. Breakpoints.) at the
beginning of the function or the section of your program where a
problem is believed to lie, run your program until it stops at that
breakpoint, and then step through the suspect area, examining the
variables that are interesting, until you see the problem happen.

step

Continue running your program until control reachesadifferent
source ling, then stop it and return control to the debugger.
This command is abbreviated s.

Warning. If you use the step command while control is
within afunction that was compiled without debugging
information, execution proceeds until control reachesafunction
that does have debugging information. Likewise, it will not
step into a function that was compiled without debugging
information. To step through functions without debugging
information, use the stepi command, described below.

The step command now only stops at the first instruction of a
sourceline. This preventsthe multiple stops that used to occur
in switch statements, for loops, etc. step continuesto stop if a
function that has debugging information is called within the
line.

Also, the step command now only enters a subroutineif there
is line number information for the subroutine. Otherwise, it
actslikethe next command. This avoids problemswhen using
cc-gl on MIPS machines. Previously, step entered subroutines
if there was any debugging information about the routine.

step count
Continue running asin step, but do so count times. If a
breakpoint is reached, stepping stops right away.

39

Chapter 5. Stopping and Continuing

next [count]

Continueto the next sourcelinein the current (innermost) stack
frame. Thisis similar to step, but function calls that appear
within the line of code are executed without stopping.
Execution stops when control reaches a different line of code
at the original stack level that was executing when you gave
the next command. This command is abbreviated n.

An argument count isarepeat count, as for step.

The next command now only stops at thefirst instruction of a
source line. This prevents the multiple stops that used to occur
in swtch statements, for loops, etc.

finish

Continue running until just after function in the selected stack
frame returns. Print the returned value (if any).

Contrast this with the return command (see Section 11.3,
“Returning from a Function” [112]).

until, u

Continue running until a source line past the current line, in
the current stack frame, isreached. This command is used to
avoid single stepping through aloop more than once. Itislike
the next command, except that when until encountersajump,
it automatically continues execution until the program counter
is greater than the address of the jump.

This means that when you reach the end of aloop after single
stepping though it, until makes your program continue
execution until it exits the loop. In contrast, a next command
at the end of aloop ssimply steps back to the beginning of the
loop, which forces you to step through the next iteration.

until always stopsyour programif it attemptsto exit the current
stack frame.

40

Continuing and Stepping

until may produce somewhat counter-intuitive resultsif the
order of machine code does not match the order of the source
lines. For example, in the following excerpt from a debugging
session, thef (frame) command shows that execution is
stopped at line 206; yet when we use until, we get to line 195:

(gdb) f

#0 main (argc=4, argv=0xf7fffae8) at mi.c:206
206 expand_i nput () ;

(gdb) until

195 for (; argc > 0; NEXTARG {

This happened because, for execution efficiency, the compiler
had generated code for the loop closure test at the end, rather
than the start, of the loop—even though the test in a C for-loop
is written before the body of the loop. The until command

appeared to step back to the beginning of the loop when it

advanced to this expression; however, it has not really gone to
an earlier statement—not in terms of the actual machine code.

until with no argument works by means of single instruction
stepping, and hence is lower than until with an argument.

until | ocation, ulocation
Continue running your program until either the specified
|ocation isreached, or the current stack framereturns. | ocati on
isany of the forms of argument acceptable to break (see
Section 5.1.1, “ Setting Breakpoints®’ [24]). Thisform of the
command uses breakpoints, and hence is quicker than until
without an argument.

stepi, S
Execute one machine instruction, then stop and return to the

debugger.

Itisoften useful to do display/i $pc when stepping by machine
instructions. This makes the debugger automatically display
the next instruction to be executed, each time your program
stops. See Section 8.6, “Automatic Display” [69].

41

Chapter 5. Stopping and Continuing

An argument is arepeat count, asin step.
nexti , ni

Execute one machine instruction, but if it isafunction call,
proceed until the function returns.

An argument is arepeat count, asin next.

42

Chapter 6

Examining the Stack

When your program has stopped, the first thing you need to know
iswhere it stopped and how it got there.

Each timeyour program performsafunction call, information about
the call is generated. That information includes the location of the
call in your program, the arguments of the call, and the local
variables of the function being called. The information is saved in
ablock of datacalled astack frame. The stack frames are allocated
in aregion of memory called the call stack.

When your program stops, the debugger commands for examining
the stack allow you to see all of thisinformation.

One of the stack frames is selected by the debugger and many the
debugger commands refer implicitly to the selected frame. In
particular, whenever you ask the debugger for the value of a
variablein your program, the value is found in the selected frame.
There are special the debugger commands to select whichever
frame you are interested in. See Section 6.3, “ Selecting a

Frame® [46].

43

Chapter 6. Examining the Stack

When your program stops, the debugger automatically selects the
currently executing frame and describes it briefly, smilar to the
frame command (see Section 6.4, “ Information about a

Frame” [47]).

6.1. Sack Frames

The call stack is divided up into contiguous pieces called stack
frames, or frames for short; each frame is the data associated with
one call to one function. The frame contains the arguments given
to the function, the function's local variables, and the address at
which the function is executing.

When your program is started, the stack has only one frame, that
of thefunction main. Thisiscalled theinitial frame or the outer most
frame. Each time afunction is called, a new frame is made. Each
time afunction returns, the frame for that function invocation is
eliminated. If afunctionisrecursive, there can be many framesfor
the same function. The frame for the function in which execution
isactually occurringiscalled theinnermost frame. Thisisthe most
recently created of al the stack framesthat still exist.

Insideyour program, stack frames areidentified by their addresses.
A stack frame consists of many bytes, each of which hasits own
address; each kind of computer has a convention for choosing one
byte whose address serves asthe address of the frame. Usually this
addressiskept in aregister called the frame pointer register while
execution is going on in that frame.

The debugger assigns numbersto all existing stack frames, starting
with zero for the innermost frame, one for the frame that called it,
and so on upward. These numbers do not really exist in your
program; they are assigned by the debugger to give you away of
designating stack framesin the debugger commands.

frameargs

Theframe command allowsyou to move from one stack frame
to another, and to print the stack frame you select. ar gs may

Backtraces

be either the address of the frame of the stack frame number.
Without an argument, frame prints the current stack frame.

sdlect-frame

The select-frame command allows you to move from one stack
frame to another without printing the frame. Thisis the silent
version of frame.

6.2. Backtraces

A backtrace is a summary of how your program got whereitis. It
shows one line per frame, for many frames, starting with the
currently executing frame (frame zero), followed by itscaler (frame
one), and on up the stack.

backtrace, bt

Print a backtrace of the entire stack: one line per frame for al
framesin the stack.

You can stop the backtrace at any time by typing the system
interrupt character, normally Ctrl+C.

backtracen, btn
Similar, but print only the innermost n frames.

backtrace-n, bt -n
Similar, but print only the outermost n frames.

Thenameswhereand info stack (abbreviated info s) are additional
aliases for backtrace.

Each linein the backtrace showsthe frame number and the function
name. The program counter value is also shown—unless you use
set print address off. The backtrace also shows the source file
name and line number, as well as the arguments to the function.
The program counter value is omitted if it is at the beginning of
the code for that line number.

45

Chapter 6. Examining the Stack

Hereisan example of a backtrace. It was made with the command
bt 3, so it shows the innermost three frames.

(gdb) bt 3

#0 whetstone.l0gl0 (x=0.75) at whetstone. adb: 190

#1 0xd24 in whetstone.log (x=0.75) at whetstone. adb: 218
#2 0x124a in _|ISTACK SIZE () at whetstone. adb: 404

#3 0x424 in main () at b~whetstone. adb: 43

(gdb)

The display for frame zero does not begin with a program counter
value, indicating that your program has stopped at the beginning
of the code for line 226 of whet st one. c.

6.3. Selecting a Frame

Most commands for examining the stack and other datain your
program work on whichever stack frameis sel ected at the moment.
Here are the commands for selecting a stack frame; al of them
finish by printing abrief description of the stack framejust selected.

framen, fn

Select frame number n. Recall that frame zero isthe innermost
(currently executing) frame, frame one isthe framethat called
the innermost one, and so on. The highest-numbered frame is
the one for main.

frameaddr , faddr
Select the frame at address addr . Thisis useful mainly if the
chaining of stack frames has been damaged by a bug, making
it impossible for the debugger to assign numbers properly to
al frames. In addition, this can be useful when your program
has multiple stacks and switches between them.

up n

Move n frames up the stack. For positive numbersn, this
advancestoward the outermost frame, to higher frame numbers,
to frames that have existed longer. n defaults to one.

46

Information about a Frame

downn

Move n frames down the stack. For positive numbersn, this
advancestoward theinnermost frame, to lower frame numbers,
to frames that were created more recently. n defaults to one.
You may abbreviate down as do.

All of these commands end by printing two lines of output
describing the frame. The first line shows the frame number, the
function name, the arguments, and the sourcefile and line number
of execution in that frame. The second line shows the text of that

sourceline.
For example:
(gdb) up
#1 0xd24 in whetstone.log (x=0.75) at whetstone.adb: 218
218 return 2.302585093 * LOGLO (X) ;
(gdb)

After such aprintout, the list command with no arguments prints
ten lines centered on the point of execution in the frame. See
Section 7.1, “Printing Source Lines’ [51].

up-silently n, down-silently n

These two commands are variants of up and down,
respectively; they differ in that they do their work silently,
without causing display of the new frame. They are intended
primarily for use in the debugger command scripts, where the
output might be unnecessary and distracting.

6.4. Information about a Frame

There are several other commands to print information about the
selected stack frame.

frame, f
When used without any argument, this command does not
change which frame is selected, but prints a brief description

47

Chapter 6. Examining the Stack

of the currently selected stack frame. It can be abbreviated f.
With an argument, thiscommand isused to select astack frame.
See Section 6.3, “ Selecting a Frame” [46].

info frame, infof

This command prints a verbose description of the selected
stack frame, including:

* the address of the frame
* the address of the next frame down (called by this frame)
* the address of the next frame up (caller of thisframe)

» thelanguage in which the source code corresponding to this
frameiswritten

* the address of the frame's arguments

« the program counter saved in it (the address of executionin
the caller frame)

» which registers were saved in the frame

The verbose description is useful when something has gone
wrong that has made the stack format fail to fit the usual
conventions.

info frameaddr , infof addr
Print averbose description of the frame at addressaddr , without
selecting that frame. The selected frame remains unchanged
by thiscommand. Thisrequiresthe samekind of address (more
than one for some architectures) that you specify in the frame
command. See Section 6.3, “ Selecting a Frame” [46].

info args

Print the arguments of the selected frame, each on a separate
line.

48

Information about a Frame

info locals

Print the local variables of the selected frame, each on a
separate line. These are al variables (declared either static or
automatic) accessible at the point of execution of the selected
frame.

info catch

Print alist of al the exception handlers that are active in the
current stack frame at the current point of execution. To see
other exception handlers, visit the associated frame (using the
up, down, or frame commands); then type info catch.

49

50

Chapter 7 Examining Source Files

The debugger can print parts of your program'’s source, since the
debugging information recorded in the program tells the debugger
what source files were used to build it. When your program stops,
the debugger spontaneoudly prints the line where it stopped.
Likewise, when you select astack frame (see Section 6.3, “ Selecting
aFrame” [46]), the debugger prints the line where execution in
that frame has stopped. You can print other portions of sourcefiles
by explicit command.

If you use the debugger through its Emacsinterface, you may prefer
to use Emacs facilities to view source.

7.1. Printing Source Lines

To print linesfrom asourcefile, usethelist command (abbreviated
). By default, ten lines are printed. There are several waysto
specify what part of the file you want to print.

Here are the forms of the list command most commonly used:

51

Chapter 7. Examining Source Files

list I'i nenum
Print lines centered around line number | i nenumin the current
sourcefile.

list function
Print lines centered around the beginning of functionf unct i on.

list
Print more lines. If the last lines printed were printed with a
list command, this prints lines following the last lines printed;
however, if the last line printed was a solitary line printed as
part of displaying astack frame (see Chapter 6, Examining the
Sack [43]), this prints lines centered around that line.

list -
Print lines just before the lines last printed.

By default, the debugger prints ten source lines with any of these
forms of the list command. You can change thisusing set listsize:

set listsize count

Make the list command display count source lines (unlessthe
list argument explicitly specifies some other number).

show listsize
Display the number of linesthat list prints.

Repeating alist command with Enter discardsthe argument, so it
isequivalent to typing just list. Thisis more useful than listing the
same lines again. An exception is made for an argument of -; that
argument is preserved in repetition so that each repetition moves

up in the sourcefile.

In generdl, the list command expects you to supply zero, one or
two linespecs. Linespecs specify source lines; there are several
ways of writing them but the effect isalwaysto specify some source
line. Here is a compl ete description of the possible arguments for
list:

52

Printing Source Lines

list i nespec
Print lines centered around the line specified by | i nespec.

list first, ast
Print linesfromfirst tol ast. Both arguments are linespecs.

list | ast
Print lines ending with | ast .

listfirst,
Print lines starting with first.

list +
Print lines just after the lineslast printed.

list -
Print lines just before the lines last printed.

list
As described in the preceding table.

Here are the ways of specifying a single source line—all the kinds
of linespec.

nunber
Specifiesline nunber of the current source file. When alist
command has two linespecs, thisrefersto the same sourcefile
asthefirst linespec.

