
Debugging Ada
Programs

Using the XGC Ada Debugger

www.xgc.com

Debugging Ada Programs
Using the XGC Ada Debugger

Order Number: XGC-ADA-GDB-040803

XGC Technology

London
UK
Web: <www.xgc.com>

Debugging Ada Programs: Using the XGC Ada Debugger
by Free Software Foundation and XGC Technology

Publication date August 2004
© 1998, 1999, 2000, 2001 XGC Technology
© 1988, 1989, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.

Acknowledgments

This guide is based on documentation distributed by the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.

License

This guide is distributed under the terms of the GNU Public license. Permission is granted to make and distribute verbatim copies of this document
provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified
versions of this document under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this document into another language,
under the above conditions for modified versions.

Contents

About this Guide ix
1 Audience ix
2 Related Documents x
3 Reader's Comments x
4 Documentation Conventions xi

A Sample Debug Session 1Chapter 1

Getting In and Out of the Debugger 7Chapter 2

2.1 Invoking the Debugger 7
2.1.1 Choosing Files 8
2.1.2 Choosing Modes 9

2.2 Quitting the Debugger 10
2.3 Shell Commands 11

Debugger Commands 13Chapter 3

3.1 Command Syntax 13

iii

3.2 Command Completion 14
3.3 Getting Help 17

Running Programs Under the Debugger 21Chapter 4

4.1 Compiling for Debugging 21
4.2 Starting your Program 22

Stopping and Continuing 23Chapter 5

5.1 Breakpoints, Watchpoints, and Exceptions 24
5.1.1 Setting Breakpoints 24
5.1.2 Setting Watchpoints 29
5.1.3 Deleting Breakpoints 30
5.1.4 Disabling Breakpoints 31
5.1.5 Break Conditions 33
5.1.6 Breakpoint Command Lists 35
5.1.7 Breakpoint Menus 37

5.2 Continuing and Stepping 38

Examining the Stack 43Chapter 6

6.1 Stack Frames 44
6.2 Backtraces 45
6.3 Selecting a Frame 46
6.4 Information about a Frame 47

Examining Source Files 51Chapter 7

7.1 Printing Source Lines 51
7.2 Searching Source Files 54
7.3 Specifying Source Directories 54
7.4 Source and Machine Code 56

Examining Data 59Chapter 8

8.1 Expressions 60
8.2 Program Variables 61
8.3 Artificial Arrays 63
8.4 Output Formats 65
8.5 Examining Memory 66
8.6 Automatic Display 69

iv

Debugging Ada Programs

8.7 Print Settings 71
8.8 Value History 78
8.9 Convenience Variables 80
8.10 Registers 82

Using the Debugger with Different Languages 85Chapter 9

9.1 Switching Between Source Languages 85
9.1.1 List of Filename Extensions and
Languages 86
9.1.2 Setting the Working Language 87
9.1.3 Having the Debugger Infer the Source
Language 87

9.2 Displaying the Language 87
9.3 Supported Languages 88

9.3.1 C and C++ operators 89
9.3.2 C and C++ Constants 92

9.4 The Ada Mode 93
9.4.1 Omissions from Ada 94
9.4.2 Additions to Ada 95
9.4.3 Stopping at the Beginning 96
9.4.4 Breaking on Ada Exceptions 97
9.4.5 Extensions for Ada Tasks 97
9.4.6 Debugging Generic Units 98
9.4.7 Set commands for Ada 100
9.4.8 Known Peculiarities of Ada Mode 100

Examining the Symbol Table 103Chapter 10

Altering Execution 109Chapter 11

11.1 Assignment to Variables 109
11.2 Continuing at a Different Address 111
11.3 Returning from a Function 112
11.4 Calling Program Functions 112
11.5 Patching Programs 113

The Debugger Files 115Chapter 12

12.1 Commands to Specify Files 115
12.2 Errors Reading Symbol Files 118

v

Debugging Ada Programs

Specifying a Debugging Target 121Chapter 13

13.1 Active Targets 121
13.2 Commands for Managing Targets 122
13.3 Remote Debugging 123

Controlling the Debugger 125Chapter 14

14.1 Prompt 125
14.2 Command Editing 126
14.3 Command History 126
14.4 Screen Size 128
14.5 Numbers 129
14.6 Optional Warnings and Messages 130

Canned Sequences of Commands 133Chapter 15

15.1 User-Defined Commands 133
15.2 User-Defined Command Hooks 135
15.3 Command Files 136
15.4 Commands for Controlled Output 137

Using History Interactively 139Chapter 16

16.1 History Interaction 139
16.1.1 Event Designators 140
16.1.2 Word Designators 140
16.1.3 Modifiers 141

Index 143

vi

Debugging Ada Programs

Examples
9.1 Output from info tasks 98
9.2 Output from info queues 98

vii

viii

About this Guide

This guide contains detailed target independent information about
the XGC Ada debugger, including all the command line options.
It includes the text of the GNU debugger (GDB) user manual, with
examples for Ada 95.

When using the examples, the parameter prefix should be replaced
with the prefix that is applicable for your product. You will find
this information in the Getting Started manual.

1. Audience

This guide is written for the experienced programmer who is
already familiar with the Ada 95 and C programming languages
and with embedded systems programming in general. We assume
some knowledge of the target computer architecture.

ix

2. Related Documents

Getting Started with XGC Ada describes how to to prepare and run
a simple program, and contains target dependent information that
supplements the other user manuals.

The XGC Ada Reference Manual Supplement contains information
required by the Ada Reference Manual.

The XGC Ada User Guide describes the compiler and Ada utilities.

The XGC Utilities describes the assembler, linker and object code
utilities.

The XGC Libraries documents the library functions available with
all XGC compilers.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments in the following ways:

• Internet electronic mail: readers_comments@xgc.com

Please include the following information along with your
comments:

• The full title of the book and the order number. (The order
number is printed on the title page of this book.)

• The section numbers and page numbers of the information on
which you are commenting.

• The version of the software that you are using.

Technical support enquiries should be directed to the XGC web
site [http://www.xgc.com/] or by email to support@xgc.com/.

x

About this Guide

readers_comments@xgc.com
http://www.xgc.com/
http://www.xgc.com/
http://www.xgc.com/
support@xgc.com/

4. Documentation Conventions

This guide uses the following typographic conventions:

% , $
A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

#

A number sign represents the superuser prompt.

$ vi hello.c

Boldface type in interactive examples indicates typed user
input.

file

Italic or slanted type indicates variable values, place-holders,
and function argument names.

[|], { | }
In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

...
In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated.

cat(1)
A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mb/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

xi

Documentation Conventions

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

xii

About this Guide

A Sample Debug SessionChapter 1

You can use this manual at your leisure to read all about the
debugger. However, a handful of commands are enough to get
started using the debugger. This chapter illustrates those commands.

The benchmark program Whetstone is frequently used to measure
the performance of floating-point operations. We run Whetstone
on the target to compare its performance with other computers.
The workings of Whetstone are a bit of a mystery, but by using the
debugger we can get an insight.

The first step is to compile the Whetstone source with the debug
option switched on. There is no need to compile with minimal
optimization since the debugger is able to cope with most
optimizations.

$ prefix-gcc -g whetstone.adb -o whetstone

Note that prefix should be replaced with the prefix for your
product.

1

The code we wish to look at starts on line 306, just after the array
e1 has been set up. Here is part of the Ada source file showing line
306 and some of the surrounding lines.

300
301 -- Module 2: computations with array elements
302 e1 (1) := 1.0;
303 e1 (2) := -1.0;
304 e1 (3) := -1.0;
305 e1 (4) := -1.0;
306 for i in 1 .. n2 loop
307 e1 (1) := (e1 (1) + e1 (2) + e1 (3) - e1 (4)) * t;
308 e1 (2) := (e1 (1) + e1 (2) - e1 (3) + e1 (4)) * t;

We start the debugger using the following command. You may use
the -q option to suppress the banner:

$ prefix-gdb whetstone
XGC target-ada Version 1.5 (debugger)
Copyright (c) 1996, 2001, XGC Technology.
Based on gdb version 4.17.gnat.3.11
Copyright (c) 1998 Free Software Foundation...
(gdb)

The easiest way to get to line 306 is to set a breakpoint on that line,
then use the run command. Breakpoints are set using the break
command. We can check what breakpoints are set using the info
command.

(gdb) break whetstone.adb:306
Breakpoint 1 at 0xee2: file whetstone.adb, line 306.
(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x00000ee2 in whetstone at whetstone.adb:306
(gdb)

So far we have been working with the exec target. This is the
executable file whetstone cited on the comand line that invoked
the debugger. Using just this file, and no target at all, we can look

2

Chapter 1. A Sample Debug Session

at the values of symbols, inspect the source code, and the generated
code, and check the values of static variables.

In order to run the program we must switch to a real or simulated
target. The debugger supports both. The simulator target is called
sim and a real target is called remote. The debugger will
automatically switch to the simulator and load the program into
the simulator if we enter the run command at this point.

(gdb) run
Starting program: .../examples/whetstone
Connected to the simulator.
Loading sections:
Idx Name Size VMA LMA File off Algn
 0 .init 00000408 00000000 00000000 00001000 2**1
 CONTENTS, ALLOC, LOAD, CODE
 1 .text 00001890 00000408 00000408 00001408 2**1
 CONTENTS, ALLOC, LOAD, CODE
 2 .rdata 000003ce 00001c98 00001c98 00002c98 2**1
 CONTENTS, ALLOC, LOAD, READONLY
 3 .data 0000038a 00010000 00002066 00004000 2**1
 CONTENTS, ALLOC, LOAD, DATA
Start address 0x0
Transfer rate: 73600 bits in <1 sec.
Whetstone: Floating point benchmark

Breakpoint 1, whetstone () at whetstone.adb:306
306 for i in 1 .. n2 loop
(gdb)

What we want to do now is see how the value of e1 changes as we
go round the loop. We can print the initial value using the print
command. Note that arrays (and structures) may be printed with a
single command.

(gdb) print e1(1)
$1 = 1
(gdb) print e1(2)
$2 = -1
(gdb) print e1
$2 = (1 => 1, 2 => -1, 3 => -1, 4 => -1)
(gdb)

3

We can then step through the program one line at a time using the
next command. Like many other commands, the next command
repeats when we press Enter. Therefore, after the first next
command, we just hit Enter.

(gdb) next
307 e1 (1) := (e1 (1) + e1 (2) + e1 (3) - e1 (4)) * t;
(gdb) enter
308 e1 (2) := (e1 (1) + e1 (2) - e1 (3) + e1 (4)) * t;
(gdb) enter
309 e1 (3) := (e1 (1) - e1 (2) + e1 (3) + e1 (4)) * t;
(gdb) enter
310 e1 (4) := (-e1 (1) + e1 (2) + e1 (3) + e1 (4)) * t;
(gdb)

Let's check the value of e1. This time we'll use the abbreviation.

(gdb) p e1
$3 = (1 => 0, 2 => -0.499975026, 3 => -0.749975085, 4 => -1)

If we need to check the value of e1 each time round the loop, it is
tedious to have to step through each line then type the print
command at the end of the loop. Instead we can place a breakpoint
at the end of the loop and use the continue command to execute to
the end of the loop. Furthermore, we can use the display command
to print the value of e1 each time the program stops.

(gdb) br
Breakpoint 2 at 0xf2e: file whetstone.adb, line 310.
(gdb) display e1
1: e1 = (1 => 0, 2 => -0.499975026, 3 => -0.749975085, 4 => -1)

Use the continue command to run the program to the next
breakpoint. Then press Enter to repeat the continue command.
Note that continue may be abbreviated to c.

(gdb) c
Continuing.

4

Chapter 1. A Sample Debug Session

Breakpoint 2, whetstone () at whetstone.adb:310
310 e1 (4) := (-e1 (1) + e1 (2) + e1 (3) + e1 (4)) * t;
1: e1 = (1 => -0.0625123829, 2 => -0.468692422, 3 => -0.734320521, 4 => -1.12491918)
(gdb) Enter
Continuing.

Breakpoint 2, whetstone () at whetstone.adb:310
310 e1 (4) := (-e1 (1) + e1 (2) + e1 (3) + e1 (4)) * t;
1: e1 = (1 => -0.0664326251, 2 => -0.466705739, 3 => -0.733313918, 4 => -1.13265347)
(gdb) Enter

To finish the debugging session use the quit command. You may
abbreviate quit to q.

(gdb) q
The program is running. Quit anyway (and kill it)? (y or n) y
$

5

6

Getting In and Out of the
Debugger

Chapter 2

This chapter discusses how to start the debugger and how to get
out of it. The essentials are:

• type the command prefix-gdb to start the debugger.

• type quit or Ctrl+d to exit.

2.1. Invoking the Debugger

Invoke the debugger by entering the command prefix-gdb. Once
started, the debugger reads commands from the terminal until you
tell it to exit.

You can also run the debugger with a variety of arguments and
options, to specify more of your debugging environment at the
outset.

The most usual way to start the debugger is with one argument,
specifying an executable program:

7

$ prefix-gdb program

You can run the debugger without printing the front material, which
describes warranty, by specifying -silent:

$ prefix-gdb -silent

You can further control how the debugger starts up by using
command-line options. The debugger itself can remind you of the
options available.

Type

$ prefix-gdb -help

to display all available options and briefly describe their use
(prefix-gdb -h is a shorter equivalent).

All options and command line arguments you give are processed
in sequential order. The order makes a difference when the -x option
is used.

2.1.1. Choosing Files

When the debugger starts, it reads any argument other than options
as specifying an executable file. This is the same as if the argument
was specified by the -se option.

Many options have both long and short forms; both are shown in
the following list. The debugger also recognizes the long forms if
you truncate them, so long as enough of the option is present to be
unambiguous. (If you prefer, you can flag option arguments with
-- rather than -, though we illustrate the more usual convention.)

-symbols file , -s file
Read symbol table from file file.

-exec file , -e file
Use file file as the executable file to execute when appropriate.

8

Chapter 2. Getting In and Out of the Debugger

-se file
Read symbol table from file file and use it as the executable
file.

-command file , -x file
Execute debug commands from file file. See Section 15.3,
“Command Files” [136].

-directory directory , -d directory
Add directory to the path to search for source files.

-r , -readnow
Read each symbol file's entire symbol table immediately, rather
than the default, which is to read it incrementally, as it is
needed. This makes startup slower, but makes future operations
faster.

2.1.2. Choosing Modes

You can run the debugger in various alternative modes—for
example, in batch mode or quiet mode.

-nx , -n
Do not execute commands from any initialization files
(normally called .gdbinit). Normally, the commands in these
files are executed after all the command options and arguments
have been processed. See Section 15.3, “Command Files” [136].

-quiet , -q
Do not print the introductory and copyright messages. These
messages are also suppressed in batch mode.

-batch
Run in batch mode. Exit with status 0 after processing all the
command files specified with -x (and all commands from
initialization files, if not inhibited with -n). Exit with nonzero
status if an error occurs in executing the debug commands in
the command files.

9

Choosing Modes

Batch mode may be useful for running the debugger as a filter,
for example to download and run a program on another
computer; in order to make this more useful, the message

Program exited normally.

(which is ordinarily issued whenever a program running under
the debugger control terminates) is not issued when running
in batch mode.

-cd directory
Run the debugger using directory as its working directory,
instead of the current directory.

-fullname , -f
Emacs sets this option when it runs the debugger as a
subprocess. It tells the debugger to output the full file name
and line number in a standard, recognizable fashion each time
a stack frame is displayed (which includes each time your
program stops). This recognizable format looks like two \032
characters, followed by the file name, line number and character
position separated by colons, and a newline. The Emacs-to-gdb
interface program uses the two \032 characters as a signal to
display the source code for the frame.

-b bps
Set the line speed (baud rate or bits per second) of any serial
interface used by the debugger for remote debugging.

-tty device
Run using device for your program's standard input and output.

2.2. Quitting the Debugger

quit

To exit the debugger, use the quit command (abbreviated q),
or type an end-of-file character (usually Ctrl+D). If you do
not supply expression, the debugger will terminate normally;

10

Chapter 2. Getting In and Out of the Debugger

otherwise, it will terminate using the result of expression as
the error code.

An interrupt (often Ctrl+C) does not exit from the debugger, but
rather terminates the action of any the debugger command that is
in progress and returns to the debugger command level. It is safe
to type the interrupt character at any time because the debugger
does not allow it to take effect until a time when it is safe.

2.3. Shell Commands

If you need to execute occasional shell commands during your
debugging session, there is no need to leave or suspend the
debugger; you can just use the shell command.

shell command string

Invoke the standard shell to execute command string. If it exists,
the environment variable SHELL determines which shell to
run. Otherwise, the debugger uses /bin/sh.

The utility make is often needed in development environments.
You do not have to use the shell command for this purpose in the
debugger:

make make-args

Execute the make program with the specified arguments. This
is equivalent to shell make make-args.

11

Shell Commands

12

Debugger CommandsChapter 3

You can abbreviate a debugger command to the first few letters of
the command name, if that abbreviation is unambiguous; and you
can repeat certain debugger commands by typing just Enter. You
can also use the Tab key to get the debugger to fill out the rest of
a word in a command (or to show you the alternatives available,
if there is more than one possibility).

3.1. Command Syntax

A debugger command is a single line of input. There is no limit on
how long it can be. It starts with a command name, which is
followed by arguments whose meaning depends on the command
name. For example, the command step accepts an argument which
is the number of times to step, as in step 5. You can also use the
step command with no arguments. Some command names do not
allow any arguments.

Debugger command names may always be truncated if that
abbreviation is unambiguous. Other possible command

13

abbreviations are listed in the documentation for individual
commands. In some cases, even ambiguous abbreviations are
allowed; for example, s is specially defined as equivalent to step
even though there are other commands whose names start with s.
You can test abbreviations by using them as arguments to the help
command.

A blank line as input to the debugger (typing just Enter) means to
repeat the previous command. Certain commands (for example,
run) will not repeat this way; these are commands whose
unintentional repetition might cause trouble and which you are
unlikely to want to repeat.

The list and x commands, when you repeat them with Enter,
construct new arguments rather than repeating exactly as typed.
This permits easy scanning of source or memory.

The debugger can also use Enter in another way: to partition
lengthy output, in a way similar to the common utility more (see
Section 14.4, “Screen Size” [128]). Since it is easy to press one
Enter too many in this situation, the debugger disables command
repetition after any command that generates this sort of display.

Any text from a # to the end of the line is a comment; it does
nothing. This is useful mainly in command files (see Section 15.3,
“Command Files” [136]).

3.2. Command Completion

The debugger can fill in the rest of a word in a command for you,
if there is only one possibility; it can also show you what the valid
possibilities are for the next word in a command, at any time. This
works for commands, subcommands, and the names of symbols
in your program.

Press the Tab key whenever you want the debugger to fill out the
rest of a word. If there is only one possibility, the debugger fills in
the word, and waits for you to finish the command (or press Enter
to enter it). For example, if you type

14

Chapter 3. Debugger Commands

(gdb) info bre Tab

The debugger fills in the rest of the word breakpoints, since that
is the only info subcommand beginning with bre:

(gdb) info breakpoints

You can either press Enter at this point, to run the info breakpoints
command, or backspace and enter something else, if breakpoints
does not look like the command you expected. (If you were sure
you wanted info breakpoints in the first place, you might as well
just type Enter immediately after info bre, to exploit command
abbreviations rather than command completion).

If there is more than one possibility for the next word when you
press Tab, the debugger sounds a bell. You can either supply more
characters and try again, or just press Tab a second time; the
debugger displays all the possible completions for that word. For
example, you might want to set a breakpoint on a subroutine whose
name begins with make_, but when you type b make_Tab the
debugger just sounds the bell. Typing Tab again displays all the
function names in your program that begin with those characters,
for example:

(gdb) b make_ Tab

the debugger sounds bell; press Tab again, to see:

make_a_section_from_file make_environ
make_abs_section make_function_type
make_blockvector make_pointer_type
make_cleanup make_reference_type
make_command make_symbol_completion_list
(gdb) b make_

After displaying the available possibilities, the debugger copies
your partial input (b make_ in the example) so you can finish the
command.

15

Command Completion

If you just want to see the list of alternatives in the first place, you
can press M-? rather than pressing Tab twice. M-? means META
?. You can type this either by holding down a key designated as
the META shift on your keyboard (if there is one) while typing ?,
or as Esc followed by ?.

Sometimes the string you need, while logically a “word”, may
contain parentheses or other characters that the debugger normally
excludes from its notion of a word. To permit word completion to
work in this situation, you may enclose words in ' (single quote
marks) in the debugger commands.

The most likely situation where you might need this is in typing
the name of a C++ function. This is because C++ allows function
overloading (multiple definitions of the same function,
distinguished by argument type). For example, when you want to
set a breakpoint you may need to distinguish whether you mean
the version of name that takes an int parameter, name(int), or the
version that takes a float parameter, name(float). To use the
word-completion facilities in this situation, type a single quote ' at
the beginning of the function name. This alerts the debugger that
it may need to consider more information than usual when you
press Tab or Meta+? to request word completion:

(gdb) b 'bubble(
Meta+?
bubble(double,double) bubble(int,int)
(gdb) b 'bubble(

In some cases, the debugger can tell that completing a name
requires using quotes. When this happens, the debugger inserts the
quote for you (while completing as much as it can) if you do not
type the quote in the first place:

(gdb) b bub Tab

the debugger alters your input line to the following, and rings a bell:

(gdb) b 'bubble(

16

Chapter 3. Debugger Commands

In general, the debugger can tell that a quote is needed (and inserts
it) if you have not yet started typing the argument list when you
ask for completion on an overloaded symbol.

3.3. Getting Help

You can always ask the debugger itself for information on its
commands, using the command help.

help , h

You can use help (abbreviated h) with no arguments to display
a short list of named classes of commands:

(gdb) help
List of classes of commands:
running -- Running the program
stack -- Examining the stack
data -- Examining data
breakpoints -- Making program stop at certain points
files -- Specifying and examining files
status -- Status inquiries
support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features
Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help class
Using one of the general help classes as an argument, you can
get a list of the individual commands in that class. For example,
here is the help display for the class status:

(gdb) help status
Status inquiries.

17

Getting Help

List of commands:
show -- Generic command for showing things set
 with "set"
info -- Generic command for printing status
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

help command
With a command name as help argument, the debugger displays
a short paragraph on how to use that command.

complete args

The complete args command lists all the possible completions
for the beginning of a command. Use args to specify the
beginning of the command you want completed. For example:

complete i

results in:

info
inspect
ignore

This is intended for use by Emacs.

In addition to help, you can use the debugger commands info and
show to inquire about the state of your program, or the state of the
debugger itself. Each command supports many topics of inquiry;
this manual introduces each of them in the appropriate context.
The listings under info and under show in the Index point to all
the sub-commands.

info

This command (abbreviated i) is for describing the state of
your program. For example, you can list the arguments given

18

Chapter 3. Debugger Commands

to your program with info args, list the registers currently in
use with info registers, or list the breakpoints you have set
with info breakpoints. You can get a complete list of the info
sub-commands with help info.

set

You can assign the result of an expresson to an environment
variable with set. For example, you can set the debugger
prompt to a dollar sign with set prompt $.

show

In contrast to info, show is for describing the state of the
debugger itself. You can change most of the things you can
show, by using the related command set; for example, you can
control what number system is used for displays with set radix,
or simply inquire which is currently in use with show radix.

To display all the settable parameters and their current values,
you can use show with no arguments; you may also use info
set. Both commands produce the same display.

Here are three miscellaneous show subcommands, all of which are
exceptional in lacking corresponding set commands:

show version

Show which version of the debugger is running. You should
include this information in debugger bug reports. If multiple
versions of the debugger are in use at your site, you may
occasionally want to determine which version of the debugger
you are running; as the debugger evolves, new commands are
introduced, and old ones may wither away. The version number
is also announced when you start the debugger.

show copying

Display information about permission for copying the
debugger.

19

Getting Help

show warranty

Display the GNU “NO WARRANTY” statement.

20

Chapter 3. Debugger Commands

Running Programs Under
the Debugger

Chapter 4

If you intend to run a program under the debugger, you must first
generate debugging information when you compile it.

4.1. Compiling for Debugging

In order to debug a program effectively, you need to generate
debugging information when you compile it. This debugging
information is stored in the object file; it describes the data type
of each variable or function and the correspondence between source
line numbers and addresses in the executable code.

To request debugging information, specify the -g option when you
run the compiler.

The compiler supports -g with or without -O, making it possible
to debug optimized code. We recommend that you always use -g
whenever you compile a program. You may think your program
is correct, but there is no sense in pushing your luck.

21

When you debug a program compiled with -g -O, remember that
the optimizer is rearranging your code; the debugger shows you
what is really there. Do not be too surprised when the execution
path does not exactly match your source file! An extreme example:
if you define a variable, but never use it, the debugger never sees
that variable—because the compiler optimizes it out of existence.

Some things do not work as well with -g -O as with -g -O0,
particularly on machines with instruction scheduling. If in doubt,
recompile with -g -O0, and if this fixes the problem, please report
it to us as a bug (including a test case!).

4.2. Starting your Program

run args , r args

Use the run command to start your program under the
debugger. You must first specify the program name with an
argument to the debugger (see Chapter 2, Getting In and Out
of the Debugger [7]), or by using the file or exec-file
command (see Section 12.1, “Commands to Specify
Files” [115]).

When you issue the run command, your program begins to execute
immediately. See Chapter 5, Stopping and Continuing [23] for
discussion of how to arrange for your program to stop. Once your
program has stopped, you may call functions in your program,
using the print or call commands. See Chapter 8, Examining
Data [59].

If the modification time of your symbol file has changed since the
last time the debugger read its symbols, the debugger discards its
symbol table, and reads it again. When it does this, the debugger
tries to retain your current breakpoints.

22

Chapter 4. Running Programs Under the Debugger

Stopping and ContinuingChapter 5

The principal purposes of using a debugger are so that you can stop
your program before it terminates; or so that, if your program runs
into trouble, you can investigate and find out why.

Inside the debugger, your program may stop for any of several
reasons, such as a breakpoint, or reaching a new line after a
debugger command such as step. You may then examine and
change variables, set new breakpoints or remove old ones, and then
continue execution. Usually, the messages shown by the debugger
provide ample explanation of the status of your program—but you
can also explicitly request this information at any time.

info program

Display information about the status of your program: whether
it is running or not, and why it stopped.

23

5.1. Breakpoints, Watchpoints, and Exceptions

A breakpoint makes your program stop whenever a certain point
in the program is reached. For each breakpoint, you can add
conditions to control in finer detail whether your program stops.
You can set breakpoints with the break command and its variants
(see Section 5.1.1, “Setting Breakpoints” [24]), to specify the place
where your program should stop by line number, function name
or exact address in the program.

A watchpoint is a special breakpoint that stops your program when
the value of an expression changes. You must use a different
command to set watchpoints (see Section 5.1.2, “Setting
Watchpoints” [29]), but aside from that, you can manage a
watchpoint like any other breakpoint: you enable, disable, and
delete both breakpoints and watchpoints using the same commands.

You can arrange to have values from your program displayed
automatically whenever the debugger stops at a breakpoint. See
Section 8.6, “Automatic Display” [69].

The debugger assigns a number to each breakpoint or watchpoint
when you create it; these numbers are successive integers starting
with one. In many of the commands for controlling various features
of breakpoints, you use the breakpoint number to say which
breakpoint you want to change. Each breakpoint may be enabled
or disabled; if disabled, it has no effect on your program until you
enable it again.

5.1.1. Setting Breakpoints

Breakpoints are set with the break command (abbreviated b). The
debugger convenience variable $bpnum records the number of the
breakpoints you've set most recently; see Section 8.9, “Convenience
Variables” [80], for a discussion of what you can do with
convenience variables.

You have several ways to say where the breakpoint should go.

24

Chapter 5. Stopping and Continuing

break function
Set a breakpoint at entry to function function. When using
source languages that permit overloading of symbols, such as
C++, function may refer to more than one possible place to
break. See Section 5.1.7, “Breakpoint Menus” [37], for a
discussion of that situation.

break +offset , break -offset
Set a breakpoint some number of lines forward or back from
the position at which execution stopped in the currently selected
frame.

break linenum
Set a breakpoint at line linenum in the current source file. That
file is the last file whose source text was printed. This
breakpoint stops your program just before it executes any of
the code on that line.

break filename:linenum
Set a breakpoint at line linenum in source file filename.

break filename:function
Set a breakpoint at entry to function function found in file
filename. Specifying a file name as well as a function name
is superfluous except when multiple files contain similarly
named functions.

break *address
Set a breakpoint at address address. You can use this to set
breakpoints in parts of your program which do not have
debugging information or source files.

break
When called without any arguments, break sets a breakpoint
at the next instruction to be executed in the selected stack frame
(see Chapter 6, Examining the Stack [43]). In any selected
frame but the innermost, this makes your program stop as soon
as control returns to that frame. This is similar to the effect of
a finish command in the frame inside the selected
frame—except that finish does not leave an active breakpoint.
If you use break without an argument in the innermost frame,

25

Setting Breakpoints

the debugger stops the next time it reaches the current location;
this may be useful inside loops.