+of f set
Specifiesthelineof f set linesafter thelast line printed. When
used as the second linespec in alist command that has two,
thisspecifiesthelineof f set linesdown from thefirst linespec.

-of f set
Specifiesthelineof f set lines before the last line printed.

filename:number
Specifies line nunber in the sourcefilefil enane.

function
Specifiesthelinethat beginsthe body of the functionf unct i on.
For example: in C, thisisthe line with the open brace.

53

Chapter 7. Examining Source Files

filenane:function
Specifiestheline of the open-brace that begins the body of the
function function inthefilefil enane. You only need thefile
name with a function name to avoid ambiguity when there are
identically named functionsin different source files.

*addr ess
Specifies the line containing the program address addr ess.
addr ess may be any expression.

7.2. Searching Source Files

There are two commands for searching through the current source
filefor aregular expression.

forward-search regexp , search regexp

The command forwar d-sear ch r egexp checks each line,
starting with the one following the last line listed, for amatch
for regexp. It liststhe line that is found. You can use the
synonym sear ch r egexp or abbreviate the command name as
fo.

rever se-search r egexp
The command rever se-sear ch r egexp checkseach line, starting
with the one before the last line listed and going backward, for
amatch for regexp. It liststhe line that is found. You can
abbreviate this command asrev.

7.3. Specifying Source Directories

Executable programs sometimes do not record the directories of
the source files from which they were compiled, just the names.
Even when they do, the directories could be moved between the
compilation and your debugging session. The debugger has alist
of directoriesto search for sourcefiles; thisis called the source
path. Each time the debugger wants a source file, it tries all the
directoriesin thelist, in the order they are present in the list, until
it finds afilewith the desired name. Note that the executable search

Specifying Source Directories

path is not used for this purpose. Neither isthe current working
directory, unless it happens to be in the source path.

If the debugger cannot find asourcefile in the source path, and the
object program records adirectory, the debugger triesthat directory
too. If the source path is empty, and there is no record of the
compilation directory, the debugger looks in the current directory
as alast resort.

Whenever you reset or rearrange the source path, the debugger
clears out any information it has cached about where source files
are found and where each lineisin thefile.

When you start the debugger, its source path isempty. To add other
directories, use the directory command.

directory dirnane ...

dir di rnane ...
Add directory di r nane to the front of the source path. Several
directory names may be given to this command, separated by
: or whitespace. You may specify adirectory that isalready in
the source path; thismovesit forward, so the debugger searches
it sooner.

You can use the string $cdir to refer to the compilation
directory (if oneisrecorded), and $cwd to refer to the current
working directory. $cwd isnot the same as.—theformer tracks
the current working directory asit changes during your the
debugger session, while the latter isimmediately expanded to
the current directory at the time you add an entry to the source
path.

directory
Reset the source path to empty again. This requires
confirmation.

show directories

Print the source path: show which directoriesit contains.

55

Chapter 7. Examining Source Files

If your source path is cluttered with directories that are no longer
of interest, the debugger may sometimes cause confusion by finding
the wrong versions of source. You can correct the situation as
follows:

1. Usedirectory with no argument to reset the source path to
empty.

2. Usedirectory with suitable argumentsto reinstall the directories
you want in the source path. You can add all the directoriesin
one command.

7.4. Source and Machine Code

You can use the command info lineto map sourcelinesto program
addresses (and vice versa), and the command disassembleto
display arange of addresses as machine instructions. When run
under Emacs mode, the info line command now causes the arrow
to point to the line specified. Also, info line prints addressesin
symbolic form aswell as hex.

infolinelinespec

Print the starting and ending addresses of the compiled code
for sourcelinel i nespec. You can specify source linesin any
of the ways understood by the list command (see Section 7.1,
“Printing Source Lines’ [51]).

For example, we can use info line to discover the location of the
object code for thefirst line of function | og10 in Whetstone:

(gdb) info line 10gl0
Line 176 of "whetstone.adb" starts at address Oxc9a <whetstone_ | 0g10<
and ends at Oxca4 <whetstone_ | 0gl10+10>

(gdb)

We can also inquire (using *addr asthe form for | i nespec) what
source line covers a particular address:

56

Source and Machine Code

(gdb) info line *0xc9a
Line 176 of "whetstone.adb" starts at address Oxc9a <whetstone__ | 0g10<
and ends at Oxca4 <whetstone_ | 0gl10+10>

(gdb)

After info line, the default address for the x command is changed
to the starting address of the line, so that x/i is sufficient to begin
examining the machine code (see Section 8.5, “Examining
Memory” [66]). Also, this addressis saved as the value of the
convenience variable $_ (see Section 8.9, “ Convenience
Variables’ [80]).

disassemble

This specialized command dumps a range of memory as
machineinstructions. The default memory rangeisthefunction
surrounding the program counter of the selected frame. A single
argument to this command is a program counter value; the
debugger dumps the function surrounding this value. Two
arguments specify arange of addresses (first inclusive, second
exclusive) to dump.

We can use disassemble to inspect the object code range shown
inthelast info line.

(gdb) disassenbl e 0xc9a Oxcal
Dunp of assenbler code from Oxc9a to Oxcal

Oxc9a <whetstone_ [0gl10>: sisp rl5,1
0xc9c <whetstone_ [0gl0+2>: pshm r14,r14
0xc9e <whetstone_ [0gl0+4>: Ir ri4,r15
End of assenbl er dunp.

(gdb)

57

58

Chapter 8 Exam| n| ng Data

The usual way to examine datain your program is with the print
command (abbreviated p), or its synonym inspect. It evaluatesand
prints the value of an expression of the language your program is
written in (see Chapter 9, Using the Debugger with Different
Languages [89]).

print exp, print /f exp
exp isan expression (in the source language). By default the
value of exp is printed in aformat appropriate to its data type;
you can choose a different format by specifying /f , wheref is
aletter specifying the format; see Section 8.4, “Output
Formats’ [65].

print, print /f
If you omit exp, the debugger displays the last value again
(fromthevalue history; see Section 8.8, “Vaue History” [78]).
This allows you to conveniently inspect the same value in an
alternative format.

59

Chapter 8. Examining Data

A more low-level way of examining datais with the x command.
It examines datain memory at a specified address and printsitin
aspecified format. See Section 8.5, “Examining Memory” [66].

If you are interested in information about types, or about how the
fields of astruct or class are declared, use the ptype exp command
rather than print. See Chapter 10, Examining the Symbol

Table [103].

8.1. Expressions

print and many other the debugger commands accept an expression
and compute its value. Any kind of constant, variable or operator
defined by the programming language you are using isvalid in an
expression in the debugger. Thisincludes conditional expressions,
function calls, casts and string constants. It unfortunately does not
include symbols defined by preprocessor #define commands.

The debugger now supports array constants in expressions input
by the user. The syntax is{el ement, el enent...}. For example,
you can now use the command print {1, 2, 3} to build up an array
in memory that is malloc'd in the target program.

Because C is so widespread, most of the expressions shown in
examplesin thismanual arein C. See Chapter 9, Using the
Debugger with Different Languages [85], for information on how
to use expressions in other languages.

In this section, we discuss operators that you can use in the
debugger expressions regardless of your programming language.

Casts are supported in all languages, not just in C, becauseit is so
useful to cast anumber into apointer in order to examine astructure
at that address in memory.

The debugger supportsthese operators, in addition to those common
to programming languages:

@
@ isabinary operator for treating parts of memory as arrays.
See Section 8.3, “Artificial Arrays’ [63], for more information.

60

Program Variables

:: alows you to specify avariablein terms of thefile or
function where it is defined. See Section 8.2, “Program
Variables’ [61].

{type} addr

Refers to an object of typet ype stored at address addr in
memory. addr may be any expression whose valueisan integer
or pointer (but parentheses are required around binary
operators, just asin acast). Thisconstruct isallowed regardless
of what kind of datais normally supposed to reside at addr .

8.2. Program Variables

The most common kind of expression to useisthe name of a
variable in your program.

Variablesin expressions are understood in the selected stack frame
(see Section 6.3, “ Selecting a Frame” [46]); they must be either:

 global (or static)
or

* visible according to the scope rules of the programming language
from the point of execution in that frame

This means that in the function

foo (a)
int a;
{

bar (a);
{
int b =test ();
bar (b);
}
}

61

Chapter 8. Examining Data

you can examine and use the variable awhenever your program is
executing within the function foo, but you can only use or examine
the variable b while your program is executing inside the block
where b is declared.

Thereisan exception: you can refer to avariable or function whose
scopeisasingle source file even if the current execution point is
not inthisfile. Butit is possible to have more than one such variable
or function with the same name (in different source files). If that
happens, referring to that name has unpredictable effects. If you
wish, you can specify astatic variable in a particular function or
file, using the colon-colon notation:

file::variable
function::variable

Herefile or function isthe name of the context for the static
vari abl e. In the case of file names, you can use quotes to make
sure the debugger parses the file name as a single word—for
example, to print aglobal value of x defined in f2.c:

(gdb) p 'f2.¢"::x

Thisuseof :: isvery rarely in conflict with the very similar use of
the same notation in C++. The debugger also supports use of the
C++ scope resol ution operator in the debugger expressions.

62

Artificial Arrays

Warning Occasionally, alocal variable may appear to have the
wrong value at certain pointsin afunction —just after
entry to a new scope, and just before exit.

You may see this problem when you are stepping by
machineinstructions. Thisisbecause, on most machines,
it takes more than oneinstruction to set up a stack frame
(including local variable definitions); if you are stepping
by machine instructions, variables may appear to have
the wrong values until the stack frame is compl etely
built. On exit, it usually also takes more than one
machine instruction to destroy a stack frame; after you
begin stepping through that group of instructions, local
variable definitions may be gone.

8.3. Artificial Arrays

It isoften useful to print out several successive objects of the same
type in memory; a section of an array, or an array of dynamically
determined size for which only a pointer exists in the program.

You can do this by referring to a contiguous span of memory as
an artificial array, using the binary operator @. The |eft operand
of @ should be the first element of the desired array and be an
individual object. The right operand should be the desired length
of the array. The result is an array value whose elements are all of
the type of the left argument. The first element is actually the left
argument; the second el ement comes from bytes of memory
immediately following those that hold thefirst element, and so on.
Here is an example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@en

The left operand of @ must reside in memory. Array values made
with @ in thisway behave just like other arraysin terms of

63

Chapter 8. Examining Data

subscripting, and are coerced to pointerswhen used in expressions.
Artificial arrays most often appear in expressions viathe value
history (see Section 8.8, “Value History” [78]), after printing one
out.

Another way to create an artificial array isto use acast. This
re-interprets avalue asif it were an array. The value need not be
in memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

Asaconvenience, if you leave the array length out (asin
(type)[])val ue) gdb calculates the size to fill the value (as
sizeof(val ue)/sizeof(t ype):

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in
moderately complex data structures, the el ements of interest may
not actually be adjacent—for example, if you areinterested in the
values of pointersin an array. One useful work-around in this
situation is to use a convenience variable (see Section 8.9,
“Convenience Variables’ [80]) as a counter in an expression that
prints the first interesting value, and then repeat that expression
viaEnter. For instance, suppose you have an array dtab of pointers
to structures, and you are interested in the values of afield fv in
each structure. Here is an example of what you might type:

set $i =0

p dtab[$i ++]->fv
Enter

Enter

Output Formats

8.4. Output Formats

By default, the debugger prints a value according to its data type.
Sometimesthisisnot what you want. For example, you might want
to print anumber in hex, or apointer in decimal. Or you might
want to view datain memory at a certain address as a character
string or as an instruction. To do these things, specify an output
format when you print avalue.

The ssimplest use of output formatsisto say how to print avalue
already computed. Thisis done by starting the arguments of the
print command with aslash and aformat letter. The format letters
supported are:

X
Regard the bits of the value as an integer, and print the integer
in hexadecimal .

d
Print asinteger in signed decimal.

u
Print as integer in unsigned decimal.

o}
Print as integer in octal.

t
Print as integer in binary. The letter t stands for “two”. !

a

Print as an address, both absolute in hexadecimal and as an
offset from the nearest preceding symbol. You can use this
format used to discover where (in what function) an unknown
addressislocated:

1 cannot be used because these format letters are al so used with the x command, where b stands for byte”;
see Section 8.5, “Examining Memory” [66].

65

Chapter 8. Examining Data

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize vx+396>

Regard as an integer and print it as a character constant.

Regard the bits of the value as a floating-point number and
print using typical floating-point syntax.

For example, to print the program counter in hex (see Section 8.10,
“Registers’ [82]), type

p/ x $pc

Note that no space is required before the slash; thisis because
command names in the debugger cannot contain a slash.

Toreprint thelast valuein the value history with adifferent format,
you can use the print command with just aformat and no
expression. For example, p/x reprints the last value in hex.

8.5. Examining Memory

You can use the command x (for “examine”) to examine memory
in any of several formats, independently of your program'’s data

types.
X/nfu addr , X addr , X
Use the x command to examine memory.

n, f,and u are all optional parameters that specify how much
memory to display and how to format it; addr isan expression
giving the address where you want to start displaying memory. If
you use defaults for nf u, you need not type the slash /. Several
commands set convenient defaults for addr .