The debugger normally ignores breakpoints when it resumes
execution, until at least one instruction has been executed. If
it did not do this, you would be unable to proceed past a
breakpoint without first disabling the breakpoint. This rule
applies whether or not the breakpoint already existed when
your program stopped.

break ... if cond
Set a breakpoint with condition cond; evaluate the expression
cond each time the breakpoint is reached, and stop only if the
value is nonzero—that is, if cond evaluates as true. ... stands
for one of the possible arguments described above (or no
argument) specifying where to break. See Section 5.1.5, “Break
Conditions” [33], for more information on breakpoint
conditions.

tbreak args

Set a breakpoint enabled only for one stop. args are the same
as for the break command, and the breakpoint is set in the
same way, but the breakpoint is automatically deleted after the
first time your program stops there. See Section 5.1.4,
“Disabling Breakpoints” [31].

hbreak args

Set a hardware-assisted breakpoint. args are the same as for
the break command and the breakpoint is set in the same way,
but the breakpoint requires hardware support and some target
hardware may not have this support. The main purpose of this
is EPROM/ROM code debugging, so you can set a breakpoint
at an instruction without changing the instruction. However
the hardware breakpoint registers can only take two data
breakpoints, and the debugger will reject this command if more
than two are used. Delete or disable usused hardware
breakpoints before setting new ones. See Section 5.1.5, “Break
Conditions” [33].

26

Chapter 5. Stopping and Continuing

thbreak args

Set a hardware-assisted breakpoint enabled only for one stop.
args are the same as for the hbreak command and the
breakpoint is set in the same way. However, like the tbreak
command, the breakpoint is automatically deleted after the
first time your program stops there. Also, like the hbreak
command, the breakpoint requires hardware support and some
target hardware may not have this support. See Section 5.1.4,
“Disabling Breakpoints” [31]. Also See Section 5.1.5, “Break
Conditions” [33].

rbreak regex

Set breakpoints on all functions matching the regular expression
regex. This command sets an unconditional breakpoint on all
matches, printing a list of all breakpoints it set. Once these
breakpoints are set, they are treated just like the breakpoints
set with the break command. You can delete them, disable
them, or make them conditional the same way as any other
breakpoint.

When debugging C++ programs, rbreak is useful for setting
breakpoints on overloaded functions that are not members of
any special classes.

info breakpoints [n] , info break [n] , info watchpoints [n]

Print a table of all breakpoints and watchpoints set and not
deleted, with the following columns for each breakpoint:

Breakpoint Numbers

Type
Breakpoint or watchpoint.

Disposition
Whether the breakpoint is marked to be disabled or deleted
when hit.

27

Setting Breakpoints

Enabled or Disabled
Enabled breakpoints are marked with y. n marks
breakpoints that are not enabled.

Address
Where the breakpoint is in your program, as a memory
address

What
Where the breakpoint is in the source for your program,
as a file and line number.

If a breakpoint is conditional, info break shows the condition
on the line following the affected breakpoint; breakpoint
commands, if any, are listed after that.

info break with a breakpoint number n as argument lists only
that breakpoint. The convenience variable $_ and the default
examining-address for the x command are set to the address
of the last breakpoint listed (see Section 8.5, “Examining
Memory” [66]).

info break now displays a count of the number of times the
breakpoint has been hit. This is especially useful in conjunction
with the ignore command. You can ignore a large number of
breakpoint hits, look at the breakpoint info to see how many
times the breakpoint was hit, and then run again, ignoring one
less than that number. This will get you quickly to the last hit
of that breakpoint.

The debugger allows you to set any number of breakpoints at the
same place in your program. There is nothing silly or meaningless
about this. When the breakpoints are conditional, this is even useful
(see Section 5.1.5, “Break Conditions” [33]).

The debugger itself sometimes sets breakpoints in your program
for special purposes, such as proper handling of longjmp (in C
programs). These internal breakpoints are assigned negative
numbers, starting with -1; info breakpoints does not display them.

You can see these breakpoints with the debugger maintenance
command maint info breakpoints.

28

Chapter 5. Stopping and Continuing

maint info breakpoints

Using the same format as info breakpoints, display both the
breakpoints you've set explicitly, and those the debugger is
using for internal purposes. Internal breakpoints are shown
with negative breakpoint numbers. The type column identifies
what kind of breakpoint is shown:

breakpoint
Normal, explicitly set breakpoint.

watchpoint
Normal, explicitly set watchpoint.

longjmp
Internal breakpoint, used to handle correctly stepping
through longjmp calls.

longjmp resume
Internal breakpoint at the target of a longjmp.

until
Temporary internal breakpoint used by the debugger until
command.

finish
Temporary internal breakpoint used by the debugger finish
command.

5.1.2. Setting Watchpoints

You can use a watchpoint to stop execution whenever the value of
an expression changes, without having to predict a particular place
where this may happen.

Watchpoints currently execute two orders of magnitude more
slowly than other breakpoints, but this can be well worth it to catch
errors where you have no clue what part of your program is the
culprit.

29

Setting Watchpoints

The debugger provides two special watchpoints that work at the
full speed of the simulator. These are known as hardware
breakpoints and will be used in preference to the much slower soft
watchpoints.

watch expr

Set a watchpoint for an expression. The debugger will break
when expr is written into by the program and its value changes.
However, the hardware breakpoint registers can only take two
data watchpoints, and both watchpoints must be the same kind.
For example, you can set two watchpoints with watch
commands, two with rwatch commands, or two with awatch
commands, but you cannot set one watchpoint with one
command and the other with a different command. the debugger
will reject the command if you try to mix watchpoints. Delete
or disable unused watchpoint commands before setting new
ones.

rwatch expr

Set a watchpoint that will break when watch args is read by
the program. If you use both watchpoints, both must be set
with the rwatch command.

awatch expr

Set a watchpoint that will break when args is read and written
into by the program. If you use both watchpoints, both must
be set with the awatch command.

info watchpoints

This command prints a list of watchpoints and breakpoints; it
is the same as info break.

5.1.3. Deleting Breakpoints

It is often necessary to eliminate a breakpoint or watchpoint once
it has done its job and you no longer want your program to stop

30

Chapter 5. Stopping and Continuing

there. This is called deleting the breakpoint. A breakpoint that has
been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to
where they are in your program. With the delete command you
can delete individual breakpoints or watchpoints by specifying
their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. The
debugger automatically ignores breakpoints on the first instruction
to be executed when you continue execution without changing the
execution address.

clear

Delete any breakpoints at the next instruction to be executed
in the selected stack frame (see Section 6.3, “Selecting a
Frame” [46]). When the innermost frame is selected, this is a
good way to delete a breakpoint where your program just
stopped.

clear function , clear filename:function
Delete any breakpoints set at entry to the function function.

clear linenum , clear filename:linenum
Delete any breakpoints set at or within the code of the specified
line.

delete [breakpoints] [bnums...]

Delete the breakpoints or watchpoints of the numbers specified
as arguments. If no argument is specified, delete all breakpoints
(the debugger asks confirmation, unless you have set confirm
off). You can abbreviate this command as d.

5.1.4. Disabling Breakpoints

Rather than deleting a breakpoint or watchpoint, you might prefer
to disable it. This makes the breakpoint inoperative as if it had
been deleted, but remembers the information on the breakpoint so
that you can enable it again later.

31

Disabling Breakpoints

You disable and enable breakpoints and watchpoints with the
enable and disable commands, optionally specifying one or more
breakpoint numbers as arguments. Use info break or info watch
to print a list of breakpoints or watchpoints if you do not know
which numbers to use.

A breakpoint or watchpoint can have any of four different states
of enablement:

• Enabled. The breakpoint stops your program. A breakpoint set
with the break command starts out in this state.

• Disabled. The breakpoint has no effect on your program.

• Enabled once. The breakpoint stops your program, but then
becomes disabled. A breakpoint set with the tbreak command
starts out in this state.

• Enabled for deletion. The breakpoint stops your program, but
immediately after it does so it is deleted permanently.

You can use the following commands to enable or disable
breakpoints and watchpoints:

disable [breakpoints] [bnums...]

Disable the specified breakpoints—or all breakpoints, if none
are listed. A disabled breakpoint has no effect but is not
forgotten. All options such as ignore-counts, conditions and
commands are remembered in case the breakpoint is enabled
again later. You may abbreviate disable as dis.

enable [breakpoints] [bnums...]

Enable the specified breakpoints (or all defined breakpoints).
They become effective once again in stopping your program.

enable [breakpoints] once bnums...
Enable the specified breakpoints temporarily. The debugger
disables any of these breakpoints immediately after stopping
your program.

32

Chapter 5. Stopping and Continuing

enable [breakpoints] delete bnums...
Enable the specified breakpoints to work once, then die. The
debugger deletes any of these breakpoints as soon as your
program stops there.

Except for a breakpoint set with tbreak (see Section 5.1.1, “Setting
Breakpoints” [24]), breakpoints that you set are initially enabled;
subsequently, they become disabled or enabled only when you use
one of the commands above. (The command until can set and
delete a breakpoint of its own, but it does not change the state of
your other breakpoints; see Section 5.2, “Continuing and
Stepping” [38].)

5.1.5. Break Conditions

The simplest sort of breakpoint breaks every time your program
reaches a specified place. You can also specify a condition for a
breakpoint. A condition is just a Boolean expression in your
programming language. A breakpoint with a condition evaluates
the expression each time your program reaches it, and your program
stops only if the condition is true.

This is the converse of using assertions for program validation; in
that situation, you want to stop when the assertion is violated—that
is, when the condition is false. In C, if you want to test an assertion
expressed by the condition assert, you should set the condition !
assert on the appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need
them, since a watchpoint is inspecting the value of an expression
anyhow—but it might be simpler, say, to just set a watchpoint on
a variable name, and specify a condition that tests whether the new
value is an interesting one.

Break conditions can have side effects, and may even call functions
in your program. This can be useful, for example, to activate
functions that log program progress, or to use your own print
functions to format special data structures. The effects are
completely predictable unless there is another enabled breakpoint
at the same address. (In that case, the debugger might see the other

33

Break Conditions

breakpoint first and stop your program without checking the
condition of this one.) Note that breakpoint commands are usually
more convenient and flexible for the purpose of performing side
effects when a breakpoint is reached (see Section 5.1.6, “Breakpoint
Command Lists” [35]).

Break conditions can be specified when a breakpoint is set, by
using if in the arguments to the break command. See Section 5.1.1,
“Setting Breakpoints” [24]. They can also be changed at any time
with the condition command. The watch command does not
recognize the if keyword; condition is the only way to impose a
further condition on a watchpoint.

condition bnum expression

Specify expression as the break condition for breakpoint or
watchpoint number bnum. After you set a condition, breakpoint
bnum stops your program only if the value of expression is true
(nonzero, in C). When you use condition, the debugger checks
expression immediately for syntactic correctness, and to
determine whether symbols in it have referents in the context
of your breakpoint. The debugger does not actually evaluate
expression at the time the condition command is given,
however. See Section 8.1, “Expressions” [60].

condition bnum
Remove the condition from breakpoint number bnum. It
becomes an ordinary unconditional breakpoint.

A special case of a breakpoint condition is to stop only when the
breakpoint has been reached a certain number of times. This is so
useful that there is a special way to do it, using the ignore count
of the breakpoint. Every breakpoint has an ignore count, which is
an integer. Most of the time, the ignore count is zero, and therefore
has no effect. But if your program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements
the ignore count by one and continues. As a result, if the ignore
count value is n, the breakpoint does not stop the next n times your
program reaches it.

34

Chapter 5. Stopping and Continuing

ignore bnum count

Set the ignore count of breakpoint number bnum to count. The
next count times the breakpoint is reached, your program's
execution does not stop; other than to decrement the ignore
count, the debugger takes no action.

To make the breakpoint stop the next time it is reached, specify
a count of zero.

When you use continue to resume execution of your program
from a breakpoint, you can specify an ignore count directly as
an argument to continue, rather than using ignore. See
Section 5.2, “Continuing and Stepping” [38].

If a breakpoint has a positive ignore count and a condition, the
condition is not checked. Once the ignore count reaches zero,
the debugger resumes checking the condition.

You could achieve the effect of the ignore count with a
condition such as $foo-- <= 0 using a debugger convenience
variable that is decremented each time. See Section 8.9,
“Convenience Variables” [80].

5.1.6. Breakpoint Command Lists

You can give any breakpoint (or watchpoint) a series of commands
to execute when your program stops due to that breakpoint. For
example, you might want to print the values of certain expressions,
or enable other breakpoints.

commands [bnum] , ... command-list ... , end

Specify a list of commands for breakpoint number bnum. The
commands themselves appear on the following lines. Type a
line containing just end to terminate the commands.

To remove all commands from a breakpoint, type commands
and follow it immediately with end; that is, give no commands.

35

Breakpoint Command Lists

With no bnum argument, commands refers to the last breakpoint
or watchpoint set (not to the breakpoint most recently
encountered).

Pressing Enter as a means of repeating the last the debugger
command is disabled within a command-list.

You can use breakpoint commands to start your program up again.
Simply use the continue command, or step, or any other command
that resumes execution.

Any other commands in the command list, after a command that
resumes execution, are ignored. This is because any time you
resume execution (even with a simple next or step), you may
encounter another breakpoint—which could have its own command
list, leading to ambiguities about which list to execute.

If the first command you specify in a command list is silent, the
usual message about stopping at a breakpoint is not printed. This
may be desirable for breakpoints that are to print a specific message
and then continue. If none of the remaining commands print
anything, you see no sign that the breakpoint was reached. silent
is meaningful only at the beginning of a breakpoint command list.

The commands echo, output, and printf allow you to print
precisely controlled output, and are often useful in silent
breakpoints. See Commands for controlled output: Output.

For example, here is how you could use breakpoint commands to
print the value of x at entry to foo whenever x is positive.

break foo if x>0
commands
silent
printf "x is %d\n",x
cont
end

One application for breakpoint commands is to compensate for
one bug so you can test for another. Put a breakpoint just after the
erroneous line of code, give it a condition to detect the case in

36

Chapter 5. Stopping and Continuing

which something erroneous has been done, and give it commands
to assign correct values to any variables that need them. End with
the continue command so that your program does not stop, and
start with the silent command so that no output is produced. Here
is an example:

break 403
commands
silent
set x = y + 4
cont
end

5.1.7. Breakpoint Menus

Some programming languages (notably C++ and Ada) permit a
single function name to be defined several times, for application
in different contexts. This is called overloading. When a function
name is overloaded, break function is not enough to tell the
debugger where you want a breakpoint. If you realize this is a
problem, you can use something like break function(types) to
specify which particular version of the function you want.
Otherwise, the debugger offers you a menu of numbered choices
for different possible breakpoints, and waits for your selection with
the prompt >. The first two options are always [0] cancel and [1]
all. Typing 1 sets a breakpoint at each definition of function, and
typing 0 aborts the break command without setting any new
breakpoints.

For example, the following session excerpt shows an attempt to
set a breakpoint at the overloaded symbol String::after. We choose
three particular definitions of that function name:

(gdb) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875

37

Breakpoint Menus

[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted
 breakpoints.
(gdb)

5.2. Continuing and Stepping

Continuing means resuming program execution until your program
completes normally. In contrast, stepping means executing just one
more “step” of your program, where “step” may mean either one
line of source code, or one machine instruction (depending on what
particular command you use). Either when continuing or when
stepping, your program may stop even sooner, due to a breakpoint.

continue [ignore-count] , c [ignore-count] , fg [ignore-count]

Resume program execution, at the address where your program
last stopped; any breakpoints set at that address are bypassed.
The optional argument ignore-count allows you to specify a
further number of times to ignore a breakpoint at this location;
its effect is like that of ignore (see Section 5.1.5, “Break
Conditions” [33]).

The argument ignore-count is meaningful only when your
program stopped due to a breakpoint. At other times, the
argument to continue is ignored.

The synonyms c and fg are provided purely for convenience,
and have exactly the same behavior as continue.

To resume execution at a different place, you can use return (see
Section 11.3, “Returning from a Function” [112]) to go back to the
calling function; or jump (see Section 11.2, “Continuing at a

38

Chapter 5. Stopping and Continuing

Different Address” [111]) to go to an arbitrary location in your
program.

A typical technique for using stepping is to set a breakpoint (see
Breakpoints; watchpoints; and exceptions: Breakpoints.) at the
beginning of the function or the section of your program where a
problem is believed to lie, run your program until it stops at that
breakpoint, and then step through the suspect area, examining the
variables that are interesting, until you see the problem happen.

step

Continue running your program until control reaches a different
source line, then stop it and return control to the debugger.
This command is abbreviated s.

Warning. If you use the step command while control is
within a function that was compiled without debugging
information, execution proceeds until control reaches a function
that does have debugging information. Likewise, it will not
step into a function that was compiled without debugging
information. To step through functions without debugging
information, use the stepi command, described below.

The step command now only stops at the first instruction of a
source line. This prevents the multiple stops that used to occur
in switch statements, for loops, etc. step continues to stop if a
function that has debugging information is called within the
line.

Also, the step command now only enters a subroutine if there
is line number information for the subroutine. Otherwise, it
acts like the next command. This avoids problems when using
cc -gl on MIPS machines. Previously, step entered subroutines
if there was any debugging information about the routine.

step count
Continue running as in step, but do so count times. If a
breakpoint is reached, stepping stops right away.

39

Continuing and Stepping

next [count]

Continue to the next source line in the current (innermost) stack
frame. This is similar to step, but function calls that appear
within the line of code are executed without stopping.
Execution stops when control reaches a different line of code
at the original stack level that was executing when you gave
the next command. This command is abbreviated n.

An argument count is a repeat count, as for step.

The next command now only stops at the first instruction of a
source line. This prevents the multiple stops that used to occur
in swtch statements, for loops, etc.

finish

Continue running until just after function in the selected stack
frame returns. Print the returned value (if any).

Contrast this with the return command (see Section 11.3,
“Returning from a Function” [112]).

until, u

Continue running until a source line past the current line, in
the current stack frame, is reached. This command is used to
avoid single stepping through a loop more than once. It is like
the next command, except that when until encounters a jump,
it automatically continues execution until the program counter
is greater than the address of the jump.

This means that when you reach the end of a loop after single
stepping though it, until makes your program continue
execution until it exits the loop. In contrast, a next command
at the end of a loop simply steps back to the beginning of the
loop, which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current
stack frame.

40

Chapter 5. Stopping and Continuing

until may produce somewhat counter-intuitive results if the
order of machine code does not match the order of the source
lines. For example, in the following excerpt from a debugging
session, the f (frame) command shows that execution is
stopped at line 206; yet when we use until, we get to line 195:

(gdb) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();
(gdb) until
195 for (; argc > 0; NEXTARG) {

This happened because, for execution efficiency, the compiler
had generated code for the loop closure test at the end, rather
than the start, of the loop—even though the test in a C for-loop
is written before the body of the loop. The until command
appeared to step back to the beginning of the loop when it
advanced to this expression; however, it has not really gone to
an earlier statement—not in terms of the actual machine code.

until with no argument works by means of single instruction
stepping, and hence is slower than until with an argument.

until location, u location
Continue running your program until either the specified
location is reached, or the current stack frame returns. location
is any of the forms of argument acceptable to break (see
Section 5.1.1, “Setting Breakpoints” [24]). This form of the
command uses breakpoints, and hence is quicker than until
without an argument.

stepi , si

Execute one machine instruction, then stop and return to the
debugger.

It is often useful to do display/i $pc when stepping by machine
instructions. This makes the debugger automatically display
the next instruction to be executed, each time your program
stops. See Section 8.6, “Automatic Display” [69].

41

Continuing and Stepping

An argument is a repeat count, as in step.

nexti , ni

Execute one machine instruction, but if it is a function call,
proceed until the function returns.

An argument is a repeat count, as in next.

42

Chapter 5. Stopping and Continuing

Examining the StackChapter 6

When your program has stopped, the first thing you need to know
is where it stopped and how it got there.

Each time your program performs a function call, information about
the call is generated. That information includes the location of the
call in your program, the arguments of the call, and the local
variables of the function being called. The information is saved in
a block of data called a stack frame. The stack frames are allocated
in a region of memory called the call stack.

When your program stops, the debugger commands for examining
the stack allow you to see all of this information.

One of the stack frames is selected by the debugger and many the
debugger commands refer implicitly to the selected frame. In
particular, whenever you ask the debugger for the value of a
variable in your program, the value is found in the selected frame.
There are special the debugger commands to select whichever
frame you are interested in. See Section 6.3, “Selecting a
Frame” [46].

43

When your program stops, the debugger automatically selects the
currently executing frame and describes it briefly, similar to the
frame command (see Section 6.4, “Information about a
Frame” [47]).

6.1. Stack Frames

The call stack is divided up into contiguous pieces called stack
frames, or frames for short; each frame is the data associated with
one call to one function. The frame contains the arguments given
to the function, the function's local variables, and the address at
which the function is executing.

When your program is started, the stack has only one frame, that
of the function main. This is called the initial frame or the outermost
frame. Each time a function is called, a new frame is made. Each
time a function returns, the frame for that function invocation is
eliminated. If a function is recursive, there can be many frames for
the same function. The frame for the function in which execution
is actually occurring is called the innermost frame. This is the most
recently created of all the stack frames that still exist.

Inside your program, stack frames are identified by their addresses.
A stack frame consists of many bytes, each of which has its own
address; each kind of computer has a convention for choosing one
byte whose address serves as the address of the frame. Usually this
address is kept in a register called the frame pointer register while
execution is going on in that frame.

The debugger assigns numbers to all existing stack frames, starting
with zero for the innermost frame, one for the frame that called it,
and so on upward. These numbers do not really exist in your
program; they are assigned by the debugger to give you a way of
designating stack frames in the debugger commands.

frame args

The frame command allows you to move from one stack frame
to another, and to print the stack frame you select. args may

44

Chapter 6. Examining the Stack

be either the address of the frame of the stack frame number.
Without an argument, frame prints the current stack frame.

select-frame

The select-frame command allows you to move from one stack
frame to another without printing the frame. This is the silent
version of frame.

6.2. Backtraces

A backtrace is a summary of how your program got where it is. It
shows one line per frame, for many frames, starting with the
currently executing frame (frame zero), followed by its caller (frame
one), and on up the stack.

backtrace , bt

Print a backtrace of the entire stack: one line per frame for all
frames in the stack.

You can stop the backtrace at any time by typing the system
interrupt character, normally Ctrl+C.

backtrace n , bt n
Similar, but print only the innermost n frames.

backtrace -n , bt -n
Similar, but print only the outermost n frames.

The names where and info stack (abbreviated info s) are additional
aliases for backtrace.

Each line in the backtrace shows the frame number and the function
name. The program counter value is also shown—unless you use
set print address off. The backtrace also shows the source file
name and line number, as well as the arguments to the function.
The program counter value is omitted if it is at the beginning of
the code for that line number.

45

Backtraces

Here is an example of a backtrace. It was made with the command
bt 3, so it shows the innermost three frames.

(gdb) bt 3
#0 whetstone.log10 (x=0.75) at whetstone.adb:190
#1 0xd24 in whetstone.log (x=0.75) at whetstone.adb:218
#2 0x124a in _ISTACK_SIZE () at whetstone.adb:404
#3 0x424 in main () at b~whetstone.adb:43
(gdb)

The display for frame zero does not begin with a program counter
value, indicating that your program has stopped at the beginning
of the code for line 226 of whetstone.c.

6.3. Selecting a Frame

Most commands for examining the stack and other data in your
program work on whichever stack frame is selected at the moment.
Here are the commands for selecting a stack frame; all of them
finish by printing a brief description of the stack frame just selected.

frame n , f n

Select frame number n. Recall that frame zero is the innermost
(currently executing) frame, frame one is the frame that called
the innermost one, and so on. The highest-numbered frame is
the one for main.

frame addr , f addr
Select the frame at address addr. This is useful mainly if the
chaining of stack frames has been damaged by a bug, making
it impossible for the debugger to assign numbers properly to
all frames. In addition, this can be useful when your program
has multiple stacks and switches between them.

up n

Move n frames up the stack. For positive numbers n, this
advances toward the outermost frame, to higher frame numbers,
to frames that have existed longer. n defaults to one.

46

Chapter 6. Examining the Stack

down n

Move n frames down the stack. For positive numbers n, this
advances toward the innermost frame, to lower frame numbers,
to frames that were created more recently. n defaults to one.
You may abbreviate down as do.

All of these commands end by printing two lines of output
describing the frame. The first line shows the frame number, the
function name, the arguments, and the source file and line number
of execution in that frame. The second line shows the text of that
source line.

For example:

(gdb) up
#1 0xd24 in whetstone.log (x=0.75) at whetstone.adb:218
218 return 2.302585093 * LOG10 (X) ;
(gdb)

After such a printout, the list command with no arguments prints
ten lines centered on the point of execution in the frame. See
Section 7.1, “Printing Source Lines” [51].

up-silently n , down-silently n

These two commands are variants of up and down,
respectively; they differ in that they do their work silently,
without causing display of the new frame. They are intended
primarily for use in the debugger command scripts, where the
output might be unnecessary and distracting.

6.4. Information about a Frame

There are several other commands to print information about the
selected stack frame.

frame , f
When used without any argument, this command does not
change which frame is selected, but prints a brief description

47

Information about a Frame

of the currently selected stack frame. It can be abbreviated f.
With an argument, this command is used to select a stack frame.
See Section 6.3, “Selecting a Frame” [46].

info frame , info f

This command prints a verbose description of the selected
stack frame, including:

• the address of the frame

• the address of the next frame down (called by this frame)

• the address of the next frame up (caller of this frame)

• the language in which the source code corresponding to this
frame is written

• the address of the frame's arguments

• the program counter saved in it (the address of execution in
the caller frame)

• which registers were saved in the frame

The verbose description is useful when something has gone
wrong that has made the stack format fail to fit the usual
conventions.

info frame addr , info f addr
Print a verbose description of the frame at address addr, without
selecting that frame. The selected frame remains unchanged
by this command. This requires the same kind of address (more
than one for some architectures) that you specify in the frame
command. See Section 6.3, “Selecting a Frame” [46].

info args

Print the arguments of the selected frame, each on a separate
line.

48

Chapter 6. Examining the Stack

info locals

Print the local variables of the selected frame, each on a
separate line. These are all variables (declared either static or
automatic) accessible at the point of execution of the selected
frame.

info catch

Print a list of all the exception handlers that are active in the
current stack frame at the current point of execution. To see
other exception handlers, visit the associated frame (using the
up, down, or frame commands); then type info catch.

49

Information about a Frame

50

Examining Source FilesChapter 7

The debugger can print parts of your program's source, since the
debugging information recorded in the program tells the debugger
what source files were used to build it. When your program stops,
the debugger spontaneously prints the line where it stopped.
Likewise, when you select a stack frame (see Section 6.3, “Selecting
a Frame” [46]), the debugger prints the line where execution in
that frame has stopped. You can print other portions of source files
by explicit command.

If you use the debugger through its Emacs interface, you may prefer
to use Emacs facilities to view source.

7.1. Printing Source Lines

To print lines from a source file, use the list command (abbreviated
l). By default, ten lines are printed. There are several ways to
specify what part of the file you want to print.

Here are the forms of the list command most commonly used:

51

list linenum
Print lines centered around line number linenum in the current
source file.

list function
Print lines centered around the beginning of function function.

list
Print more lines. If the last lines printed were printed with a
list command, this prints lines following the last lines printed;
however, if the last line printed was a solitary line printed as
part of displaying a stack frame (see Chapter 6, Examining the
Stack [43]), this prints lines centered around that line.

list -
Print lines just before the lines last printed.

By default, the debugger prints ten source lines with any of these
forms of the list command. You can change this using set listsize:

set listsize count

Make the list command display count source lines (unless the
list argument explicitly specifies some other number).

show listsize

Display the number of lines that list prints.

Repeating a list command with Enter discards the argument, so it
is equivalent to typing just list. This is more useful than listing the
same lines again. An exception is made for an argument of -; that
argument is preserved in repetition so that each repetition moves
up in the source file.

In general, the list command expects you to supply zero, one or
two linespecs. Linespecs specify source lines; there are several
ways of writing them but the effect is always to specify some source
line. Here is a complete description of the possible arguments for
list:

52

Chapter 7. Examining Source Files

list linespec
Print lines centered around the line specified by linespec.

list first,last
Print lines from first to last. Both arguments are linespecs.

list ,last
Print lines ending with last.

list first,
Print lines starting with first.

list +
Print lines just after the lines last printed.

list -
Print lines just before the lines last printed.

list
As described in the preceding table.

Here are the ways of specifying a single source line—all the kinds
of linespec.

number

Specifies line number of the current source file. When a list
command has two linespecs, this refers to the same source file
as the first linespec.