66

Examining Memory

n, the repeat count
The repeat count is adecimal integer; the default is 1. It
specifies how much memory (counting by unitsu) to display.

f, the display format
The display format is one of the formats used by print, s
(null-terminated string), or i (machineinstruction). The default
isx (hexadecimal) initially. The default changes each timeyou
use either x or print.

u, the unit size
The unit sizeisany of

b
Bytes.
h
Halfwords (two bytes).
w
Words (four bytes). Thisistheinitial default.
g

Giant words (eight bytes).

Each time you specify aunit size with x, that size becomesthe
default unit the next time you use x. (For the sand i formats,
the unit sizeisignored and is normally not written.)

addr, starting display address
addr isthe address where you want the debugger to begin
displaying memory. The expression need not have a pointer
value (though it may); it is always interpreted as an integer
address of abyte of memory. The default for addr is usually
just after the last address examined—but several other
commands also set the default address: info breakpoints (to
the address of the last breakpoint listed), info line (to the
starting address of aline), and print (if you useit to display a
value from memory).

For example, x/3uh 0x54320 isarequest to display three halfwords
(h) of memory, formatted as unsigned decimal integers (u), starting

67

Chapter 8. Examining Data

at address 0x54320. x/4xw $sp printsthe four words (w) of memory
above the stack pointer (here, $sp; see Section 8.10,
“Registers’ [82]) in hexadecimal (x).

Sincethelettersindicating unit sizesareall distinct from theletters
specifying output formats, you do not have to remember whether
unit size or format comes first; either order works. The output
specifications 4xw and 4wx mean exactly the same thing.
(However, the count n must come first; wx4 does not work.)

Even though the unit size u isignored for the formats sand i, you
might still want to use acount n; for example, 3i specifiesthat you
want to see three machine instructions, including any operands.
The command disassembl e gives an alternative way of inspecting
machine instructions; see Section 7.4, “ Source and Machine
Code’ [56].

All the defaultsfor the argumentsto x are designed to makeit easy
to continue scanning memory with minimal specifications each
time you use x. For example, after you have inspected three
machineinstructionswith x/3i addr , you can inspect the next seven
with just /7. If you use Enter to repeat the x command, the repeat
count n isused again; the other arguments default asfor successive
uses of X.

The addresses and contents printed by the x command are not saved
in the value history because there is often too much of them and
they would get in theway. Instead, the debugger makesthese values
available for subsequent use in expressions as values of the
convenience variables$_and $__. After an x command, the last
address examined is available for use in expressionsin the
conveniencevariable$. The contents of that address, as examined,
are available in the convenience variable $.

If thex command has arepeat count, the address and contents saved
are from the last memory unit printed; thisis not the same as the
last address printed if several units were printed on the last line of
output.

68

Automatic Display

8.6. Automatic Display

If you find that you want to print the value of an expression
frequently (to see how it changes), you might want to add it to the
automatic display list so that the debugger printsits value each
time your program stops. Each expression added to thelist isgiven
anumber to identify it; to remove an expression from the list, you
specify that number. The automatic display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current
values. As with displays you request manually using x or print,
you can specify the output format you prefer; in fact, display
decideswhether to use print or x depending on how elaborate your
format specification is—it uses x if you specify aunit size, or one
of thetwo formats (i and s) that are only supported by x; otherwise
it usesprint.

display exp

Add the expression exp to the list of expressions to display
each time your program stops. See Section 8.1,
“Expressions’ [60].

display does not repeat if you press Enter again after usingit.

display/f nt exp
For f mt specifying only adisplay format and not asize or count,
add the expression exp to the auto-display list but arrange to
display it eachtimein the specified format f nt . See Section 8.4,
“Output Formats’ [65].

display/f nt addr
For fnt i or s, or including a unit-size or a number of units,
add the expression addr as a memory address to be examined
each timeyour program stops. Examining meansin effect doing
x/fnt addr . See Section 8.5, “Examining Memory” [66].

69

Chapter 8. Examining Data

For example, display/i $pc can be helpful, to see the machine
instruction about to be executed each time execution stops ($pcis
acommon name for the program counter; see Section 8.10,
“Registers’ [82]).

undisplay dnuns..., delete display dnuns...

Remove item numbers dnuns from the list of expressionsto
display.

undisplay does not repeat if you press Enter after using it.
(Otherwise you would just get the error No display number

)
disable display dnuns...

Disable the display of item numbersdnuns. A disabled display
item is not printed automatically, but is not forgotten. It may
be enabled again later.

enable display dnuns...

Enable display of item numbers dnuns. It becomes effective
once again in auto display of its expression, until you specify
otherwise.

display
Display the current values of the expressions on the list, just
asis done when your program stops.

info display

Print the list of expressions previously set up to display
automatically, each one with its item number, but without
showing the values. Thisincludes disabled expressions, which
are marked as such. It also includes expressions which would
not be displayed right now because they refer to automatic
variables not currently available.

If adisplay expression refersto local variables, then it does not
make sense outside thelexical context for which it was set up. Such
an expression is disabled when execution enters a context where

70

Print Settings

one of its variablesis not defined. For example, if you give the
command display last_char while inside afunction with an
argument last_char, the debugger displays this argument while
your program continues to stop inside that function. When it stops
elsawhere—where there is no variable last_char—the display is
disabled automatically. The next time your program stops where
last_char ismeaningful, you can enabl e the display expression once

again.

8.7. Print Settings

The debugger provides the following ways to control how arrays,
structures, and symbols are printed.

These settings are useful for debugging programsin any language:
set print address, set print addresson

The debugger prints memory addresses showing the location
of stack traces, structure values, pointer values, breakpaints,
and so forth, even when it also displays the contents of those
addresses. The default is on. For example, thisiswhat a stack
frame display looks like with set print address on:

(gdb) f

#0 set_quotes (1g=0x34c78 "<<", rq=0x34c88 ">>")
at input.c:530

530 if (lquote !'= def Il quote)

set print address off
Do not print addresses when displaying their contents. For
example, thisisthe same stack frame displayed with set print
address off:

(gdb) set print addr off

(gdb) f
#0 set_quotes (lg="<<", rg=">>") at input.c:530
530 if (lquote !'= def Il quote)

71

Chapter 8. Examining Data

You can use set print address off to eliminate all machine
dependent displays from the debugger interface. For example,
with print address off, you should get the same text for
backtraces on all machines—whether or not they involve
pointer arguments.

show print address
Show whether or not addresses are to be printed.

When the debugger prints a symbolic address, it normally prints
the closest earlier symbol plus an offset. If that symbol does not
uniquely identify the address (for example, it is a name whose
scopeisasingle sourcefile), you may need to clarify. One way to
dothisiswithinfoline, for exampleinfoline*0x4537. Alternately,
you can set the debugger to print the source file and line number
when it prints a symbolic address:

set print symbol-filename on

Tell the debugger to print the source file name and line number
of asymbol in the symbolic form of an address.

set print symbol-filename off
Do not print source file name and line number of a symbol.
Thisisthe default.

show print symbol-filename

Show whether or not the debugger will print the sourcefile
name and line number of asymbol in the symbolic form of an
address.

Another situation whereit ishelpful to show symbol filenamesand
line numbersiswhen disassembling code; the debugger showsyou
theline number and sourcefilethat correspondsto each instruction.

In addition, you may wish to see the symbolic form only if the
address being printed is reasonably close to the closest earlier
symbol:

72

Print Settings

set print max-symbolic-offset max- of f set

Tell the debugger to only display the symbolic form of an
addressif the offset between the closest earlier symbol and the
address isless than max- of f set . The default is 0, which tells
the debugger to always print the symbolic form of an address
if any symbol precedesit.

show print max-symbolic-offset

Ask how large the maximum offset is that the debugger prints
in a symbolic address.

If you have a pointer and you are not sure where it points, try set
print symbol-filename on. Then you can determine the name and
source file location of the variable where it points, using p/a

poi nt er . Thisinterpretsthe addressin symbolic form. For example,
here the debugger shows that a variable ptt points at another
variablet, defined in hi2.c:

(gdb) set print symbol-filenane on

(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

Warning For pointersthat point to alocal variable, p/a does not
show the symbol name and filename of the referent,
even with the appropriate set print options turned on.

Other settings control how different kinds of objects are printed:
Set print array , set print array on

Pretty print arrays. Thisformat is more convenient to read, but
uses more space. The default is off.

set print array off
Return to compressed format for arrays.

show print array

Show whether compressed or pretty format is selected for
displaying arrays.

73

Chapter 8. Examining Data

set print elements nunber - of - el enent s

Set alimit on how many elements of an array the debugger
will print. If the debugger is printing alarge array, it stops
printing after it has printed the number of elements set by the
set print elements command. Thislimit also appliesto the
display of strings. Setting nunber - of - el enent s to zero means
that the printing is unlimited.

show print elements

Display the number of elements of alarge array that the
debugger will print. If the number is 0, then the printing is
unlimited.

set print null-stop

Cause the debugger to stop printing the characters of an array
when the first NULL is encountered. Thisis useful when large
arrays actually contain only short strings.

set print pretty on

Cause the debugger to print structures in an indented format
with one member per line, like this:

$1 = {
next = 0x0
flags = {
sweet = 1,
sour =1
1
meat = 0x54 "Pork"
}

set print pretty off
Cause the debugger to print structures in a compact format,
likethis:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

74

Print Settings

Thisisthe default format.

show print pretty
Show which format the debugger is using to print structures.

set print sevenbit-strings on
Print using only seven-bit characters; if this option is set, the
debugger displays any eight-bit characters (in strings or
character values) using the notation \nnn. This setting is best
if you are working in English (asci i) and you use the
high-order bit of characters as a marker or "meta" bit.

set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more
international character sets, and is the default.

show print sevenbit-strings

Show whether or not the debugger is printing only seven-bit
characters.

set print union on

Tell the debugger to print unions which are contained in
structures. Thisisthe default setting.

set print union off
Tell the debugger not to print unions which are contained in
structures.

show print union

Ask the debugger whether or not it will print unionswhich are
contained in structures.

For example, given the declarations

typedef enum {Tree, Bug} Species;
typedef enum {Big tree, Acorn, Seedling} Tree_ forns;
typedef enum {Caterpillar, Cocoon, Butterfly}

75

Chapter 8. Examining Data

Bug_f or ms;

struct thing {
Species it;

union {

Tree forns tree
Bug_forms bug

b

} form

struct thing foo = {Tree, {Acorn}};

with set print union on in effect p foo would print

$1 = {it = Tree, form= {tree = Acorn, bug = Cocoon}}
and with set print union off in effect it would print
$1 = {it = Tree, form={...}}

These settings are of interest when debugging C++ programs.
set print demangle, set print demangle on

Print C++ namesin their source form rather than in the encoded
(“mangled”) form passed to the assembler and linker for
type-safe linkage. The default is on.

show print demangle

Show whether C++ namesare printed in mangled or demangled
form.

set print asm-demangle, set print asm-demangleon

Print C++ namesin their source form rather than their mangled
form, even in assembler code printouts such asinstruction
disassemblies. The default is off.

show print asm-demangle

Show whether C++ names in assembly listings are printed in
mangled or demangled form.

76

Print Settings

set demangle-stylestyl e

Choose among several encoding schemes used by different
compilers to represent C++ names. The choicesfor styl e are
currently:

auto
Allow the debugger to choose a decoding style by
inspecting your program.

gnu
Decode based on the GNU C++ Compiler (g++) encoding
algorithm. Thisis the default.

arm
Decode using the agorithm in the C++ Annotated
Reference Manual.

foo
Show the list of formats.

show demangle-style

Display the encoding style currently in use for decoding C++
symbols.

set print object , set print object on

When displaying a pointer to an object, identify the actual
(derived) type of the object rather than the declared type, using
the virtual function table.

set print object off
Display only the declared type of objects, without reference
to the virtual function table. Thisisthe default setting.

show print object

Show whether actual, or declared, object types are displayed.

77

Chapter 8. Examining Data

set print static-members, set print static-memberson

Print static memberswhen displaying a C++ object. The default
ison.

set print static-member s off
Do not print static members when displaying a C++ object.

show print static-members
Show whether C++ static members are printed, or not.
set print vtbl , set print vtbl on
Pretty print C++ virtual function tables. The default is off.

set print vtbl off
Do not pretty print C++ virtual function tables.

show print vtbl

Show whether C++ virtual function tables are pretty printed,
or not.

8.8. Value History

Values printed by the print command are saved in the the debugger
value history. Thisallowsyouto refer to them in other expressions.
Values are kept until the symbol tableisre-read or discarded (for
examplewith thefile or symbol-file commands). When the symbol
table changes, the value history is discarded, since the values may
contain pointers back to the types defined in the symbol table.

The values printed are given history numbers by which you can
refer to them. These are successiveintegers starting with one. print
shows you the history number assigned to avalue by printing $num
= before the value; here numis the history number.

To refer to any previousvalue, use $ followed by the value's history
number. Theway print labelsits output is designed to remind you
of this. Just $ refers to the most recent value in the history, and $$

78

Value History

refers to the value before that. $$n refers to the nth value from the
end; $32 isthe valuejust prior to $$, $$1 is equivalent to 3, and
$$0isequivaent to $.