+offset
Specifies the line offset lines after the last line printed. When
used as the second linespec in a list command that has two,
this specifies the line offset lines down from the first linespec.

-offset
Specifies the line offset lines before the last line printed.

filename:number
Specifies line number in the source file filename.

function

Specifies the line that begins the body of the function function.
For example: in C, this is the line with the open brace.

53

Printing Source Lines

filename:function
Specifies the line of the open-brace that begins the body of the
function function in the file filename. You only need the file
name with a function name to avoid ambiguity when there are
identically named functions in different source files.

*address
Specifies the line containing the program address address.
address may be any expression.

7.2. Searching Source Files

There are two commands for searching through the current source
file for a regular expression.

forward-search regexp , search regexp

The command forward-search regexp checks each line,
starting with the one following the last line listed, for a match
for regexp. It lists the line that is found. You can use the
synonym search regexp or abbreviate the command name as
fo.

reverse-search regexp
The command reverse-search regexp checks each line, starting
with the one before the last line listed and going backward, for
a match for regexp. It lists the line that is found. You can
abbreviate this command as rev.

7.3. Specifying Source Directories

Executable programs sometimes do not record the directories of
the source files from which they were compiled, just the names.
Even when they do, the directories could be moved between the
compilation and your debugging session. The debugger has a list
of directories to search for source files; this is called the source
path. Each time the debugger wants a source file, it tries all the
directories in the list, in the order they are present in the list, until
it finds a file with the desired name. Note that the executable search

54

Chapter 7. Examining Source Files

path is not used for this purpose. Neither is the current working
directory, unless it happens to be in the source path.

If the debugger cannot find a source file in the source path, and the
object program records a directory, the debugger tries that directory
too. If the source path is empty, and there is no record of the
compilation directory, the debugger looks in the current directory
as a last resort.

Whenever you reset or rearrange the source path, the debugger
clears out any information it has cached about where source files
are found and where each line is in the file.

When you start the debugger, its source path is empty. To add other
directories, use the directory command.

directory dirname ...

dir dirname ...
Add directory dirname to the front of the source path. Several
directory names may be given to this command, separated by
: or whitespace. You may specify a directory that is already in
the source path; this moves it forward, so the debugger searches
it sooner.

You can use the string $cdir to refer to the compilation
directory (if one is recorded), and $cwd to refer to the current
working directory. $cwd is not the same as .—the former tracks
the current working directory as it changes during your the
debugger session, while the latter is immediately expanded to
the current directory at the time you add an entry to the source
path.

directory
Reset the source path to empty again. This requires
confirmation.

show directories

Print the source path: show which directories it contains.

55

Specifying Source Directories

If your source path is cluttered with directories that are no longer
of interest, the debugger may sometimes cause confusion by finding
the wrong versions of source. You can correct the situation as
follows:

1. Use directory with no argument to reset the source path to
empty.

2. Use directory with suitable arguments to reinstall the directories
you want in the source path. You can add all the directories in
one command.

7.4. Source and Machine Code

You can use the command info line to map source lines to program
addresses (and vice versa), and the command disassemble to
display a range of addresses as machine instructions. When run
under Emacs mode, the info line command now causes the arrow
to point to the line specified. Also, info line prints addresses in
symbolic form as well as hex.

info line linespec

Print the starting and ending addresses of the compiled code
for source line linespec. You can specify source lines in any
of the ways understood by the list command (see Section 7.1,
“Printing Source Lines” [51]).

For example, we can use info line to discover the location of the
object code for the first line of function log10 in Whetstone:

(gdb) info line log10
Line 176 of "whetstone.adb" starts at address 0xc9a <whetstone__log10<
 and ends at 0xca4 <whetstone__log10+10>.
(gdb)

We can also inquire (using *addr as the form for linespec) what
source line covers a particular address:

56

Chapter 7. Examining Source Files

(gdb) info line *0xc9a
Line 176 of "whetstone.adb" starts at address 0xc9a <whetstone__log10<
 and ends at 0xca4 <whetstone__log10+10>.
(gdb)

After info line, the default address for the x command is changed
to the starting address of the line, so that x/i is sufficient to begin
examining the machine code (see Section 8.5, “Examining
Memory” [66]). Also, this address is saved as the value of the
convenience variable $_ (see Section 8.9, “Convenience
Variables” [80]).

disassemble

This specialized command dumps a range of memory as
machine instructions. The default memory range is the function
surrounding the program counter of the selected frame. A single
argument to this command is a program counter value; the
debugger dumps the function surrounding this value. Two
arguments specify a range of addresses (first inclusive, second
exclusive) to dump.

We can use disassemble to inspect the object code range shown
in the last info line.

(gdb) disassemble 0xc9a 0xca0
Dump of assembler code from 0xc9a to 0xca0:
0xc9a <whetstone__log10>: sisp r15,1
0xc9c <whetstone__log10+2>: pshm r14,r14
0xc9e <whetstone__log10+4>: lr r14,r15
End of assembler dump.
(gdb)

57

Source and Machine Code

58

Examining DataChapter 8

The usual way to examine data in your program is with the print
command (abbreviated p), or its synonym inspect. It evaluates and
prints the value of an expression of the language your program is
written in (see Chapter 9, Using the Debugger with Different
Languages [85]).

print exp , print /f exp

exp is an expression (in the source language). By default the
value of exp is printed in a format appropriate to its data type;
you can choose a different format by specifying /f, where f is
a letter specifying the format; see Section 8.4, “Output
Formats” [65].

print , print /f
If you omit exp, the debugger displays the last value again
(from the value history; see Section 8.8, “Value History” [78]).
This allows you to conveniently inspect the same value in an
alternative format.

59

A more low-level way of examining data is with the x command.
It examines data in memory at a specified address and prints it in
a specified format. See Section 8.5, “Examining Memory” [66].

If you are interested in information about types, or about how the
fields of a struct or class are declared, use the ptype exp command
rather than print. See Chapter 10, Examining the Symbol
Table [103].

8.1. Expressions

print and many other the debugger commands accept an expression
and compute its value. Any kind of constant, variable or operator
defined by the programming language you are using is valid in an
expression in the debugger. This includes conditional expressions,
function calls, casts and string constants. It unfortunately does not
include symbols defined by preprocessor #define commands.

The debugger now supports array constants in expressions input
by the user. The syntax is {element, element...}. For example,
you can now use the command print {1, 2, 3} to build up an array
in memory that is malloc'd in the target program.

Because C is so widespread, most of the expressions shown in
examples in this manual are in C. See Chapter 9, Using the
Debugger with Different Languages [85], for information on how
to use expressions in other languages.

In this section, we discuss operators that you can use in the
debugger expressions regardless of your programming language.

Casts are supported in all languages, not just in C, because it is so
useful to cast a number into a pointer in order to examine a structure
at that address in memory.

The debugger supports these operators, in addition to those common
to programming languages:

@
@ is a binary operator for treating parts of memory as arrays.
See Section 8.3, “Artificial Arrays” [63], for more information.

60

Chapter 8. Examining Data

::
:: allows you to specify a variable in terms of the file or
function where it is defined. See Section 8.2, “Program
Variables” [61].

{type} addr

Refers to an object of type type stored at address addr in
memory. addr may be any expression whose value is an integer
or pointer (but parentheses are required around binary
operators, just as in a cast). This construct is allowed regardless
of what kind of data is normally supposed to reside at addr.

8.2. Program Variables

The most common kind of expression to use is the name of a
variable in your program.

Variables in expressions are understood in the selected stack frame
(see Section 6.3, “Selecting a Frame” [46]); they must be either:

• global (or static)

or

• visible according to the scope rules of the programming language
from the point of execution in that frame

This means that in the function

foo (a)
 int a;
{
 bar (a);
 {
 int b = test ();
 bar (b);
 }
}

61

Program Variables

you can examine and use the variable a whenever your program is
executing within the function foo, but you can only use or examine
the variable b while your program is executing inside the block
where b is declared.

There is an exception: you can refer to a variable or function whose
scope is a single source file even if the current execution point is
not in this file. But it is possible to have more than one such variable
or function with the same name (in different source files). If that
happens, referring to that name has unpredictable effects. If you
wish, you can specify a static variable in a particular function or
file, using the colon-colon notation:

file::variable
function::variable

Here file or function is the name of the context for the static
variable. In the case of file names, you can use quotes to make
sure the debugger parses the file name as a single word—for
example, to print a global value of x defined in f2.c:

(gdb) p 'f2.c'::x

This use of :: is very rarely in conflict with the very similar use of
the same notation in C++. The debugger also supports use of the
C++ scope resolution operator in the debugger expressions.

62

Chapter 8. Examining Data

Warning Occasionally, a local variable may appear to have the
wrong value at certain points in a function – just after
entry to a new scope, and just before exit.

You may see this problem when you are stepping by
machine instructions. This is because, on most machines,
it takes more than one instruction to set up a stack frame
(including local variable definitions); if you are stepping
by machine instructions, variables may appear to have
the wrong values until the stack frame is completely
built. On exit, it usually also takes more than one
machine instruction to destroy a stack frame; after you
begin stepping through that group of instructions, local
variable definitions may be gone.

8.3. Artificial Arrays

It is often useful to print out several successive objects of the same
type in memory; a section of an array, or an array of dynamically
determined size for which only a pointer exists in the program.

You can do this by referring to a contiguous span of memory as
an artificial array, using the binary operator @. The left operand
of @ should be the first element of the desired array and be an
individual object. The right operand should be the desired length
of the array. The result is an array value whose elements are all of
the type of the left argument. The first element is actually the left
argument; the second element comes from bytes of memory
immediately following those that hold the first element, and so on.
Here is an example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of @ must reside in memory. Array values made
with @ in this way behave just like other arrays in terms of

63

Artificial Arrays

subscripting, and are coerced to pointers when used in expressions.
Artificial arrays most often appear in expressions via the value
history (see Section 8.8, “Value History” [78]), after printing one
out.

Another way to create an artificial array is to use a cast. This
re-interprets a value as if it were an array. The value need not be
in memory:

(gdb) p/x (short[2])0x12345678
$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in
(type)[])value) gdb calculates the size to fill the value (as
sizeof(value)/sizeof(type):

(gdb) p/x (short[])0x12345678
$2 = {0x1234, 0x5678}

Sometimes the artificial array mechanism is not quite enough; in
moderately complex data structures, the elements of interest may
not actually be adjacent—for example, if you are interested in the
values of pointers in an array. One useful work-around in this
situation is to use a convenience variable (see Section 8.9,
“Convenience Variables” [80]) as a counter in an expression that
prints the first interesting value, and then repeat that expression
via Enter. For instance, suppose you have an array dtab of pointers
to structures, and you are interested in the values of a field fv in
each structure. Here is an example of what you might type:

set $i = 0
p dtab[$i++]->fv
Enter
Enter
...

64

Chapter 8. Examining Data

8.4. Output Formats

By default, the debugger prints a value according to its data type.
Sometimes this is not what you want. For example, you might want
to print a number in hex, or a pointer in decimal. Or you might
want to view data in memory at a certain address as a character
string or as an instruction. To do these things, specify an output
format when you print a value.

The simplest use of output formats is to say how to print a value
already computed. This is done by starting the arguments of the
print command with a slash and a format letter. The format letters
supported are:

x
Regard the bits of the value as an integer, and print the integer
in hexadecimal.

d
Print as integer in signed decimal.

u
Print as integer in unsigned decimal.

o
Print as integer in octal.

t
Print as integer in binary. The letter t stands for “two”. 1

a

Print as an address, both absolute in hexadecimal and as an
offset from the nearest preceding symbol. You can use this
format used to discover where (in what function) an unknown
address is located:

1b cannot be used because these format letters are also used with the x command, where b stands for “byte”;
see Section 8.5, “Examining Memory” [66].

65

Output Formats

(gdb) p/a 0x54320
$3 = 0x54320 <_initialize_vx+396>

c
Regard as an integer and print it as a character constant.

f
Regard the bits of the value as a floating-point number and
print using typical floating-point syntax.

For example, to print the program counter in hex (see Section 8.10,
“Registers” [82]), type

p/x $pc

Note that no space is required before the slash; this is because
command names in the debugger cannot contain a slash.

To reprint the last value in the value history with a different format,
you can use the print command with just a format and no
expression. For example, p/x reprints the last value in hex.

8.5. Examining Memory

You can use the command x (for “examine”) to examine memory
in any of several formats, independently of your program's data
types.

x/nfu addr , x addr , x

Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much
memory to display and how to format it; addr is an expression
giving the address where you want to start displaying memory. If
you use defaults for nfu, you need not type the slash /. Several
commands set convenient defaults for addr.

66

Chapter 8. Examining Data

n, the repeat count
The repeat count is a decimal integer; the default is 1. It
specifies how much memory (counting by units u) to display.

f, the display format
The display format is one of the formats used by print, s
(null-terminated string), or i (machine instruction). The default
is x (hexadecimal) initially. The default changes each time you
use either x or print.

u, the unit size
The unit size is any of

b
Bytes.

h
Halfwords (two bytes).

w
Words (four bytes). This is the initial default.

g
Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the
default unit the next time you use x. (For the s and i formats,
the unit size is ignored and is normally not written.)

addr, starting display address
addr is the address where you want the debugger to begin
displaying memory. The expression need not have a pointer
value (though it may); it is always interpreted as an integer
address of a byte of memory. The default for addr is usually
just after the last address examined—but several other
commands also set the default address: info breakpoints (to
the address of the last breakpoint listed), info line (to the
starting address of a line), and print (if you use it to display a
value from memory).

For example, x/3uh 0x54320 is a request to display three halfwords
(h) of memory, formatted as unsigned decimal integers (u), starting

67

Examining Memory

at address 0x54320. x/4xw $sp prints the four words (w) of memory
above the stack pointer (here, $sp; see Section 8.10,
“Registers” [82]) in hexadecimal (x).

Since the letters indicating unit sizes are all distinct from the letters
specifying output formats, you do not have to remember whether
unit size or format comes first; either order works. The output
specifications 4xw and 4wx mean exactly the same thing.
(However, the count n must come first; wx4 does not work.)

Even though the unit size u is ignored for the formats s and i, you
might still want to use a count n; for example, 3i specifies that you
want to see three machine instructions, including any operands.
The command disassemble gives an alternative way of inspecting
machine instructions; see Section 7.4, “Source and Machine
Code” [56].

All the defaults for the arguments to x are designed to make it easy
to continue scanning memory with minimal specifications each
time you use x. For example, after you have inspected three
machine instructions with x/3i addr, you can inspect the next seven
with just x/7. If you use Enter to repeat the x command, the repeat
count n is used again; the other arguments default as for successive
uses of x.