For example, suppose you have just printed a pointer to a structure
and want to see the contents of the structure. It sufficesto type

prs
If you have achain of structures where the component next points
to the next one, you can print the contents of the next onewith this:
p *$. next
You can print successive linksin the chain by repeating this
command—which you can do by just typing Enter.
Note that the history records values, not expressions. If the value
of X is 4 and you type these commands:
print x
set x=5

then the value recorded in the value history by the print command
remains 4 even though the value of x has changed.

show values

Print the last ten valuesin the value history, with their item
numbers. Thisislike p $$9 repeated ten times, except that
show values does not change the history.

show valuesn
Print ten history values centered on history item number n.

show values +
Print ten history values just after the values last printed. If no
more values are available, show values + produces no display.

79

Chapter 8. Examining Data

Pressing Enter to repeat show valuesn has exactly the same effect
as show values +.

8.9. Convenience Variables

The debugger provides convenience variables that you can use
within the debugger to hold onto avalue and refer to it later. These
variables exist entirely within the debugger; they are not part of
your program, and setting a convenience variable has no direct
effect on further execution of your program. That is why you can
use them freely.

Convenience variables are prefixed with $. Any name preceded by
$ can be used for a convenience variable, unlessit is one of the
predefined machine-specific register names (see Section 8.10,
“Registers’ [82]). (Value history references, in contrast, are
numbers preceded by $. See Section 8.8, “Value History” [78].)

You can save avaluein a convenience variable with an assignment
expression, just as you would set avariable in your program. For
example:

set $foo = *object ptr

would save in $foo the value contained in the object pointed to by
object_pitr.

Using a convenience variable for the first time createsiit, but its
valueisvoid until you assign a new value. You can alter the value
with another assignment at any time.

Convenience variables have no fixed types. You can assign a
convenience variable any type of value, including structures and
arrays, even if that variable already has avalue of a different type.
The convenience variable, when used as an expression, has the
type of its current value.

80

Convenience Variables

show convenience

Print alist of convenience variables used so far, and their
values. Abbreviated show con.

One of the ways to use a convenience variable is as a counter to
be incremented or a pointer to be advanced. For example, to print
afield from successive elements of an array of structures:

set $i =0
print bar[$i ++]->contents

Repeat that command by typing Enter.

Some convenience variables are created automatically by the
debugger and given values likely to be useful.

$

Thevariable $_isautomatically set by the x command to the
last address examined (see Section 8.5, “ Examining
Memory” [66]). Other commands which provide a default
address for x to examine also set $_to that address; these
commandsincludeinfo line and info breakpoint. Thetype of
$_isvoid* except when set by the x command, in which case
itisapointer tothetypeof $.

$

Thevariable$ _isautomatically set by the x command to the
value found in the last address examined. Its type is chosen to
match the format in which the data was printed.

$ exitcode

Thevariable $_exitcode is automatically set to the exit code
when the program being debugged terminates.

81

Chapter 8. Examining Data

8.10. Registers

You can refer to machine register contents, in expressions, as
variables with names starting with $. The names of registers are
different for each machine; use info register s to see the names
used on your machine.

inforegisters

Print the names and values of all registers except floating-point
registers (in the selected stack frame).

info all-registers

Print the names and values of all registers, including
floating-point registers.

info registersregnane ...
Print the relativized value of each specified register r egnane.
Asdiscussed in detail below, register values are normally
relativeto the selected stack frame. r egnane may be any register
name valid on the machine you are using, with or without the
initial $.

The debugger hasfour “standard” register namesthat are available
(in expressions) on most machines—whenever they do not conflict
with an architecture's canonical mnemonics for registers. The
register names $pc and $sp are used for the program counter register
and the stack pointer. $fp is used for aregister that contains a
pointer to the current stack frame, and $psis used for aregister
that containsthe processor status. For example, you could print the
program counter in hex with

p/x $pc

or print the instruction to be executed next with

xIi $pc

82

Registers

or add four to the stack pointer? with

set $sp += 4

Whenever possible, these four standard register namesare available
on your machine even though the machine has different canonical
mnemonics, so long asthereis no conflict. The info registers
command showsthe canonical names. For example, onthe SPARC,
inforegistersdisplaysthe processor statusregister as $psr but you
can aso refer to it as $ps.

The debugger always considersthe contents of an ordinary register
as an integer when the register is examined in this way. Some
machines have special registerswhich can hold nothing but floating
point; these registers are considered to have floating-point values.
Thereisno way to refer to the contents of an ordinary register as
floating-point value (although you can print it as a floating-point
value with print/f $regnane).

Someregistershavedistinct “raw” and “virtual” dataformats. This
means that the data format in which the register contents are saved
by the operating system is not the same one that your program
normally sees. For example, theregisters of the 68881 floating-point
coprocessor are always saved in “extended” (raw) format, but all
C programs expect to work with “double” (virtual) format. In such
cases, the debugger normally works with the virtual format only
(the format that makes sense for your program), but the info
registers command prints the datain both formats.

Normally, register values are relative to the selected stack frame
(see Section 6.3, “ Selecting a Frame” [46]). This means that you
get the value that the register would contain if all stack frames
farther in were exited and their saved registers restored. In order
to see the true contents of hardware registers, you must select the
innermost frame (with frame 0).

Thisi saway of removing oneword from the stack, on machineswhere stacks grow downward in memory
(most machines, nowadays). This assumes that the innermost stack frame is selected; setting $sp is not
alowed when other stack frames are selected. To pop entire frames off the stack, regardless of machine
architecture, use the return command; see Section 11.3, “Returning from a Function” [112].

83

Chapter 8. Examining Data

However, the debugger must deduce where registers are saved,
from the machine code generated by your compiler. If some
registers are not saved, or if the debugger is unable to locate the
saved registers, the selected stack frame makes no difference.

Chapter o Using the Debugger with
Different Languages

Language-specific information is built into the debugger for some
languages, allowing you to express operations like the above in
your program's native language, and allowing the debugger to
output values in amanner consistent with the syntax of your
program'’s native language. The language you use to build
expressionsis called the working language.

9.1. Switching Between Source Languages

There are two ways to control the working language—either have
the debugger set it automatically, or select it manually yourself.
You can use the set language command for either purpose. On
startup, the debugger defaultsto setting the language automatically.
The working language is used to determine how expressions you
type are interpreted, how values are printed, etc.

In addition to the working language, every source file that the
debugger knows about has its own working language. For some
object file formats, the compiler might indicate which language a

85

Chapter 9. Using the Debugger with Different Languages

particular sourcefileisin. However, most of the time the debugger
infers the language from the name of the file. The language of a
source file controls whether C++ names are demangled—this way
backtr ace can show each frame appropriately for its own language.
There is no way to set the language of a source file from within
the debugger.

Thisis most commonly a problem when you use a program, such
ascfront or f2c, that generates C but iswritten in another language.
In that case, make the program use #line directivesin its C output;
that way the debugger will know the correct language of the source
code of the original program, and will display that source code,
not the generated C code.

9.1.1. List of Filename Extensions and L anguages

If asource file name endsin one of the following extensions, then
the debugger infersthat its language is the one indicated.

.C
C sourcefile

.C,.cc,.cxx,.cpp,.cp,.c++
C++ sourcefile

.4, .ada, .adb, . ads
Adasourcefile

. €66, .C66, .cor,.COR
Cora 66 sourcefile

.S,.S
Assembler sourcefile. This actually behaves almost like C,
but the debugger does not skip over function prologues when

stepping.

86

Setting the Working Language

9.1.2. Setting the Working L anguage

If you alow the debugger to set the language automatically,
expressions areinterpreted the same way in your debugging session
and your program.

If you wish, you may set the language manually. To do this, issue
the command set language | ang, where | ang is the name of a
language, such asc. For alist of the supported languages, type set
language.

9.1.3. Having the Debugger Infer the Source Language

To have the debugger set the working language automatically, use
set languagelocal or set language auto. The debugger theninfers
theworking language. That is, when your program stopsin aframe
(usually by encountering a breakpoint), the debugger sets the
working language to the language recorded for the function in that
frame. If the language for aframeis unknown (that is, if the
function or block corresponding to the frame was defined in a
source file that does not have a recognized extension), the current
working language is not changed, and the debugger issues a
warning.

Thismay not seem necessary for most programs, which arewritten
entirely in one source language. However, program modules and
libraries written in one source language can be used by amain
program written in adifferent sourcelanguage. Using the command
set language auto in this case frees you from having to set the
working language manually.

9.2. Displaying the Language

The following commands help you find out which language is the
working language, and also which language source files were
written in.

87

Chapter 9. Using the Debugger with Different Languages

show language

Display the current working language. Thisis the language
you can use with commands such as print to build and compute
expressions that may involve variables in your program.

info frame

Display the source language for this frame. This language
becomes the working language if you use an identifier from
thisframe. See Section 6.4, “ Information about a Frame” [47],
to identify the other information listed here.

info source

Display the source language of thissourcefile. See Chapter 10,
Examining the Symbol Table [103] to identify the other
information listed here.

9.3. Supported Languages

The debugger supportsAda, C, C++, Coral 66 and assembly
programming languages. Some the debugger features may be used
in expressions regardless of the language you use: the debugger
@ and :: operators, and the {type}addr construct (see Section 8.1,
“Expressions’ [60]) can be used with the constructs of any
supported language.

Thefollowing sections detail to what degree each source language
is supported by the debugger. These sections are not meant to be
language tutorials or references, but serve only asareference guide
to what the debugger expression parser accepts, and what input
and output formats should look like for different languages. There
are many good books written on each of these languages, please
look to these for alanguage reference or tutorial.

88

C and C++ operators

9.3.1. C and C++ operators

Operators must be defined on values of specific types. For instance,
+ isdefined on numbers, but not on structures. Operators are often
defined on groups of types.

For the purposes of C and C++, the following definitions hold:

* Integral typesincludeint with any of its storage-class specifiers;
char; and enum.

* Floating-point typesinclude float and double.
» Pointer typesinclude al types defined as (t ype *).
o Scalar typesinclude all of the above.

Thefollowing operators are supported. They arelisted herein order
of increasing precedence:

The comma or sequencing operator. Expressionsin a
commarseparated list are evaluated from left to right, with the
result of the entire expression being the last expression
evaluated.

Assignment. Thevalue of an assignment expressionisthevalue
assigned. Defined on scalar types.

op=
Used in an expression of the form a op=b, and trandated to a
=a op b. op=and = have the same precendence. op isany one
of the operators |, *, &, <<, >>,+,-,*,/, %.

The ternary operator. a ? b : ¢ can be thought of as: if a thenb
elsec. a should be of an integra type.

Logical or . Defined on integral types.

89

Chapter 9. Using the Debugger with Different Languages

&&
Logical and. Defined on integral types.

Bitwise or . Defined on integral types.
Bitwise exclusive-or . Defined on integral types.

Bitwise and. Defined on integral types.

Equality and inequality. Defined on scalar types. The value of
these expressions is O for false and non-zero for true.

<, >, <=, >=
Lessthan, greater than, lessthan or equal, greater than or equal.
Defined on scalar types. The value of these expressionsisO
for false and non-zero for true.

<<, >>

left shift, and right shift. Defined on integral types.

@
The the debugger “artificial array” operator (see Section 8.1,
“Expressions’ [60]).

+, -
Addition and subtraction. Defined on integral types,
floating-point types and pointer types.

* 1, %
Multiplication, division, and modulus. Multiplication and
division are defined on integral and floating-point types.
Modulusis defined on integral types.

++, -
Increment and decrement. When appearing before avariable,
the operation is performed before the variable is used in an
expression; when appearing after it, thevariable'svalueis used
before the operation takes place.

90

C and C++ operators

[l

0

Pointer dereferencing. Defined on pointer types. Same
precedence as ++.

Address operator. Defined on variables. Same precedence as
++.

For debugging C++, the debugger implements a use of &
beyond what is allowed in the C++ language itself: you can
use & (&ref) (or, if you prefer, smply & &ref) to examine
the address where a C++ reference variable (declared with
&ref) isstored.

Negative. Defined on integral and floating-point types. Same
precedence as ++.

Logical negation. Defined on integral types. Same precedence
as ++.

Bitwise complement operator. Defined onintegral types. Same
precedence as ++.

->

Structure member, and pointer-to-structure member. For
convenience, the debugger regards the two as equival ent,
choosing whether to dereference a pointer based on the stored
type information. Defined on struct and union data.

Array indexing. a[i] isdefined as* (a+i). Same precedence as
->,

Function parameter list. Same precedence as ->.

C++ scope resolution operator. Defined on struct, union, and
class types.

91

Chapter 9. Using the Debugger with Different Languages

Doubled colons also represent the debugger scope operator
(see Section 8.1, “Expressions’ [60]). Same precedence as ::,
above.

9.3.2. C and C++ Constants

The debugger allows you to express the constants of C and C++
in the following ways:

* Integer constants are a sequence of digits. Octal constants are
specified by aleading O (i.e. zero), and hexadecimal constants
by aleading Ox or 0X. Constants may aso end with aletter I,
specifying that the constant should be treated as along value.

 Foating point constants are a sequence of digits, followed by a
decimal point, followed by a sequence of digits, and optionally
followed by an exponent. An exponent is of the form: €[[+]|-]nnn,
where nnn is another sequence of digits. The + is optional for
positive exponents.

* Enumerated constants consist of enumerated identifiers, or their
integral equivalents.