The addresses and contents printed by the x command are not saved
in the value history because there is often too much of them and
they would get in the way. Instead, the debugger makes these values
available for subsequent use in expressions as values of the
convenience variables $_ and $__. After an x command, the last
address examined is available for use in expressions in the
convenience variable $_. The contents of that address, as examined,
are available in the convenience variable $__.

If the x command has a repeat count, the address and contents saved
are from the last memory unit printed; this is not the same as the
last address printed if several units were printed on the last line of
output.

68

Chapter 8. Examining Data

8.6. Automatic Display

If you find that you want to print the value of an expression
frequently (to see how it changes), you might want to add it to the
automatic display list so that the debugger prints its value each
time your program stops. Each expression added to the list is given
a number to identify it; to remove an expression from the list, you
specify that number. The automatic display looks like this:

2: foo = 38
3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current
values. As with displays you request manually using x or print,
you can specify the output format you prefer; in fact, display
decides whether to use print or x depending on how elaborate your
format specification is—it uses x if you specify a unit size, or one
of the two formats (i and s) that are only supported by x; otherwise
it uses print.

display exp

Add the expression exp to the list of expressions to display
each time your program stops. See Section 8.1,
“Expressions” [60].

display does not repeat if you press Enter again after using it.

display/fmt exp

For fmt specifying only a display format and not a size or count,
add the expression exp to the auto-display list but arrange to
display it each time in the specified format fmt. See Section 8.4,
“Output Formats” [65].

display/fmt addr

For fmt i or s, or including a unit-size or a number of units,
add the expression addr as a memory address to be examined
each time your program stops. Examining means in effect doing
x/fmt addr. See Section 8.5, “Examining Memory” [66].

69

Automatic Display

For example, display/i $pc can be helpful, to see the machine
instruction about to be executed each time execution stops ($pc is
a common name for the program counter; see Section 8.10,
“Registers” [82]).

undisplay dnums... , delete display dnums...

Remove item numbers dnums from the list of expressions to
display.

undisplay does not repeat if you press Enter after using it.
(Otherwise you would just get the error No display number
....)

disable display dnums...

Disable the display of item numbers dnums. A disabled display
item is not printed automatically, but is not forgotten. It may
be enabled again later.

enable display dnums...

Enable display of item numbers dnums. It becomes effective
once again in auto display of its expression, until you specify
otherwise.

display
Display the current values of the expressions on the list, just
as is done when your program stops.

info display

Print the list of expressions previously set up to display
automatically, each one with its item number, but without
showing the values. This includes disabled expressions, which
are marked as such. It also includes expressions which would
not be displayed right now because they refer to automatic
variables not currently available.

If a display expression refers to local variables, then it does not
make sense outside the lexical context for which it was set up. Such
an expression is disabled when execution enters a context where

70

Chapter 8. Examining Data

one of its variables is not defined. For example, if you give the
command display last_char while inside a function with an
argument last_char, the debugger displays this argument while
your program continues to stop inside that function. When it stops
elsewhere—where there is no variable last_char—the display is
disabled automatically. The next time your program stops where
last_char is meaningful, you can enable the display expression once
again.

8.7. Print Settings

The debugger provides the following ways to control how arrays,
structures, and symbols are printed.

These settings are useful for debugging programs in any language:

set print address , set print address on

The debugger prints memory addresses showing the location
of stack traces, structure values, pointer values, breakpoints,
and so forth, even when it also displays the contents of those
addresses. The default is on. For example, this is what a stack
frame display looks like with set print address on:

(gdb) f
#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
 at input.c:530
530 if (lquote != def_lquote)

set print address off
Do not print addresses when displaying their contents. For
example, this is the same stack frame displayed with set print
address off:

(gdb) set print addr off
(gdb) f
#0 set_quotes (lq="<<", rq=">>") at input.c:530
530 if (lquote != def_lquote)

71

Print Settings

You can use set print address off to eliminate all machine
dependent displays from the debugger interface. For example,
with print address off, you should get the same text for
backtraces on all machines—whether or not they involve
pointer arguments.

show print address

Show whether or not addresses are to be printed.

When the debugger prints a symbolic address, it normally prints
the closest earlier symbol plus an offset. If that symbol does not
uniquely identify the address (for example, it is a name whose
scope is a single source file), you may need to clarify. One way to
do this is with info line, for example info line *0x4537. Alternately,
you can set the debugger to print the source file and line number
when it prints a symbolic address:

set print symbol-filename on

Tell the debugger to print the source file name and line number
of a symbol in the symbolic form of an address.

set print symbol-filename off
Do not print source file name and line number of a symbol.
This is the default.

show print symbol-filename

Show whether or not the debugger will print the source file
name and line number of a symbol in the symbolic form of an
address.

Another situation where it is helpful to show symbol filenames and
line numbers is when disassembling code; the debugger shows you
the line number and source file that corresponds to each instruction.

In addition, you may wish to see the symbolic form only if the
address being printed is reasonably close to the closest earlier
symbol:

72

Chapter 8. Examining Data

set print max-symbolic-offset max-offset

Tell the debugger to only display the symbolic form of an
address if the offset between the closest earlier symbol and the
address is less than max-offset. The default is 0, which tells
the debugger to always print the symbolic form of an address
if any symbol precedes it.

show print max-symbolic-offset

Ask how large the maximum offset is that the debugger prints
in a symbolic address.

If you have a pointer and you are not sure where it points, try set
print symbol-filename on. Then you can determine the name and
source file location of the variable where it points, using p/a
pointer. This interprets the address in symbolic form. For example,
here the debugger shows that a variable ptt points at another
variable t, defined in hi2.c:

(gdb) set print symbol-filename on
(gdb) p/a ptt
$4 = 0xe008 <t in hi2.c>

Warning For pointers that point to a local variable, p/a does not
show the symbol name and filename of the referent,
even with the appropriate set print options turned on.

Other settings control how different kinds of objects are printed:

set print array , set print array on

Pretty print arrays. This format is more convenient to read, but
uses more space. The default is off.

set print array off
Return to compressed format for arrays.

show print array

Show whether compressed or pretty format is selected for
displaying arrays.

73

Print Settings

set print elements number-of-elements

Set a limit on how many elements of an array the debugger
will print. If the debugger is printing a large array, it stops
printing after it has printed the number of elements set by the
set print elements command. This limit also applies to the
display of strings. Setting number-of-elements to zero means
that the printing is unlimited.

show print elements

Display the number of elements of a large array that the
debugger will print. If the number is 0, then the printing is
unlimited.

set print null-stop

Cause the debugger to stop printing the characters of an array
when the first NULL is encountered. This is useful when large
arrays actually contain only short strings.

set print pretty on

Cause the debugger to print structures in an indented format
with one member per line, like this:

$1 = {
 next = 0x0,
 flags = {
 sweet = 1,
 sour = 1
 },
 meat = 0x54 "Pork"
}

set print pretty off
Cause the debugger to print structures in a compact format,
like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \
meat = 0x54 "Pork"}

74

Chapter 8. Examining Data

This is the default format.

show print pretty

Show which format the debugger is using to print structures.

set print sevenbit-strings on

Print using only seven-bit characters; if this option is set, the
debugger displays any eight-bit characters (in strings or
character values) using the notation \nnn. This setting is best
if you are working in English (ascii) and you use the
high-order bit of characters as a marker or "meta" bit.

set print sevenbit-strings off
Print full eight-bit characters. This allows the use of more
international character sets, and is the default.

show print sevenbit-strings

Show whether or not the debugger is printing only seven-bit
characters.

set print union on

Tell the debugger to print unions which are contained in
structures. This is the default setting.

set print union off
Tell the debugger not to print unions which are contained in
structures.

show print union

Ask the debugger whether or not it will print unions which are
contained in structures.

For example, given the declarations

typedef enum {Tree, Bug} Species;
typedef enum {Big_tree, Acorn, Seedling} Tree_forms;
typedef enum {Caterpillar, Cocoon, Butterfly}

75

Print Settings

 Bug_forms;
struct thing {
 Species it;
 union {
 Tree_forms tree;
 Bug_forms bug;
 } form;
};
struct thing foo = {Tree, {Acorn}};

with set print union on in effect p foo would print

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in effect it would print

$1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

set print demangle , set print demangle on

Print C++ names in their source form rather than in the encoded
(“mangled”) form passed to the assembler and linker for
type-safe linkage. The default is on.

show print demangle

Show whether C++ names are printed in mangled or demangled
form.

set print asm-demangle , set print asm-demangle on

Print C++ names in their source form rather than their mangled
form, even in assembler code printouts such as instruction
disassemblies. The default is off.

show print asm-demangle

Show whether C++ names in assembly listings are printed in
mangled or demangled form.

76

Chapter 8. Examining Data

set demangle-style style

Choose among several encoding schemes used by different
compilers to represent C++ names. The choices for style are
currently:

auto
Allow the debugger to choose a decoding style by
inspecting your program.

gnu
Decode based on the GNU C++ Compiler (g++) encoding
algorithm. This is the default.

arm
Decode using the algorithm in the C++ Annotated
Reference Manual.

foo
Show the list of formats.

show demangle-style

Display the encoding style currently in use for decoding C++
symbols.

set print object , set print object on

When displaying a pointer to an object, identify the actual
(derived) type of the object rather than the declared type, using
the virtual function table.

set print object off
Display only the declared type of objects, without reference
to the virtual function table. This is the default setting.

show print object

Show whether actual, or declared, object types are displayed.

77

Print Settings

set print static-members , set print static-members on

Print static members when displaying a C++ object. The default
is on.

set print static-members off
Do not print static members when displaying a C++ object.

show print static-members

Show whether C++ static members are printed, or not.

set print vtbl , set print vtbl on

Pretty print C++ virtual function tables. The default is off.

set print vtbl off
Do not pretty print C++ virtual function tables.

show print vtbl

Show whether C++ virtual function tables are pretty printed,
or not.

8.8. Value History

Values printed by the print command are saved in the the debugger
value history. This allows you to refer to them in other expressions.
Values are kept until the symbol table is re-read or discarded (for
example with the file or symbol-file commands). When the symbol
table changes, the value history is discarded, since the values may
contain pointers back to the types defined in the symbol table.

The values printed are given history numbers by which you can
refer to them. These are successive integers starting with one. print
shows you the history number assigned to a value by printing $num
= before the value; here num is the history number.

To refer to any previous value, use $ followed by the value's history
number. The way print labels its output is designed to remind you
of this. Just $ refers to the most recent value in the history, and $$

78

Chapter 8. Examining Data

refers to the value before that. $$n refers to the nth value from the
end; $$2 is the value just prior to $$, $$1 is equivalent to $$, and
$$0 is equivalent to $.

For example, suppose you have just printed a pointer to a structure
and want to see the contents of the structure. It suffices to type

p *$

If you have a chain of structures where the component next points
to the next one, you can print the contents of the next one with this:

p *$.next

You can print successive links in the chain by repeating this
command—which you can do by just typing Enter.

Note that the history records values, not expressions. If the value
of x is 4 and you type these commands:

print x
set x=5

then the value recorded in the value history by the print command
remains 4 even though the value of x has changed.

show values

Print the last ten values in the value history, with their item
numbers. This is like p $$9 repeated ten times, except that
show values does not change the history.

show values n
Print ten history values centered on history item number n.

show values +
Print ten history values just after the values last printed. If no
more values are available, show values + produces no display.

79

Value History

Pressing Enter to repeat show values n has exactly the same effect
as show values +.

8.9. Convenience Variables

The debugger provides convenience variables that you can use
within the debugger to hold on to a value and refer to it later. These
variables exist entirely within the debugger; they are not part of
your program, and setting a convenience variable has no direct
effect on further execution of your program. That is why you can
use them freely.

Convenience variables are prefixed with $. Any name preceded by
$ can be used for a convenience variable, unless it is one of the
predefined machine-specific register names (see Section 8.10,
“Registers” [82]). (Value history references, in contrast, are
numbers preceded by $. See Section 8.8, “Value History” [78].)

You can save a value in a convenience variable with an assignment
expression, just as you would set a variable in your program. For
example:

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by
object_ptr.

Using a convenience variable for the first time creates it, but its
value is void until you assign a new value. You can alter the value
with another assignment at any time.

Convenience variables have no fixed types. You can assign a
convenience variable any type of value, including structures and
arrays, even if that variable already has a value of a different type.
The convenience variable, when used as an expression, has the
type of its current value.

80

Chapter 8. Examining Data

show convenience

Print a list of convenience variables used so far, and their
values. Abbreviated show con.

One of the ways to use a convenience variable is as a counter to
be incremented or a pointer to be advanced. For example, to print
a field from successive elements of an array of structures:

set $i = 0
print bar[$i++]->contents

Repeat that command by typing Enter.

Some convenience variables are created automatically by the
debugger and given values likely to be useful.

$_

The variable $_ is automatically set by the x command to the
last address examined (see Section 8.5, “Examining
Memory” [66]). Other commands which provide a default
address for x to examine also set $_ to that address; these
commands include info line and info breakpoint. The type of
$_ is void * except when set by the x command, in which case
it is a pointer to the type of $__.

$__

The variable $__ is automatically set by the x command to the
value found in the last address examined. Its type is chosen to
match the format in which the data was printed.

$_exitcode

The variable $_exitcode is automatically set to the exit code
when the program being debugged terminates.

81

Convenience Variables

8.10. Registers

You can refer to machine register contents, in expressions, as
variables with names starting with $. The names of registers are
different for each machine; use info registers to see the names
used on your machine.

info registers

Print the names and values of all registers except floating-point
registers (in the selected stack frame).

info all-registers

Print the names and values of all registers, including
floating-point registers.

info registers regname ...
Print the relativized value of each specified register regname.
As discussed in detail below, register values are normally
relative to the selected stack frame. regname may be any register
name valid on the machine you are using, with or without the
initial $.

The debugger has four “standard” register names that are available
(in expressions) on most machines—whenever they do not conflict
with an architecture's canonical mnemonics for registers. The
register names $pc and $sp are used for the program counter register
and the stack pointer. $fp is used for a register that contains a
pointer to the current stack frame, and $ps is used for a register
that contains the processor status. For example, you could print the
program counter in hex with

p/x $pc

or print the instruction to be executed next with

x/i $pc

82

Chapter 8. Examining Data

or add four to the stack pointer2 with

set $sp += 4

Whenever possible, these four standard register names are available
on your machine even though the machine has different canonical
mnemonics, so long as there is no conflict. The info registers
command shows the canonical names. For example, on the SPARC,
info registers displays the processor status register as $psr but you
can also refer to it as $ps.