» Character constants are asingle character surrounded by single
guotes (), or anumber—the ordinal value of the corresponding
character (usually its ASCI | value). Within quotes, the single
character may be represented by aletter or by escape sequences,
which are of theform \nnn, where nnn isthe octal representation
of the character's ordinal value; or of the form \x, wherex isa
predefined special character—for example, \n for newline.

» String constants are asequence of character constants surrounded
by double quotes ().

» Pointer constants are an integral value. You can also write
pointers to constants using the C operator & .

» Array constants are comma-separated lists surrounded by braces
{and}; for example, {1,2,3} isathree-element array of integers,

92

The Ada Mode

{{1,2}, {34}, {5,6}} isathree-by-two array, and {&" hi",
&"there", &"fred"} isathree-element array of pointers.

9.4. The Ada Mode

The Ada mode of the debugger supports afairly large subset of
Ada expression syntax, with some extensions. The philosophy
behind the design of this subset is:

» That the debugger should provide basic literals and access to
operationsfor arithmetic, dereferencing, field selection, indexing,
and subprogram calls.

» That type safety and strict adherenceto Adalanguage restrictions
are not particularly important to the the debugger user.

» That brevity isimportant to the the debugger user.

Thus, for brevity, the debugger acts asif there were implicitwi t h
and use clausesin effect for all user-written packages, making it
unnecessary to fully qualify most names with their packages,
regardless of context. Where this causes ambiguity, the debugger
asks the user'sintent.

The debugger will start in Adamode if it detects an Adamain
program. As for other languages, it will enter Ada mode when
stopped in a program that was translated from an Ada sourcefile.

While in Adamode, you may use- - for comments. Thisis useful
mostly for documenting command files. The standard debugger
comment (#) still works at the beginning of alinein Adamode,
but not in the middle (to alow based literals).

The debugger supports limited overloading. Given a subprogram
call in which the function symbol has multiple definitions, it will
use the number of actual parameters and some information about
their typesto attempt to narrow the set of definitions. It a so makes
very limited use of context, preferring procedures to functionsin
the context of thecal | command, and functions to procedures
elsewhere.

93

Chapter 9. Using the Debugger with Different Languages

9.4.1. Omissionsfrom Ada
Here are the notable omissions from the subset:
* Only asubset of the attributes are supported:

» « 'Firgt, 'Last, and 'Length on array objects (not on types and

subtypes).
* 'Min and 'Max.
* 'Posand 'Val.
* 'Tag.

» 'Range on array objects (not subtypes), but only as the right
operand of the membership (i n) operator.

» 'Access, 'Unchecked Access, and 'Unrestricted Access (an
extension).

» 'Address.

Thenamesin Characters. Latin_1 are not available and
concatenation is not implemented. Thus, escape charactersin
strings are not currently available.

The component-by-component array operations (and, or, Xor,
not, and relational and equality tests) are not implemented.

There are no record or array aggregates.
Dispatching subprogram calls are not implemented.

The overloading algorithm is much more limited (that isless
selective) than that of real Ada. It makes only limited use of the
context in which a subexpression appearsto resolve its meaning,
and it ismuch looser initsrules for allowing type matches. As
aresult, some function calls will be ambiguous, and the user
will be asked to choose the proper resolution.

The operator new is not implemented.

94

Additions to Ada

Entry calls are not implemented.

Aside from printing, arithmetic operations on the native VAX
floating-point formats are not supported.

9.4.2. Additionsto Ada

Asit doesfor other languages, the debugger makes certain generic
extensions to Ada: the operators“@, “: : ”, and { type} addr
convenience variables and machine registers.

Inaddition, it provides afew other shortcuts and outright additions
specific to Ada:

The assignment statement is allowed as an expression, returning
its right-hand operand asits value. Thus, you may enter

set x 1=y +3

print A(tnp

=y + 1)

Thesemicolonisalowed asan “operator”, returning asitsvalue
the value of its right-hand operand. This allows, for example,
complex conditional breaks:

break f
condition 1

(report(i); k +=1; A(k) > 100)

Rather than use catenation and symbolic character names to
introduce special charactersinto strings, one may instead use a
special bracket notation, which is also used to print strings. A
sequence of characters of the form “[" XX"]” within astring or
character literal denotes the (single) character whose numeric
encoding is XX in hexadecimal. The sequence of characters
“["""]" also denotes a single quotation mark in strings. For
example,

“"One line.["0a"]Next line.["0a"]"

95

Chapter 9. Using the Debugger with Different Languages

Contains an ASCII newline character
(Ada.Characters.Latin_1.LF) after each period.

» The subtype used as a prefix for the attributes 'Pos, 'Min, and
'‘Max is optional (and isignored in any case). For example, it is
legal to write

print 'max(x, y)

» When printing arrays, the debugger uses positional notation
when the array has alower bound of 1, and uses a modified
named notation otherwise. For example, aone-dimensional array
of three integers with alower bound of 3 might print as

(3 => 10, 17, 1)

That is, in contrast to valid Ada, only the first component has a
=> clause.

* You may abbreviate attributes in expressions with any unique,
multi-character subsequence of their names (an exact match gets
preference). For example, you may usea' l en,a' gth,ora'lhin
placeof a' | engt h.

» SinceAdais case-insensitive, the debugger normally maps
identifiersyou typeto lower case. The compiler uses upper-case
charactersfor some of itsinterna identifiers, which are normally
of nointerest to users. For the rare occasions when you actually
have to look at them, enclose them in angle bracketsto avoid
the lower-case mapping. For example,

(gdb) print <JMPBUF SAVE>[(]

9.4.3. Stopping at the Beginning

The main procedure in Ada has no fixed name, and attempts to
break on mai n will position you before elaboration. Therefore, Ada

96

Breaking on Ada Exceptions

mode provides aconvenient way to begin execution of the program
and to stop at the beginning.

begin
Does the equivalent of setting a temporary breakpoint at the
beginning of the main procedure and then performing r un.
Sincein general thereis package elaboration code that runs
before the main procedure begins, it is possible that the program
will stop before reaching the main procedure. However, the
temporary breakpoint will remain to halt execution.

9.4.4. Breaking on Ada Exceptions

In Adamode, you can set breakpoints that trip when your program
raises selected exceptions.

info exceptions, info exceptions regexp
Theinfo excepti ons command permits the user to examine
all defined exceptions within Ada programs. With aregular
expression, regexp, as argument, prints out only those
exceptions whose name matches regexp.

9.4.5. Extensions for Ada Tasks

Support for Adatasksis analogousto that for threads. When in
Adamode (that is, when the "current language” isAda), the
debugger alows the following task-related commands:

info tasks

This command shows alist of current Adatasks, asin the
following example:

97

Chapter 9. Using the Debugger with Different Languages

Example 9.1. Output from info tasks

(gdb) info tasks

TCB Task Task Base Actv (n Ready Wakeup Tinme Deadl i ne
Addr ess ld State Prio Prio Hold Count (seconds) (seconds)
R o LT S o
*00010778 1 Runni ng 0 0 0 3 0. 000000 0. 000000
000107ba 2 At _Barrier 1 1 0 1 0. 000000 0. 000000
00010ffa 3 Del ayed 10 10 0 24 2.402170 0. 000000
0001183a 4 Del ayed 10 10 0 24 2.402170 0. 000000
R o LT S o

In thislisting, the asterisk before the first task indicates it to
be the currently running task.

info queues
This command lists any tasks that are queued in the ready
gueue, the delay queue and the deadline queue.

Example 9.2. Output from info queues

(gdb) info queues

The ready queue is enpty

Del ay queue: 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
The deadline queue is enpty

9.4.6. Debugging Generic Units

The compiler always uses code expansion for generic instantiation.
Thismeansthat each time an instantiation occurs, acomplete copy
of the original code is made with appropriate substitutions.

Itisnot possibleto refer to the original generic entities themselves
in the debugger (there is no code to refer to), but it is certainly
possibleto debug a particular instance of ageneric, smply by using
the appropriate expanded names. For example, supposethat Gen is
ageneric package:

- In file gen.ads:
generic package CGen is

98

Debugging Generic Units

function F (vl : in out INTEGER) return | NTEGER;
end Gen;

-- In file gen.adb:
package body Gen is
function F (vl : in out INTEGER) return INTEGER is

begi n
vl :=vl + 1;
return vi,; -- Line 5
end F;
end Gen;

and we have the following expansions:

procedure Gis
package Genl is new Gen;
package Gen2 is new Gen;
begin
Genl. F;
Gen2. F;
Genl. F;
Gen2. F;
end;

Then to break on acall to procedure F in the Gen2 instance, simply
use the command:

break G Gen2.F

To break at aparticular line in a particular generic instance, say
the return statement in G Gen2, append the line specification to the
file and function name:

break gen.adb: G Gen2.F. 5

To break on thislinelinein all instances of Gen, use *' asthe
function name;

break gen.adb:*:5

99

Chapter 9. Using the Debugger with Different Languages

Thiswill set individual breakpoints at all instances; they are
independent of each other and you may remove, conditionalize, or
otherwise modify them individually.

When a breakpoint occurs, you can step through the code of the
generic instance in the normal manner. You can also examine
values of datain the normal manner, providing the appropriate
generic package qualification to refer to non-local entities.

9.4.7. Set commands for Ada

Ada introduces one new set command.
set varsize-limit size

Limit the size of the types of objects when those sizes are
computed from run-time quantities to size bytes. When thisis
set to 0, thereis no limit. By default, it is about 65K.

show var size-limit

Show the limit on types whose size is determined by run-time
guantities.

9.4.8. Known Peculiarities of Ada Mode

Besides the omissions listed previously (see Section 9.4.1,
“Omissions from Ada’ [94]), we know of several problems with
and limitations of Ada mode in the debugger, some of which will
be fixed with planned future rel eases of the debugger and the Ada
compiler.

* Currently, the debugger hasinsufficient information to determine
whether certain pointers represent pointers to objects or the
obj ects themselves. Thus, the user may have to tack an extra.all
after an expression to get it printed properly.

 Static constants that the compiler chooses not to materialize as
objectsin storage are invisible to the debugger.

100

Known Peculiarities of Ada Mode

Renaming declarations are invisible to the debugger.

Named parameter associations in function argument lists are
ignored (the argument lists are treated as positional).

Many useful library packages are currently invisible to the
debugger.

Fixed-point arithmetic, conversions, input, and output is carried
out using floating-point arithmetic, and may give results that
only approximate those on the host machine.

The type of the 'Address attribute may not be System.Address.

When stopped in a particular subprogram, you can access
variables defined in other, lexically enclosing subprograms by
their simple names. At the moment, however, this may not
always work; it depends on whether the compiler happensto
have made the necessary information (the "static link") available
at execution time, which it can sometimes avoid. Of course, even
in those cases where the compiler does not provide the
information, you can still look at such variables by issuing the
appropriate number of up commands to get to frame containing
the variable you wish to see. Access to non-local variables does
not, at the moment, work in the test expressions for conditional
breakpoints unless you happen to specify these while stopped
in the subprogram in which they are to be applied.

101

102

Chapter 10 Examining the Symbol
Table

The commands described in this section alow you to inquire about
the symbols (names of variables, functions and types) defined in
your program. Thisinformation is inherent in the text of your
program and does not change as your program executes. The
debugger findsit in your program's symbol table, in thefile
indicated when you started the debugger (see Section 2.1.1,
“Choosing Files’ [8]), or by one of the file-management
commands (see Section 12.1, “ Commandsto Specify Files’ [115]).

Occasionaly, you may need to refer to symbol sthat contain unusual
characters, which the debugger ordinarily treats asword delimiters.
The most frequent caseisin referring to static variables in other
sourcefiles (see Section 8.2, “Program Variables’ [61]). File names
arerecorded in object files as debugging symbols, but the debugger
would ordinarily parse atypical file name, likef oo. ¢, asthe three
words “foo” “.” “c”. To alow the debugger to recognize “f 0o. ¢”
asasingle symbol, enclose it in single quotes; for example,

p 'foo.c'::x

103

Chapter 10. Examining the Symbol Table

looks up the value of x in the scope of thefilef oo. c.

info address synbol

Describe where the datafor synbol is stored. For aregister
variable, thissayswhich register itiskept in. For anon-register
local variable, this prints the stack-frame offset at which the
variable is always stored.

Note the contrast with print & synbol , which does not work
at all for aregister variable, and for astack local variable prints
the exact address of the current instantiation of the variable.

whatisexp

Print the data type of expression exp. exp is not actually
evaluated, and any side-effecting operations (such as
assignments or function calls) inside it do not take place. See
Section 8.1, “Expressions’ [60].

whatis

Print the data type of $, the last value in the value history.

ptypetypenane

Print adescription of datatypet ypenane. t ypenane may bethe
name of atype, or for C code it may have the form class

cl ass-nane, struct struct -t ag, union uni on-tag or enum
enum t ag.

ptypeexp , ptype

Print a description of the type of expression exp. ptype differs
from whatis by printing a detailed description, instead of just
the name of the type.