The debugger always considers the contents of an ordinary register
as an integer when the register is examined in this way. Some
machines have special registers which can hold nothing but floating
point; these registers are considered to have floating-point values.
There is no way to refer to the contents of an ordinary register as
floating-point value (although you can print it as a floating-point
value with print/f $regname).

Some registers have distinct “raw” and “virtual” data formats. This
means that the data format in which the register contents are saved
by the operating system is not the same one that your program
normally sees. For example, the registers of the 68881 floating-point
coprocessor are always saved in “extended” (raw) format, but all
C programs expect to work with “double” (virtual) format. In such
cases, the debugger normally works with the virtual format only
(the format that makes sense for your program), but the info
registers command prints the data in both formats.

Normally, register values are relative to the selected stack frame
(see Section 6.3, “Selecting a Frame” [46]). This means that you
get the value that the register would contain if all stack frames
farther in were exited and their saved registers restored. In order
to see the true contents of hardware registers, you must select the
innermost frame (with frame 0).

2This is a way of removing one word from the stack, on machines where stacks grow downward in memory
(most machines, nowadays). This assumes that the innermost stack frame is selected; setting $sp is not
allowed when other stack frames are selected. To pop entire frames off the stack, regardless of machine
architecture, use the return command; see Section 11.3, “Returning from a Function” [112].

83

Registers

However, the debugger must deduce where registers are saved,
from the machine code generated by your compiler. If some
registers are not saved, or if the debugger is unable to locate the
saved registers, the selected stack frame makes no difference.

84

Chapter 8. Examining Data

Using the Debugger with
Different Languages

Chapter 9

Language-specific information is built into the debugger for some
languages, allowing you to express operations like the above in
your program's native language, and allowing the debugger to
output values in a manner consistent with the syntax of your
program's native language. The language you use to build
expressions is called the working language.

9.1. Switching Between Source Languages

There are two ways to control the working language—either have
the debugger set it automatically, or select it manually yourself.
You can use the set language command for either purpose. On
startup, the debugger defaults to setting the language automatically.
The working language is used to determine how expressions you
type are interpreted, how values are printed, etc.

In addition to the working language, every source file that the
debugger knows about has its own working language. For some
object file formats, the compiler might indicate which language a

85

particular source file is in. However, most of the time the debugger
infers the language from the name of the file. The language of a
source file controls whether C++ names are demangled—this way
backtrace can show each frame appropriately for its own language.
There is no way to set the language of a source file from within
the debugger.

This is most commonly a problem when you use a program, such
as cfront or f2c, that generates C but is written in another language.
In that case, make the program use #line directives in its C output;
that way the debugger will know the correct language of the source
code of the original program, and will display that source code,
not the generated C code.

9.1.1. List of Filename Extensions and Languages

If a source file name ends in one of the following extensions, then
the debugger infers that its language is the one indicated.

.c

C source file

.C, .cc, .cxx, .cpp, .cp, .c++
C++ source file

.a, .ada, .adb, .ads
Ada source file

.c66, .C66, .cor, .COR
Coral 66 source file

.s, .S
Assembler source file. This actually behaves almost like C,
but the debugger does not skip over function prologues when
stepping.

86

Chapter 9. Using the Debugger with Different Languages

9.1.2. Setting the Working Language

If you allow the debugger to set the language automatically,
expressions are interpreted the same way in your debugging session
and your program.

If you wish, you may set the language manually. To do this, issue
the command set language lang, where lang is the name of a
language, such as c. For a list of the supported languages, type set
language.

9.1.3. Having the Debugger Infer the Source Language

To have the debugger set the working language automatically, use
set language local or set language auto. The debugger then infers
the working language. That is, when your program stops in a frame
(usually by encountering a breakpoint), the debugger sets the
working language to the language recorded for the function in that
frame. If the language for a frame is unknown (that is, if the
function or block corresponding to the frame was defined in a
source file that does not have a recognized extension), the current
working language is not changed, and the debugger issues a
warning.

This may not seem necessary for most programs, which are written
entirely in one source language. However, program modules and
libraries written in one source language can be used by a main
program written in a different source language. Using the command
set language auto in this case frees you from having to set the
working language manually.

9.2. Displaying the Language

The following commands help you find out which language is the
working language, and also which language source files were
written in.

87

Setting the Working Language

show language

Display the current working language. This is the language
you can use with commands such as print to build and compute
expressions that may involve variables in your program.

info frame

Display the source language for this frame. This language
becomes the working language if you use an identifier from
this frame. See Section 6.4, “Information about a Frame” [47],
to identify the other information listed here.

info source

Display the source language of this source file. See Chapter 10,
Examining the Symbol Table [103] to identify the other
information listed here.

9.3. Supported Languages

The debugger supports Ada, C, C++, Coral 66 and assembly
programming languages. Some the debugger features may be used
in expressions regardless of the language you use: the debugger
@ and :: operators, and the {type}addr construct (see Section 8.1,
“Expressions” [60]) can be used with the constructs of any
supported language.

The following sections detail to what degree each source language
is supported by the debugger. These sections are not meant to be
language tutorials or references, but serve only as a reference guide
to what the debugger expression parser accepts, and what input
and output formats should look like for different languages. There
are many good books written on each of these languages; please
look to these for a language reference or tutorial.

88

Chapter 9. Using the Debugger with Different Languages

9.3.1. C and C++ operators

Operators must be defined on values of specific types. For instance,
+ is defined on numbers, but not on structures. Operators are often
defined on groups of types.

For the purposes of C and C++, the following definitions hold:

• Integral types include int with any of its storage-class specifiers;
char; and enum.

• Floating-point types include float and double.

• Pointer types include all types defined as (type *).

• Scalar types include all of the above.

The following operators are supported. They are listed here in order
of increasing precedence:

,
The comma or sequencing operator. Expressions in a
comma-separated list are evaluated from left to right, with the
result of the entire expression being the last expression
evaluated.

=
Assignment. The value of an assignment expression is the value
assigned. Defined on scalar types.

op=
Used in an expression of the form a op= b, and translated to a
= a op b. op= and = have the same precendence. op is any one
of the operators |, ^, &, <<, >>, +, -, *, /, %.

?:
The ternary operator. a ? b : c can be thought of as: if a then b
else c. a should be of an integral type.

||
Logical or. Defined on integral types.

89

C and C++ operators

&&
Logical and. Defined on integral types.

|
Bitwise or. Defined on integral types.

^
Bitwise exclusive-or. Defined on integral types.

&
Bitwise and. Defined on integral types.

==, !=
Equality and inequality. Defined on scalar types. The value of
these expressions is 0 for false and non-zero for true.

<, >, <=, >=
Less than, greater than, less than or equal, greater than or equal.
Defined on scalar types. The value of these expressions is 0
for false and non-zero for true.

<<, >>
left shift, and right shift. Defined on integral types.

@
The the debugger “artificial array” operator (see Section 8.1,
“Expressions” [60]).

+, -
Addition and subtraction. Defined on integral types,
floating-point types and pointer types.

*, /, %
Multiplication, division, and modulus. Multiplication and
division are defined on integral and floating-point types.
Modulus is defined on integral types.

++, --
Increment and decrement. When appearing before a variable,
the operation is performed before the variable is used in an
expression; when appearing after it, the variable's value is used
before the operation takes place.

90

Chapter 9. Using the Debugger with Different Languages

*
Pointer dereferencing. Defined on pointer types. Same
precedence as ++.

&
Address operator. Defined on variables. Same precedence as
++.

For debugging C++, the debugger implements a use of &
beyond what is allowed in the C++ language itself: you can
use &(&ref) (or, if you prefer, simply &&ref) to examine
the address where a C++ reference variable (declared with
&ref) is stored.

-
Negative. Defined on integral and floating-point types. Same
precedence as ++.

!
Logical negation. Defined on integral types. Same precedence
as ++.

~
Bitwise complement operator. Defined on integral types. Same
precedence as ++.

., ->
Structure member, and pointer-to-structure member. For
convenience, the debugger regards the two as equivalent,
choosing whether to dereference a pointer based on the stored
type information. Defined on struct and union data.

[]
Array indexing. a[i] is defined as *(a+i). Same precedence as
->.

()
Function parameter list. Same precedence as ->.

::
C++ scope resolution operator. Defined on struct, union, and
class types.

91

C and C++ operators

::
Doubled colons also represent the debugger scope operator
(see Section 8.1, “Expressions” [60]). Same precedence as ::,
above.

9.3.2. C and C++ Constants

The debugger allows you to express the constants of C and C++
in the following ways:

• Integer constants are a sequence of digits. Octal constants are
specified by a leading 0 (i.e. zero), and hexadecimal constants
by a leading 0x or 0X. Constants may also end with a letter l,
specifying that the constant should be treated as a long value.

• Floating point constants are a sequence of digits, followed by a
decimal point, followed by a sequence of digits, and optionally
followed by an exponent. An exponent is of the form: e[[+]|-]nnn,
where nnn is another sequence of digits. The + is optional for
positive exponents.

• Enumerated constants consist of enumerated identifiers, or their
integral equivalents.

• Character constants are a single character surrounded by single
quotes ('), or a number—the ordinal value of the corresponding
character (usually its ASCII value). Within quotes, the single
character may be represented by a letter or by escape sequences,
which are of the form \nnn, where nnn is the octal representation
of the character's ordinal value; or of the form \x, where x is a
predefined special character—for example, \n for newline.

• String constants are a sequence of character constants surrounded
by double quotes (").

• Pointer constants are an integral value. You can also write
pointers to constants using the C operator &.

• Array constants are comma-separated lists surrounded by braces
{ and }; for example, {1,2,3} is a three-element array of integers,

92

Chapter 9. Using the Debugger with Different Languages

{{1,2}, {3,4}, {5,6}} is a three-by-two array, and {&"hi",
&"there", &"fred"} is a three-element array of pointers.

9.4. The Ada Mode

The Ada mode of the debugger supports a fairly large subset of
Ada expression syntax, with some extensions. The philosophy
behind the design of this subset is:

• That the debugger should provide basic literals and access to
operations for arithmetic, dereferencing, field selection, indexing,
and subprogram calls.

• That type safety and strict adherence to Ada language restrictions
are not particularly important to the the debugger user.

• That brevity is important to the the debugger user.

Thus, for brevity, the debugger acts as if there were implicit with
and use clauses in effect for all user-written packages, making it
unnecessary to fully qualify most names with their packages,
regardless of context. Where this causes ambiguity, the debugger
asks the user's intent.

The debugger will start in Ada mode if it detects an Ada main
program. As for other languages, it will enter Ada mode when
stopped in a program that was translated from an Ada source file.

While in Ada mode, you may use -- for comments. This is useful
mostly for documenting command files. The standard debugger
comment (#) still works at the beginning of a line in Ada mode,
but not in the middle (to allow based literals).

The debugger supports limited overloading. Given a subprogram
call in which the function symbol has multiple definitions, it will
use the number of actual parameters and some information about
their types to attempt to narrow the set of definitions. It also makes
very limited use of context, preferring procedures to functions in
the context of the call command, and functions to procedures
elsewhere.

93

The Ada Mode

9.4.1. Omissions from Ada

Here are the notable omissions from the subset:

• Only a subset of the attributes are supported:

• • 'First, 'Last, and 'Length on array objects (not on types and
subtypes).

• 'Min and 'Max.

• 'Pos and 'Val.

• 'Tag.

• 'Range on array objects (not subtypes), but only as the right
operand of the membership (in) operator.

• 'Access, 'Unchecked_Access, and 'Unrestricted_Access (an
extension).

• 'Address.

• The names in Characters.Latin_1 are not available and
concatenation is not implemented. Thus, escape characters in
strings are not currently available.

• The component-by-component array operations (and, or, xor,
not, and relational and equality tests) are not implemented.

• There are no record or array aggregates.

• Dispatching subprogram calls are not implemented.

• The overloading algorithm is much more limited (that is less
selective) than that of real Ada. It makes only limited use of the
context in which a subexpression appears to resolve its meaning,
and it is much looser in its rules for allowing type matches. As
a result, some function calls will be ambiguous, and the user
will be asked to choose the proper resolution.

• The operator new is not implemented.

94

Chapter 9. Using the Debugger with Different Languages

• Entry calls are not implemented.

• Aside from printing, arithmetic operations on the native VAX
floating-point formats are not supported.

9.4.2. Additions to Ada

As it does for other languages, the debugger makes certain generic
extensions to Ada: the operators “@”, “::”, and {type} addr
convenience variables and machine registers.

In addition, it provides a few other shortcuts and outright additions
specific to Ada:

• The assignment statement is allowed as an expression, returning
its right-hand operand as its value. Thus, you may enter

set x := y + 3
print A(tmp := y + 1)

• The semicolon is allowed as an “operator”, returning as its value
the value of its right-hand operand. This allows, for example,
complex conditional breaks:

break f
condition 1 (report(i); k += 1; A(k) > 100)

• Rather than use catenation and symbolic character names to
introduce special characters into strings, one may instead use a
special bracket notation, which is also used to print strings. A
sequence of characters of the form “["XX"]” within a string or
character literal denotes the (single) character whose numeric
encoding is XX in hexadecimal. The sequence of characters
“["""]” also denotes a single quotation mark in strings. For
example,

 "One line.["0a"]Next line.["0a"]"

95

Additions to Ada

Contains an ASCII newline character
(Ada.Characters.Latin_1.LF) after each period.

• The subtype used as a prefix for the attributes 'Pos, 'Min, and
'Max is optional (and is ignored in any case). For example, it is
legal to write

print 'max(x, y)

• When printing arrays, the debugger uses positional notation
when the array has a lower bound of 1, and uses a modified
named notation otherwise. For example, a one-dimensional array
of three integers with a lower bound of 3 might print as

(3 => 10, 17, 1)

That is, in contrast to valid Ada, only the first component has a
=> clause.

• You may abbreviate attributes in expressions with any unique,
multi-character subsequence of their names (an exact match gets
preference). For example, you may use a'len, a'gth, or a'lh in
place of a'length.

• Since Ada is case-insensitive, the debugger normally maps
identifiers you type to lower case. The compiler uses upper-case
characters for some of its internal identifiers, which are normally
of no interest to users. For the rare occasions when you actually
have to look at them, enclose them in angle brackets to avoid
the lower-case mapping. For example,

(gdb) print <JMPBUF_SAVE>[0]

9.4.3. Stopping at the Beginning

The main procedure in Ada has no fixed name, and attempts to
break on main will position you before elaboration. Therefore, Ada

96

Chapter 9. Using the Debugger with Different Languages

mode provides a convenient way to begin execution of the program
and to stop at the beginning.

begin
Does the equivalent of setting a temporary breakpoint at the
beginning of the main procedure and then performing run.
Since in general there is package elaboration code that runs
before the main procedure begins, it is possible that the program
will stop before reaching the main procedure. However, the
temporary breakpoint will remain to halt execution.