For example, for this variable declaration:

struct conplex {double real; double img;} v;

the two commands give this output:

104

(gdb) whatis v
type = struct conplex
(gdb) ptype v
type = struct conplex {
doubl e real;
doubl e i mag;

Aswithwhatis, using ptype without an argument refersto the
type of $, the last value in the value history.

info typesregexp , infotypes

Print a brief description of al types whose name matches
regexp (or al typesin your program, if you supply no
argument). Each complete typename is matched as though it
were acomplete ling; thus, i type value givesinformation on
al typesinyour program whose nameincludesthe string value,
but i type *value$ gives information only on types whose
complete nameisvalue.

This command differs from ptype in two ways. first, like
whatis, it does not print a detailed description; second, it lists
all source fileswhere atype is defined.

info source

Show the name of the current source file—that is, the source
file for the function containing the current point of
execution—and the language it was writtenin.

info sources

Print the names of all source filesin your program for which
there is debugging information, organized into two lists: files
whose symbols have already been read, and files whose
symbols will be read when needed.

info functions

Print the names and data types of all defined functions.

105

Chapter 10. Examining the Symbol Table

info functionsregexp
Print the names and data types of all defined functions whose
names contain a match for regular expression r egexp. Thus,
info fun step finds all functions whose names include step;
info fun " step finds those whose names start with step.

info variables

Print the names and datatypes of all variablesthat are declared
outside of functions (i.e., excluding local variables).

info variablesregexp
Print the names and datatypes of all variables (except for local
variables) whose names contain amatch for regular expression
r egexp.

Some systems allow individual object files that make up your
program to be replaced without stopping and restarting your
program. If you are running on one of these systems, you can
allow the debugger to rel oad the symbols for automatically
relinked modules:

set symbol-reloading on

Replace symbol definitions for the corresponding source
filewhen an object filewith aparticular nameis seen again.

set symbol-reloading off
Do not replace symbol definitions when re-encountering
object files of the same name. This is the default state; if
you are not running on asystem that permits automatically
relinking modules, you should leave symbol-reloading
off, since otherwise the debugger may discard symbols
when linking large programs, that may contain several
modules (from different directories or libraries) with the
same name.

show symbol-reloading

Show the current on or off setting.

106

maint print symbolsfil ename , maint print psymbolsfil enane
, maint print msymbolsfil enane

Write adump of debugging symbol datainto thefilefi | enane.
These commands are used to debug the the debugger
symbol-reading code. Only symbols with debugging data are
included. If you use maint print symbols, the debugger
includesall the symbolsfor which it has aready collected full
details: that is, i | enane reflects symbols for only those files
whose symbols the debugger has read. You can use the
command info sour cesto find out which filesthese are. If you
use maint print psymbolsinstead, the dump shows
information about symbols that the debugger only knows
partially — that is, symbols defined in files that the debugger
has skimmed, but not yet read completely. Finally, maint print
msymbolsdumpsjust the minimal symbol information required
for each object file from which the debugger has read some
symbols. See Section 12.1, “ Commandsto Specify Files’ [115],
for adiscussion of how the debugger reads symbols (in the
description of symbol-file).

107

108

Chapter 11 AI terl ng EXGCUtI on

Once you think you have found an error in your program, you
might want to find out for certain whether correcting the apparent
error would lead to correct resultsin the rest of the run. You can
find the answer by experiment, using the debugger features for
altering execution of the program.

For example, you can store new values into variables or memory
locations, restart your program at adifferent address, or evenreturn
prematurely from a function.

11.1. Assignment to Variables

To ater thevalue of avariable, evaluate an assignment expression.
See Section 8.1, “Expressions’ [60]. For example,

print x := 4

109

Chapter 11. Altering Execution

stores the value 4 into the variable x, and then prints the value of
the assignment expression (which is 4). See Chapter 9, Using the
Debugger with Different Languages [85], for more information on
operators in supported languages.

If you are not interested in seeing the value of the assignment, use
the set command instead of the print command. set isreally the
same as print except that the expression’'s value is not printed and
isnot put in the value history (see Section 8.8, “Vaue

History” [78]). The expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears
identical to a set subcommand, use the set variable command
instead of just set. This command isidentical to set except for its
lack of subcommands. For example, if your program hasavariable
width, you get an error if you try to set a new value with just set
width=13, because the debugger has the command set width:

(gdb) whatis width
type = doubl e
(gdb) p width

$4 = 13
(gdb) set

wi dt h=47

Invalid syntax in expression.

Theinvalid expression, of course, is=47. In order to actually set
the program's variable width, use

(gdb) set

var width := 47

The debugger allows more implicit conversions in assignments
than C; you can freely store an integer valueinto apointer variable
or vice versa, and you can convert any structure to any other
structure that is the same length or shorter.

To store valuesinto arbitrary placesin memory, use the{...}
construct to generate aval ue of specified type at aspecified address
(see Section 8.1, “Expressions’ [60]). For example, {int} 0x83040
refers to memory location 0x83040 as an integer (which impliesa
certain size and representation in memory), and

110

Continuing at a Different Address

set {int}0x83040 = 4

stores the value 4 into that memory location.

11.2. Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place
where it stopped, with the continue command. You can instead
continue at an address of your own choosing, with the following
commands:

jump li nespec

Resume execution at linel i nespec. Execution stops again
immediately if there is a breakpoint there. See Section 7.1,
“Printing Source Lines’ [51], for adescription of the different
forms of | i nespec.

Thejump command does not change the current stack frame,
or the stack pointer, or the contents of any memory location
or any register other than the program counter. If linel i nespec
isin adifferent function from the one currently executing, the
results may be bizarre if the two functions expect different
patterns of arguments or of local variables. For thisreason, the
jump command requests confirmation if the specified lineis
not in the function currently executing. However, even bizarre
results are predictable if you are well acquainted with the
machine-language code of your program.

jump *addr ess
Resume execution at the instruction at address addr ess.

You can get much the same effect asthe jump command by storing
anew valueinto the register $pc. The difference isthat this does
not start your program running; it only changes the address of
where it will run when you continue. For example,

set $pc = 0x485

111

Chapter 11. Altering Execution

makes the next continue command or stepping command execute
at address 0x485, rather than at the address where your program
stopped. See Section 5.2, “Continuing and Stepping” [38].

The most common occasion to use the jump command is to back
up, perhaps with more breakpoints set-over a portion of aprogram
that has already executed, in order to examineits execution in more
detail.

11.3. Returning from a Function

return, return expression

You can cancel execution of afunction call with thereturn
command. If you give an expr essi on argument, itsvalueis
used as the function's return value.

When you use return, the debugger discards the selected stack
frame (and all frameswithin it). You can think of this as making
the discarded frame return prematurely. If you wish to specify a
value to be returned, give that value as the argument to return.

This pops the selected stack frame (see Section 6.3, “ Selecting a
Frame” [46]), and any other framesinside of it, leaving its caller
as the innermost remaining frame. That frame becomes sel ected.
The specified value is stored in the registers used for returning
values of functions.

The return command does not resume execution; it leaves the
program stopped in the state that would exist if the function had
just returned. In contrast, the finish command (see Section 5.2,
“Continuing and Stepping” [38]) resumes execution until the
selected stack frame returns naturally.

11.4. Calling Program Functions

call expr
Evaluate the expression expr without displaying void returned
values.

112

Patching Programs

You can use this variant of the print command if you want to
execute a function from your program, but without cluttering the
output with void returned values. If the result is not void, itis
printed and saved in the value history.

A new user-controlled variable, cal | _scrat ch_address, specifies
the location of a scratch areato be used when the debugger calls
afunctioninthetarget. Thisisnecessary because the usual method
of putting the scratch area on the stack does not work in systems
that have separate instruction and data spaces.

11.5. Patching Programs

By default, the debugger opens the file containing your program's
executable code read-only. This prevents accidental alterations to
machine code; but it al so prevents you from intentionally patching
your program's binary.

If you'd like to be able to patch the binary, you can specify that
explicitly with the set write command. For example, you might
want to turn on internal debugging flags, or even to make
emergency repairs.

set writeon, set write off

If you specify set write on, the debugger opens executable
filesfor both reading and writing; if you specify set write off
(the default), the debugger opens them read-only.

If you have aready loaded afile, you must load it again (using
the exec-file command) after changing set write, for your new
setting to take effect.

show write

Display whether executablefilesare opened for writing aswell
asreading.

113

114

Chapter 12 The Debugger Files

The debugger needs to know the file name of the program to be
debugged, both in order to read its symbol table and in order to
start your program.

12.1. Commands to Soecify Files

The usual way to specify an executable file name is with the
command argument given when you start the debugger, (see
Chapter 2, Getting In and Out of the Debugger [7]).

Occasionally it is necessary to changeto adifferent file during the
debugger session. Or you may run the debugger and forget to
specify afile you want to use. In these situations the debugger
commands to specify new files are useful.

filefil enane

Usefil ename asthe program to be debugged. It isread for its
symbols and for the contents of pure memory. It isaso the

115

Chapter 12. The Debugger Files

program executed when you use the run command. If you do
not specify adirectory and thefileisnot found in the debugger
working directory, the debugger usesthe environment variable
PATH asalist of directoriesto search, just as the shell does
when looking for a program to run. You can change the value
of thisvariable, for both the debugger and your program, using
the path command.

On systems with memory-mapped files, an auxiliary file

fil ename.syms may hold symbol table information for
filenane. If so, the debugger mapsin the symbol table from
fil ename.syms, starting up more quickly. See the descriptions
of the file options -mapped and -readnow (available on the
command line, and with the commands file, symbol-file, or
add-symbol-file, described below), for more information.

file
file with no argument makes the debugger discard any
information it has on both executabl e file and the symbol table.

exec-file[filenane]

Specify that the program to be run (but not the symbol table)

isfoundinfil enane. The debugger searches the environment
variable PATH if necessary to locate your program. Omitting
fil ename meansto discard information on the executablefile.

symbol-file[fil enane]

Read symbol table information from filefil enane. PATH is
searched when necessary. Use the file command to get both
symbol table and program to run from the samefile.

symbol-file with no argument clears out the debugger
information on your program's symbol table.

The symbol-file command causes the debugger to forget the
contents of its convenience variables, the value history, and
al breakpoints and auto-display expressions. Thisis because
they may contain pointersto theinternal datarecording symbols
and data types, which are part of the old symbol table data
being discarded inside the debugger.

116

Commands to Specify Files

symbol-file does not repeat if you press Enter again after
executing it once.

On some kinds of object files, the symbol-file command does
not normally read the symbol table in full right away. Instead,
it scansthe symbol table quickly to find which sourcefilesand
which symbols are present. The details are read | ater, one
source file at atime, as they are needed.

The purpose of this two-stage reading strategy is to make the
debugger start up faster. For the most part, itisinvisible except
for occasional pauses while the symbol table details for a
particular sourcefileare being read. (The set ver bose command
can turn these pausesinto messagesif desired. See Section 14.6,
“Optiona Warnings and Messages’ [130].)

We have not implemented the two-stage strategy for COFF
yet. When the symbol table is stored in COFF format,
symbol-file reads the symbol table datain full right away.

symbol-filefil enane [-readnow] [-mapped], filefilename [
-readnow | [-mapped]

You can override the debugger two-stage strategy for reading
symbol tables by using the -readnow option with any of the
commands that load symbol table information, if you want to
be sure the debugger has the entire symbol table available.

load fil ename

Thefileisloaded at whatever address is specified in the
executable. For some object file formats, you can specify the
load address when you link the program; for other formats,
like a.out, the object file format specifies a fixed address.

If you are using the simulator, then the program will be
automatically loaded into the simualtor when you enter the
run command. If you have sel ected the remotetarget, then you
may use the load command to download the program. Note
that the debugger may be used with a program that is already
loaded.

117

Chapter 12. The Debugger Files

load does not repeat if you press Enter again after using it.
section sect addr

The section command changesthe base address of section sect
of the exec fileto addr . This can be used if the exec file does
not contain section addresses, (such asin the a.out format), or
when the addresses specified in thefileitself are wrong. Each
section must be changed separately. The info files command
lists all the sections and their addresses.

infofiles, infotarget

info files and info tar get are synonymous; both print the
current target (see Chapter 13, Specifying a Debugging
Target [121]), including the name of the executablefile currently
in use by the debugger, and the files from which symbolswere
loaded. The command help target lists all possible targets
rather than current ones.

All file-specifying commands allow both absolute and relativefile
names as arguments. The debugger always converts the file name
to an absolute file name and remembers it that way.

12.2. Errors Reading Symbol Files

Whilereading asymbol file, the debugger occasionally encounters
problems, such as symboal typesit does not recognize, or known
bugsin compiler output. By default, the debugger does not notify
you of such problems, since they are relatively common and
primarily of interest to people debugging compilers. If you are
interested in seeing information about ill-constructed symbol tables,
you can either ask the debugger to print only one message about
each such type of problem, no matter how many timesthe problem
occurs; or you can ask the debugger to print more messages, to see
how many times the problems occur, with the set complaints
command (see Section 14.6, “ Optional Warnings and

Messages’ [130]).

The messages currently printed, and their meanings, include:

118

Errors Reading Symbol Files

i nner bl ock not inside outer block in synbo
The symbol information shows where symbol scopes begin
and end (such as at the start of afunction or ablock of
statements). This error indicates that an inner scope block is
not fully contained in its outer scope blocks.

The debugger circumvents the problem by treating the inner
block asif it had the same scope as the outer block. In the error
message, symbol may be shown as “(don't know)” if the outer
block is not afunction.

bl ock at address out of order
The symbol information for symbol scope blocks should occur
in order of increasing addresses. This error indicates that it
does not do so.

The debugger does not circumvent this problem, and has
trouble locating symbolsin the source file whose symbols it
isreading. (You can often determine which sourcefileis
affected by specifying set verbose on. See Section 14.6,
“Optional Warnings and Messages’ [130])

bad bl ock start address patched
The symbol information for a symbol scope block has a start
address smaller than the address of the preceding source line.
Thisis known to occur in the SunOS 4.1.1 (and earlier) C
compiler.

The debugger circumventsthe problem by treating the symbol
scope block as starting on the previous source line.

bad string table offset in synbol n

Symbol number n contains apointer into the string table which
islarger than the size of the string table.

The debugger circumvents the problem by considering the
symbol to have the namefoo, which may cause other problems
if many symbols end up with this name.

119

Chapter 12. The Debugger Files

unknown symbol type Oxnn
The symbol information contains new data types that the
debugger does not yet know how to read. Oxnn is the symbol
type of the misunderstood information, in hexadecimal .

stub type has NULL name
The debugger could not find the full definition for a struct or
class.

const/vol atile indicator mssing (ok if using g++ v1.x),
got. ..
The symbol information for a C++ member functionismissing
some information that recent versions of the compiler should
have output for it.

info msmatch between conpiler and debugger
The debugger could not parse a type specification output by
the compiler.

120

Chapter 13

Soecifying a Debugging
Target

A target is the execution environment occupied by your program.
You can usethetarget command to specify one of the target types
configured for the debugger (see Section 13.2, “Commands for
Managing Targets’ [122]).

13.1. Active Targets

When you typerun, your executabl e file becomes an active process
target as well. When a process target is active, al the debugger
commands requesting memory addresses refer to that target;
addressesin an executablefiletarget are obscured while the process
target is active.

Use the exec-file command to select a new executable target (see
Section 12.1, “Commands to Specify Files’ [115]).

121

Chapter 13. Specifying a Debugging Target

13.2. Commands for Managing Targets

target type paraneters
Connects the debugger host environment to atarget machine.

Thetarget command does not repeat if you press Enter again
after executing the command.

help target

Displays the names of all targets available. To display targets
currently selected, use either info target or info files (see
Section 12.1, “Commands to Specify Files’ [115]).

help target nane
Describeaparticular target, including any parameters necessary
to select it.

set gnutarget ar gs

The debugger usesitsown library BFD to read your files. The
debugger knows whether it is reading an executable, a core,
or a.o file, however you can specify the file format with the
set gnutar get command. Unlike most target commands, with
gnutar get the tar get refersto a program, not a machine.

Note To specify afile format with set gnutarget, you
must know the actual BFD name. See Section 12.1,
“Commands to Specify Files’ [115].

show gnutar get

Use the show gnutar get command to display what file format
gnutarget is set to read. If you have not set gnutarget, the
debugger will determine the file format for each file
automatically and show gnutarget displays the following

message:

The current BFD target is "auto".

122

Remote Debugging

Here are some common targets (available, or not, depending on
the debugger configuration):

target remote dev

Remote serial target in the debugger-specific protocol. The
argument dev specifies what serial deviceto use for the
connection (e.g. / dev/ t t ya). See Section 13.3, “Remote
Debugging” [123]. target remote now supports the load
command. Thisisonly useful if you have some other way of
getting the debug monitor to the target system, and you can
put it somewhere in memory where it won't get clobbered by
the download.

target sm
Thisisthetarget CPU simulator.
target remote

A target computer connected to the host computer by a serial
interface.

13.3. Remote Debugging

If you are trying to debug a program running on a machine that
cannot run the debugger in the usual way, it is often useful to use
remote debugging. For example, you might use remote debugging
on an operating system kernel, or on a small system which does
not have a general-purpose operating system powerful enough to
run afull-featured debugger.

Some configurations of the debugger have specia serial or TCP/IP
interfaces to make this work with particular debugging targets. In
addition, the debugger comeswith ageneric seria protocol (specific
to the debugger, but not specific to any particular target system)
which you can use if you write the remote stubs—the code that
runs on the remote system to communicate with the debugger.

Other remote targets may be availablein your configuration of the
debugger; use help target to list them.

123

124

Controlling the Debugger

Chapter 14
You can alter the way the debugger interactswith you by using the
set command. For commands controlling how the debugger displays
data, see Section 8.7, “Print Settings’ [71]; other settings are
described here.

14.1. Prompt

The debugger indicatesits readinessto read acommand by printing
astring called the prompt. This string is nhormally “(gdb)”. You
can change the prompt string with the set prompt command.

set prompt newpr onpt

Directs the debugger to use newpr onpt as its prompt string
henceforth.

show prompt

Prints aline of the form: “Gdb' s pronpt is: your-pronpt”

125

Chapter 14. Controlling the Debugger

14.2. Command Editing

The debugger reads itsinput commands viathe readline interface.
ThisGNU library provides consistent behavior for programswhich
provideacommand lineinterfaceto the user. Advantages are GNU
Emacs-style or vi-styleinline editing of commands, csh-like history
substitution, and a storage and recall of command history across
debugging sessions.

You may control the behavior of command line editing in the
debugger with the command set.

set editing, set editing on
Enable command line editing (enabled by default).

set editing off
Disable command line editing.

show editing

Show whether command line editing is enabled.

14.3. Command History

The debugger can keep track of the commands you type during
your debugging sessions, so that you can be certain of precisely
what happened. Use these commands to manage the debugger
command history facility.

set history filename f name

Set the name of the debugger command history file to f nane.
Thisisthe file where the debugger reads an initial command
history list, and whereit writesthe command history from this
session when it exits. You can access this list through history
expansion or through the history command editing characters
listed below. Thisfile defaults to the value of the environment
variable GDBHISTFILE, orto. /. gdb_hi story if thisvariable
isnot set.

126

Command History

set history save, set history saveon

Record command history in afile, whose name may be
specified with the set history filename command. By default,
this option is disabled.

set history save off
Stop recording command history in afile.

set history sizesize

Set the number of commands which the debugger keepsinits
history list. This defaults to the value of the environment
variable HISTSIZE, or to 256 if this variableis not set.

History expansion assigns special meaning to the character !.

Since! isalso thelogical not operator in C, history expansionis
off by default. If you decide to enable history expansion with the
set history expansion on command, you may sometimes need to
follow ! (whenitisused aslogical not, in an expression) with a
space or atab to prevent it from being expanded. The readline
history facilities do not attempt substitution on the strings != and
I(, even when history expansion is enabled.

The commands to control history expansion are:
set history expansion on, set history expansion
Enable history expansion. History expansion is off by default.

set history expansion off
Disable history expansion.

The readline code comes with more compl ete documentation
of editing and history expansion features. Users unfamiliar
with Emacs or vi may wish to read it.

show history , show history filename, show history save,
show history size, show history expansion

These commands display the state of the debugger history
parameters. show history by itself displaysall four states.

127

Chapter 14. Controlling the Debugger

show commands
Display the last ten commands in the command history.

show commandsn
Print ten commands centered on command number n.

show commands +
Print ten commands just after the commands last printed.

14.4. Screen Sze

Certain commands to the debugger may produce large amounts of
information output to the screen. To help you read al of it, the
debugger pauses and asks you for input at the end of each page of
output. Type RET when you want to continue the output, or g to
discard the remaining output. Also, the screen width setting
determines when to wrap lines of output. Depending on what is
being printed, the debugger tries to break the line at a readable
place, rather than simply letting it overflow onto thefollowing line.

Normally the debugger knows the size of the screen from the
termcap database together with the value of the Term environment
variable and the stty rows and stty cols settings. If thisis not
correct, you can override it with the set height and set width
commands:

set height Ipp , show height , set width cpl , show width

These set commands specify a screen height of Ipp lines and
a screen width of cpl characters. The associated show
commands display the current settings.

If you specify a height of zero lines, the debugger does not
pause during output no matter how long the output is. Thisis
useful if output isto afile or to an editor buffer.

Likewise, you can specify set width 0 to prevent the debugger
from wrapping its output.

128

Numbers

14.5. Numbers

You can aways enter numbersin octal, decimal, or hexadecimal
in the debugger by the usual conventions: octal numbers begin with
0, decimal numbers end with ., and hexadecimal numbers begin
with Ox. Numbers that begin with none of these are, by default,
entered in base 10; likewise, the default display for numbers—when
no particular format is specified—is base 10. You can change the
default base for both input and output with the set radix command.

set input-radix base

Set the default base for numeric input. Supported choices for
base are decimal 8, 10, or 16. base must itself be specified
either unambiguously or using the current default radix; for
example, any of

set radix 012
set radix 10.
set radi x Oxa

setsthe baseto decimal . On the other hand, set radix 10 |eaves
the radix unchanged no matter what it was.

set output-radix base

Set the default base for numeric display. Supported choices
for base are decimal 8, 10, or 16. base must itself be specified
either unambiguously or using the current default radix.

show input-radix
Display the current default base for numeric input.
show output-radix

Display the current default base for numeric display.

129

Chapter 14. Controlling the Debugger

14.6. Optional Warnings and Messages

By default, the debugger is silent about itsinner workings. If you
are running on a slow machine, you may want to use the set

ver bose command. This makes the debugger tell you when it does
alengthy internal operation, so you will not think it has crashed.

Currently, the messages controlled by set ver bose are those that
announce that the symbol table for a sourcefileis being read; see
symbol-filein Section 12.1, “Commands to Specify Files’ [115].

set verbose on
Enablesthe debugger output of certain informational messages.

set ver bose off
Disablesthe debugger output of certain informational messages.

show verbose
Displays whether set verbose ison or off.

By default, if the debugger encounters bugsin the symbol table of
an abject file, itissilent; but if you are debugging a compiler, you
may find thisinformation useful (see Section 12.2, “Errors Reading
Symbol Files’ [118]).

set complaints limit

Permits the debugger to output limit complaints about each
type of unusual symbols before becoming silent about the
problem. Set limit to zero to suppress all complaints; set it to
alarge number to prevent complaints from being suppressed.

show complaints

Displays how many symbol complaints the debugger is
permitted to produce.

By default, the debugger is cautious, and asks what sometimes
seemsto bealot of stupid questionsto confirm certain commands.
For example, if you try to run aprogram which isalready running:

130

Optional Warnings and Messages

(gdb) run
The program bei ng debugged has been started al ready.
Start it fromthe beginning? (y or n)

If you are willing to unflinchingly face the consequences of your
own commands, you can disable this “feature”:

set confirm off
Disables confirmation requests.

set confirm on
Enables confirmation requests (the default).

show confirm

Displays state of confirmation requests.

131

132

Chapter 15 Canned %quences Of
Commands

Aside from breakpoint commands (see Section 5.1.6, “ Breakpoint
Command Lists’ [35], the debugger provides two ways to store
sequences of commands for execution as a unit: user-defined
commands and command files.

15.1. User-Defined Commands

A user-defined command is asequence of the debugger commands
to which you assign a new name as acommand. Thisis done with
the define command. User commands may accept up to 10
arguments separated by whitespace. Arguments are accessed within
the user command via $arg0...$arg9. A trivial example:

define adder
print $arg0 + $argl + $arg2

To execute the command use;

133

Chapter 15. Canned Sequences of Commands

adder 1 2 3

This definesthe command adder , which printsthe sum of itsthree
arguments. Note the arguments are text substitutions, so they may
reference variables, use complex expressions, or even perform
inferior functions calls.

define commandname

Define a command named commandname. If there is already
acommand by that name, you are asked to confirm that you
want to redefine it.

The definition of the command is made up of other the
debugger command lines, which are given following the define
command. The end of these commandsis marked by aline
containing end.

Takes a single argument, which is an expression to evaluate.
Itisfollowed by a series of commands that are executed only
if the expression is true (nonzero). There can then optionally
be aline else, followed by a series of commands that are only
executed if the expression was false. The end of thelistis
marked by aline containing end.

while

The syntax is similar to if: the command takes asingle
argument, which is an expression to evaluate, and must be
followed by the commandsto execute, one per line, terminated
by an end. The commands are executed repeatedly as long as
the expression evaluates to true.

document comandnane

Document the user-defined command commandnane, so that it
can be accessed by help. The command conmandnanme must
already be defined. This command reads lines of documentation
just asdefine readsthelines of the command definition, ending

134

User-Defined Command Hooks

with end. After the document command is finished, help on
command conmandnare displays the documentation you have
written.

You may use the document command again to change the
documentation of a command. Redefining the command with
define does not change the documentation.

help user-defined

List al user-defined commands, with the first line of the
documentation (if any) for each.

show user , show user commandnane

Display the debugger commands used to define cormandnane
(but not its documentation). If no comandnane isgiven, display
the definitions for all user-defined commands.

When user-defined commands are executed, the commands of the
definition are not printed. An error in any command stops execution
of the user-defined command.

If used interactively, commands that would ask for confirmation
proceed without asking when used inside a user-defined command.
Many debugger commands that normally print messages to say
what they are doing omit the messages when used in auser-defined
command.

15.2. User-Defined Command Hooks

You may define hooks, which are a special kind of user-defined
command. Whenever you run the command foo, if the user-defined
command hook-foo exists, it isexecuted (with no arguments) before
that command.

In addition, apseudo-command, stop exists. Defining (hook-stop)
makes the associated commands execute every time execution
stops in your program: before breakpoint commands are run,
displays are printed, or the stack frame s printed.

135

Chapter 15. Canned Sequences of Commands

For example, to ignore SIGALRM signals while single-stepping,
but treat them normally during normal execution, you could define:

define hook-stop
handl e SI GALRM nopass
end

define hook-run

handl e SI GALRM pass
end

define hook-continue
handl e SI GLARM pass
end

You can define a hook for any single-word command in the
debugger, but not for command aliases; you should define a hook
for the basic command name, e.g. backtrace rather than bt. If an
error occurs during the execution of your hook, execution of the
debugger commands stops and the debugger i ssues aprompt (before
the command that you actually typed had a chance to run).

If you try to define a hook which does not match any known
command, you get awarning from the define command.

15.3. Command Files

A command file for the debugger is afile of linesthat are the
debugger commands. Comments (lines starting with #) may also
beincluded. An empty linein acommand file does nothing; it does
not mean to repeat thelast command, asit would from theterminal.

When you start the debugger, it automatically executes commands
fromitsinit files. These are files named . gdbi ni t . The debugger
reads the init file (if any) in your home directory, then processes
command line options and operands, and then readsthe init file (if
any) in the current working directory. Thisis so theinit filein your
home directory can set options (such as set complaints) which
affect the processing of the command line options and operands.
Theinit files are not executed if you use the -nx option; see
Section 2.1.2, “Choosing Modes’ [9].

136

Commands for Controlled Output

You can also request the execution of acommand file with the
sour ce command:

sour ce filename
Execute the command file filename.

Thelinesin a command file are executed sequentially. They are
not printed as they are executed. An error in any command
terminates execution of the command file.

Commands that would ask for confirmation if used interactively
proceed without asking when used in a command file. Many
debugger commandsthat normally print messagesto say what they
are doing omit the messages when called from command files.

15.4. Commands for Controlled Output

During the execution of acommand file or auser-defined command,
normal the debugger output is suppressed; the only output that
appearsiswhat is explicitly printed by the commandsin the
definition. This section describes three commands useful for
generating exactly the output you want.

echo text

Print text. Nonprinting characters can beincluded in text using
C escape sequences, such as\n to print anewline. No newline
is printed unless you specify one. In addition to the standard
C escape sequences, a backdash followed by a space stands
for aspace. Thisis useful for displaying a string with spaces
at the beginning or the end, since leading and trailing spaces
are otherwise trimmed from all arguments. To print and foo
=, use the command echo\ and foo =\ .

A backslash at the end of text can be used, asin C, to continue
the command onto subsequent lines. For example,

137

Chapter 15. Canned Sequences of Commands

echo This is some text\n\
whi ch is continued\n\
onto several lines.\n

produces the same output as

echo This is some text\n
echo which is continuedin
echo onto several lines.\n

output expression

Print the value of expression and nothing but that value: no
newlines, no $nn =. The valueis not entered in the value
history either. See Section 8.1, “Expressions’ [60], for more
information on expressions.

output/fmt expression
Print the value of expression in format fmt. You can use the
same formats as for print. See Section 8.4, “ Output
Formats’ [65], for more information.

printf string, expressions...

Print the values of the expressions under the control of string.
The expressions are separated by commas and may be either
numbers or pointers. Their values are printed as specified by
string, exactly asif your program were to execute the C
subroutine

printf (string, expressions...);

For example, you can print two valuesin hex like this:

printf "foo, bar-foo = O0x%, Ox%\n", foo, bar-foo

The only backslash-escape sequences that you can usein the
format string are the ssmple ones that consist of backslash
followed by aletter.

138

Chapter 16 US' ng H | S[Oi’y
Interactively

This chapter describes how to usethe History Library interactively,
from a user's standpoaint.

16.1. History Interaction

The History Library provides a history expansion feature similar
to the history expansion in csh. The following text describes the
syntax you use to manipulate history information.

History expansion takestwo parts. Inthefirst part, determinewhich
line from the previous history will be used for substitution. This
lineis called the event. In the second part, select portions of that
line for inclusion into the current line. These portions are called
words. The debugger breaks the line into words in the same way
that the Bash shell does, so that several English (or UNIX) words
surrounded by quotes are considered one word.

139

Chapter 16. Using History Interactively

16.1.1. Event Designators

An event designator is areference to acommand line entry in the
history list.

Start a history substitution, except when followed by a space,
tab, or the end of theline... = or (.

Refer to the previous command. Thisis asynonym for !-1.

'n
Refer to command line n.

I-n
Refer to the command line n lines back.

Istring
Refer to the most recent command starting with string.

I?string[?]
Refer to the most recent command containing string.

16.1.2. Word Designators

A : separatesthe event designator from the word designator. It can
be omitted if theword designator beginswitha”, $, * or % . Words
are numbered from the beginning of the line, with the first word
being denoted by a 0 (zero).

0 (zero)
The zero'th word. For many applications, thisisthe command
word.

The n'th word.

The first argument. that is, word 1.

140

Modifiers

$
The last argument.

%
The word matched by the most recent ?string? search.

Xy
A range of words; -y Abbreviates 0-y.

All of the words, excepting the zero'th. Thisis a synonym for
1-$. It isnot an error to use * if thereisjust one word in the
event. The empty string is returned in that case.

16.1.3. Modifiers

After the optional word designator, you can add a sequence of one
or more of the following modifiers, each preceded by a:.

#
The entire command line typed so far. This means the current
command, not the previous command.

Remove atrailing pathname component, leaving only the head.

Remove atrailing suffix of the form .suffix, leaving the
basename.

Remove al but the suffix.

Remove all leading pathname components, leaving the tail.

Print the new command but do not execute it.

141

142

| ndex

Symbols

#,14

$, 78

$$, 78

$,81

$_and info breakpoints, 27
$ andinfoline, 57

$,$, andvaue history, 68
$.81

$ exitcode, 81

$bpnum, 24

$cdir, 55

$cwd, 55

.gdbinit, 136

62

@, 63

{type}, 61

A
abbreviation, 13

active targets, 121
Ada, 93
deviations from, 95
exceptions, 97
generic units, 98
omissions from, 94
problems, 100
tasking, 97
Adamode
general, 93
artificial array, 63
assembly instructions, 57
assignment, 109
automatic display, 69
awatch, 30

B

b, 24
backtrace, 45
break, 24

143

Index

breakpoint commands, 35
breakpoint conditions, 33
breakpoint numbers, 24

breakpoint on memory address, 24
breakpoint on variable modification,
24

breakpoints, 24

bt, 45

C
c, 38
C and C++ constants, 92
C++ scope resolution, 62
C++ symbol decoding style, 77
cal, 112
call stack, 43
calling functions, 112
calling make, 11
casts
to view memory, 61
catch exceptions, 49
cdir, 55
clear, 31
clearing
breakpoints, 30
watchpoints, 30
colon-colon, 62
command files, 135, 136
command line editing, 126
commands, 35
comment, 14
compilation directory, 55
complete, 18
completion, 14
completion of quoted strings, 16
condition, 34
conditional breakpoints, 33
confirmation, 131
continue, 38
continuing, 38

convenience variables, 80
current directory, 55
cwd, 55

D
d, 31
debugging optimized code, 21
debugging target, 121
define, 134
delete, 31
delete breakpoints, 31
delete display, 70
deleting
breakpoints, 30
watchpoints, 30
demangling, 76
dir, 55
directories for sourcefiles, 54
directory, 55
directory, compilation, 55
directory, current, 55
dis, 32
disable, 32
disable breakpoints, 31, 32
disable display, 70
disassemble, 57
display, 69
display of expressions, 69
do, 47
document, 134
down, 47
down-silently, 47

E

echo, 137

editing, 126

else 134

enable, 32

enable breakpoints, 31, 32
enable display, 70

144

end, 35

entering numbers, 129
event designators, 140
examining data, 59
examining memory, 66
exception handlers, 49
exec-file, 116
executablefile, 115
exiting the debugger, 10
expansion, 139
expressions, 60
expressionsin Ada, 93

F
f, 46

fg, 38

file, 115
finish, 40
flinching, 131

floating-point registers, 82

foo, 119

format options, 71
formatted output, 65
forward-search, 54
frame, 44, 44, 46
frame number, 44
frame pointer, 44

G
GDBHISTFILE, 126

H
h, 17
hbreak, 26
help, 17
help target, 122
help user-defined, 135
history
expansion, 127
file, 126

save, 127

size, 127

substitution, 126
history number, 78

I

i,18

if, 134

ignore, 35

ignore count (of breakpoint), 34
info, 18

info address, 104
info all-registers, 82
info args, 48

info breakpoints, 27
info catch, 49

info display, 70
infof, 48

info files, 118

info frame, 48, 88
info functions, 105
info line, 56

info locals, 49

info program, 23
info registers, 82
infos, 45

info set, 19

info source, 88, 105
info sources, 105
info stack, 45

info target, 118

info tasks, 97

info types, 105

info variables, 106
info watchpoints, 30
init file, 136

initial frame, 44
innermost frame, 44
inspect, 59
instructions, assembly, 57

145

Index

internal the debugger breskpoints, 28 (O

interrupt, 11

J
jump, 111

L

[, 51

languages, 85

latest breakpoint, 24

leaving the debugger, 10
linespec, 52

list, 51

listing machine instructions, 57
load filename, 117

M

machine instructions, 57
maint info breakpoints, 29
maint print psymbols, 107
maint print symbols, 107
make, 11
mapped, 117
memory

viewing as typed object, 61
memory tracing, 24

memory-mapped symbol file, 117

multiple targets, 121

N

n, 40

names of symbols, 103

negative breakpoint numbers, 28
next, 40

nexti, 42

ni, 42

number representation, 129
numbers for breakpoints, 24

online documentation, 17
optimized code, debugging, 21
outermost frame, 44

output, 138

output formats, 65
overloading, 37

P

partial symbol dump, 107
patching binaries, 113
pauses in output, 128
pointer, finding referent, 73
print, 59

print settings, 71

printf, 138

printing data, 59

prompt, 125

ptype, 104

Q

g, 10

quit [expression], 10
guotes in commands, 16
guoting names, 103

R
rbreak, 27

reading symbolsimmediately, 117

readline, 126

readnow, 117

registers, 82

regular expression, 27
reloading symbols, 106
remote debugging, 123
repeating commands, 14
resuming execution, 38
RET, 14

return, 112

returning from afunction, 112

146

reverse-search, 54
run, 22

running, 22
rwatch, 30

S

s, 39

saving symbol table, 117
search, 54

searching, 54

section, 118

select-frame, 45

selected frame, 43

set, 19

set complaints, 130

set confirm, 131

set demangle-style, 77

set editing, 126

set gnutarget, 122

set height, 128

set history expansion, 127
set history filename, 126
set history save, 127

set history size, 127

set input-radix, 129

set language, 87

set listsize, 52

set output-radix, 129

set print address, 71

set print array, 73

set print asm-demangle, 76
set print demangle, 76

set print elements, 74

set print max-symbolic-offset, 73
set print null-stop, 74

set print object, 77

set print pretty, 74

set print sevenbit-strings, 75
set print static-members, 78
set print symbol-filename, 72

set print union, 75

set print vtbl, 78

Set prompt, 125

set symbol-rel oading, 106
set variable, 110

set varsize-limit, 100

set verbose, 130

set width, 128

set write, 113

setting variables, 109
setting watchpoints, 29
shell, 11

shell escape, 11

show, 19

show commands, 128
show complaints, 130
show confirm, 131

show convenience, 81
show copying, 19

show demangle-style, 77
show directories, 55
show editing, 126

show gnutarget, 122
show height, 128

show history, 127

show input-radix, 129
show language, 88

show listsize, 52

show output-radix, 129
show print address, 72
show print array, 73
show print asm-demangle, 76
show print demangle, 76
show print elements, 74

show print max-symbolic-offset, 73

show print object, 77

show print pretty, 75

show print sevenbit-strings, 75
show print static-members, 78
show print symbol-filename, 72
show print union, 75

147

Index

show print vtbl, 78

show prompt, 125

show symbol-reloading, 106
show user, 135

show values, 79

show varsize-limit, 100
show verbose, 130

show version, 19

show warranty, 20

show width, 128

show write, 113

s, 41

silent, 36

size of screen, 128

source, 137

source path, 54

stack frame, 44

stacking targets, 121
starting, 22

step, 39

stepi, 41

stepping, 38

stupid questions, 131
symbol decoding style, C++, 77
symbol dump, 107

symbol names, 103

symbol overloading, 37
symbol table, 115
symbol-file, 116

symbols, reading immediately, 117

T
target, 121

target remote, 123
target sim, 123

target XGC, 123

tbreak, 26

thbreak, 27

type casting memory, 61

U

u, 40

undisplay, 70

unknown address, locating, 65
until, 40

up, 46

up-silently, 47

user-defined command, 133

V
value history, 78
variable name conflict, 62
variable values
wrong, 62
variables
setting, 110
version number, 19

W

watch, 30

watchpoints, 24

whatis, 104

where, 45

while, 134

wild pointer, interpreting, 73
word completion, 14
working directory, 55
working language, 85
writing into executables, 113
wrong values, 62

X
X, 66

148