9.4.4. Breaking on Ada Exceptions

In Ada mode, you can set breakpoints that trip when your program
raises selected exceptions.

info exceptions, info exceptions regexp
The info exceptions command permits the user to examine
all defined exceptions within Ada programs. With a regular
expression, regexp, as argument, prints out only those
exceptions whose name matches regexp.

9.4.5. Extensions for Ada Tasks

Support for Ada tasks is analogous to that for threads. When in
Ada mode (that is, when the "current language" is Ada), the
debugger allows the following task-related commands:

info tasks

This command shows a list of current Ada tasks, as in the
following example:

97

Breaking on Ada Exceptions

Example 9.1. Output from info tasks

(gdb) info tasks
 TCB Task Task Base Actv On Ready Wakeup Time Deadline
 Address Id State Prio Prio Hold Count (seconds) (seconds)
+--------+----+-----------+----+----+----+---------+------------+------------
*00010778 1 Running 0 0 0 3 0.000000 0.000000
 000107ba 2 At_Barrier 1 1 0 1 0.000000 0.000000
 00010ffa 3 Delayed 10 10 0 24 2.402170 0.000000
 0001183a 4 Delayed 10 10 0 24 2.402170 0.000000
+--------+----+-----------+----+----+----+---------+------------+------------

In this listing, the asterisk before the first task indicates it to
be the currently running task.

info queues
This command lists any tasks that are queued in the ready
queue, the delay queue and the deadline queue.

Example 9.2. Output from info queues

(gdb) info queues
The ready queue is empty
Delay queue: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
The deadline queue is empty

9.4.6. Debugging Generic Units

The compiler always uses code expansion for generic instantiation.
This means that each time an instantiation occurs, a complete copy
of the original code is made with appropriate substitutions.

It is not possible to refer to the original generic entities themselves
in the debugger (there is no code to refer to), but it is certainly
possible to debug a particular instance of a generic, simply by using
the appropriate expanded names. For example, suppose that Gen is
a generic package:

-- In file gen.ads:
generic package Gen is

98

Chapter 9. Using the Debugger with Different Languages

 function F (v1 : in out INTEGER) return INTEGER;
end Gen;

-- In file gen.adb:
package body Gen is
 function F (v1 : in out INTEGER) return INTEGER is
 begin
 v1 := v1 + 1;
 return v1; -- Line 5
 end F;
end Gen;

and we have the following expansions:

procedure G is
 package Gen1 is new Gen;
 package Gen2 is new Gen;
begin
 Gen1.F;
 Gen2.F;
 Gen1.F;
 Gen2.F;
end;

Then to break on a call to procedure F in the Gen2 instance, simply
use the command:

break G.Gen2.F

To break at a particular line in a particular generic instance, say
the return statement in G.Gen2, append the line specification to the
file and function name:

break gen.adb:G.Gen2.F:5

To break on this line line in all instances of Gen, use `*' as the
function name:

break gen.adb:*:5

99

Debugging Generic Units

This will set individual breakpoints at all instances; they are
independent of each other and you may remove, conditionalize, or
otherwise modify them individually.

When a breakpoint occurs, you can step through the code of the
generic instance in the normal manner. You can also examine
values of data in the normal manner, providing the appropriate
generic package qualification to refer to non-local entities.

9.4.7. Set commands for Ada

Ada introduces one new set command.

set varsize-limit size

Limit the size of the types of objects when those sizes are
computed from run-time quantities to size bytes. When this is
set to 0, there is no limit. By default, it is about 65K.

show varsize-limit

Show the limit on types whose size is determined by run-time
quantities.

9.4.8. Known Peculiarities of Ada Mode

Besides the omissions listed previously (see Section 9.4.1,
“Omissions from Ada” [94]), we know of several problems with
and limitations of Ada mode in the debugger, some of which will
be fixed with planned future releases of the debugger and the Ada
compiler.

• Currently, the debugger has insufficient information to determine
whether certain pointers represent pointers to objects or the
objects themselves. Thus, the user may have to tack an extra .all
after an expression to get it printed properly.

• Static constants that the compiler chooses not to materialize as
objects in storage are invisible to the debugger.

100

Chapter 9. Using the Debugger with Different Languages

• Renaming declarations are invisible to the debugger.

• Named parameter associations in function argument lists are
ignored (the argument lists are treated as positional).

• Many useful library packages are currently invisible to the
debugger.

• Fixed-point arithmetic, conversions, input, and output is carried
out using floating-point arithmetic, and may give results that
only approximate those on the host machine.

• The type of the 'Address attribute may not be System.Address.

• When stopped in a particular subprogram, you can access
variables defined in other, lexically enclosing subprograms by
their simple names. At the moment, however, this may not
always work; it depends on whether the compiler happens to
have made the necessary information (the "static link") available
at execution time, which it can sometimes avoid. Of course, even
in those cases where the compiler does not provide the
information, you can still look at such variables by issuing the
appropriate number of up commands to get to frame containing
the variable you wish to see. Access to non-local variables does
not, at the moment, work in the test expressions for conditional
breakpoints unless you happen to specify these while stopped
in the subprogram in which they are to be applied.

101

Known Peculiarities of Ada Mode

102

Examining the Symbol
Table

Chapter 10

The commands described in this section allow you to inquire about
the symbols (names of variables, functions and types) defined in
your program. This information is inherent in the text of your
program and does not change as your program executes. The
debugger finds it in your program's symbol table, in the file
indicated when you started the debugger (see Section 2.1.1,
“Choosing Files” [8]), or by one of the file-management
commands (see Section 12.1, “Commands to Specify Files” [115]).

Occasionally, you may need to refer to symbols that contain unusual
characters, which the debugger ordinarily treats as word delimiters.
The most frequent case is in referring to static variables in other
source files (see Section 8.2, “Program Variables” [61]). File names
are recorded in object files as debugging symbols, but the debugger
would ordinarily parse a typical file name, like foo.c, as the three
words “foo” “.” “c”. To allow the debugger to recognize “foo.c”
as a single symbol, enclose it in single quotes; for example,

p 'foo.c'::x

103

looks up the value of x in the scope of the file foo.c.

info address symbol

Describe where the data for symbol is stored. For a register
variable, this says which register it is kept in. For a non-register
local variable, this prints the stack-frame offset at which the
variable is always stored.

Note the contrast with print &symbol, which does not work
at all for a register variable, and for a stack local variable prints
the exact address of the current instantiation of the variable.

whatis exp

Print the data type of expression exp. exp is not actually
evaluated, and any side-effecting operations (such as
assignments or function calls) inside it do not take place. See
Section 8.1, “Expressions” [60].

whatis
Print the data type of $, the last value in the value history.

ptype typename

Print a description of data type typename. typename may be the
name of a type, or for C code it may have the form class
class-name, struct struct-tag, union union-tag or enum
enum-tag.

ptype exp , ptype
Print a description of the type of expression exp. ptype differs
from whatis by printing a detailed description, instead of just
the name of the type.

For example, for this variable declaration:

struct complex {double real; double imag;} v;

the two commands give this output:

104

Chapter 10. Examining the Symbol Table

(gdb) whatis v
type = struct complex
(gdb) ptype v
type = struct complex {
 double real;
 double imag;
}

As with whatis, using ptype without an argument refers to the
type of $, the last value in the value history.

info types regexp , info types

Print a brief description of all types whose name matches
regexp (or all types in your program, if you supply no
argument). Each complete typename is matched as though it
were a complete line; thus, i type value gives information on
all types in your program whose name includes the string value,
but i type ^value$ gives information only on types whose
complete name is value.

This command differs from ptype in two ways: first, like
whatis, it does not print a detailed description; second, it lists
all source files where a type is defined.

info source

Show the name of the current source file—that is, the source
file for the function containing the current point of
execution—and the language it was written in.

info sources

Print the names of all source files in your program for which
there is debugging information, organized into two lists: files
whose symbols have already been read, and files whose
symbols will be read when needed.

info functions

Print the names and data types of all defined functions.

105

info functions regexp
Print the names and data types of all defined functions whose
names contain a match for regular expression regexp. Thus,
info fun step finds all functions whose names include step;
info fun ^step finds those whose names start with step.

info variables

Print the names and data types of all variables that are declared
outside of functions (i.e., excluding local variables).

info variables regexp
Print the names and data types of all variables (except for local
variables) whose names contain a match for regular expression
regexp.

Some systems allow individual object files that make up your
program to be replaced without stopping and restarting your
program. If you are running on one of these systems, you can
allow the debugger to reload the symbols for automatically
relinked modules:

set symbol-reloading on

Replace symbol definitions for the corresponding source
file when an object file with a particular name is seen again.

set symbol-reloading off
Do not replace symbol definitions when re-encountering
object files of the same name. This is the default state; if
you are not running on a system that permits automatically
relinking modules, you should leave symbol-reloading
off, since otherwise the debugger may discard symbols
when linking large programs, that may contain several
modules (from different directories or libraries) with the
same name.

show symbol-reloading

Show the current on or off setting.

106

Chapter 10. Examining the Symbol Table

maint print symbols filename , maint print psymbols filename
, maint print msymbols filename

Write a dump of debugging symbol data into the file filename.
These commands are used to debug the the debugger
symbol-reading code. Only symbols with debugging data are
included. If you use maint print symbols, the debugger
includes all the symbols for which it has already collected full
details: that is, filename reflects symbols for only those files
whose symbols the debugger has read. You can use the
command info sources to find out which files these are. If you
use maint print psymbols instead, the dump shows
information about symbols that the debugger only knows
partially — that is, symbols defined in files that the debugger
has skimmed, but not yet read completely. Finally, maint print
msymbols dumps just the minimal symbol information required
for each object file from which the debugger has read some
symbols. See Section 12.1, “Commands to Specify Files” [115],
for a discussion of how the debugger reads symbols (in the
description of symbol-file).

107

108

Altering ExecutionChapter 11

Once you think you have found an error in your program, you
might want to find out for certain whether correcting the apparent
error would lead to correct results in the rest of the run. You can
find the answer by experiment, using the debugger features for
altering execution of the program.

For example, you can store new values into variables or memory
locations, restart your program at a different address, or even return
prematurely from a function.

11.1. Assignment to Variables

To alter the value of a variable, evaluate an assignment expression.
See Section 8.1, “Expressions” [60]. For example,

print x := 4

109

stores the value 4 into the variable x, and then prints the value of
the assignment expression (which is 4). See Chapter 9, Using the
Debugger with Different Languages [85], for more information on
operators in supported languages.

If you are not interested in seeing the value of the assignment, use
the set command instead of the print command. set is really the
same as print except that the expression's value is not printed and
is not put in the value history (see Section 8.8, “Value
History” [78]). The expression is evaluated only for its effects.

If the beginning of the argument string of the set command appears
identical to a set subcommand, use the set variable command
instead of just set. This command is identical to set except for its
lack of subcommands. For example, if your program has a variable
width, you get an error if you try to set a new value with just set
width=13, because the debugger has the command set width:

(gdb) whatis width
type = double
(gdb) p width
$4 = 13
(gdb) set width=47
Invalid syntax in expression.

The invalid expression, of course, is =47. In order to actually set
the program's variable width, use

(gdb) set var width := 47

The debugger allows more implicit conversions in assignments
than C; you can freely store an integer value into a pointer variable
or vice versa, and you can convert any structure to any other
structure that is the same length or shorter.

To store values into arbitrary places in memory, use the {...}
construct to generate a value of specified type at a specified address
(see Section 8.1, “Expressions” [60]). For example, {int}0x83040
refers to memory location 0x83040 as an integer (which implies a
certain size and representation in memory), and

110

Chapter 11. Altering Execution

set {int}0x83040 = 4

stores the value 4 into that memory location.

11.2. Continuing at a Different Address

Ordinarily, when you continue your program, you do so at the place
where it stopped, with the continue command. You can instead
continue at an address of your own choosing, with the following
commands:

jump linespec

Resume execution at line linespec. Execution stops again
immediately if there is a breakpoint there. See Section 7.1,
“Printing Source Lines” [51], for a description of the different
forms of linespec.

The jump command does not change the current stack frame,
or the stack pointer, or the contents of any memory location
or any register other than the program counter. If line linespec
is in a different function from the one currently executing, the
results may be bizarre if the two functions expect different
patterns of arguments or of local variables. For this reason, the
jump command requests confirmation if the specified line is
not in the function currently executing. However, even bizarre
results are predictable if you are well acquainted with the
machine-language code of your program.

jump *address
Resume execution at the instruction at address address.

You can get much the same effect as the jump command by storing
a new value into the register $pc. The difference is that this does
not start your program running; it only changes the address of
where it will run when you continue. For example,

set $pc = 0x485

111

Continuing at a Different Address

makes the next continue command or stepping command execute
at address 0x485, rather than at the address where your program
stopped. See Section 5.2, “Continuing and Stepping” [38].

The most common occasion to use the jump command is to back
up, perhaps with more breakpoints set-over a portion of a program
that has already executed, in order to examine its execution in more
detail.

11.3. Returning from a Function

return , return expression

You can cancel execution of a function call with the return
command. If you give an expression argument, its value is
used as the function's return value.

When you use return, the debugger discards the selected stack
frame (and all frames within it). You can think of this as making
the discarded frame return prematurely. If you wish to specify a
value to be returned, give that value as the argument to return.

This pops the selected stack frame (see Section 6.3, “Selecting a
Frame” [46]), and any other frames inside of it, leaving its caller
as the innermost remaining frame. That frame becomes selected.
The specified value is stored in the registers used for returning
values of functions.

The return command does not resume execution; it leaves the
program stopped in the state that would exist if the function had
just returned. In contrast, the finish command (see Section 5.2,
“Continuing and Stepping” [38]) resumes execution until the
selected stack frame returns naturally.

11.4. Calling Program Functions

call expr
Evaluate the expression expr without displaying void returned
values.

112

Chapter 11. Altering Execution

You can use this variant of the print command if you want to
execute a function from your program, but without cluttering the
output with void returned values. If the result is not void, it is
printed and saved in the value history.

A new user-controlled variable, call_scratch_address, specifies
the location of a scratch area to be used when the debugger calls
a function in the target. This is necessary because the usual method
of putting the scratch area on the stack does not work in systems
that have separate instruction and data spaces.

11.5. Patching Programs

By default, the debugger opens the file containing your program's
executable code read-only. This prevents accidental alterations to
machine code; but it also prevents you from intentionally patching
your program's binary.

If you'd like to be able to patch the binary, you can specify that
explicitly with the set write command. For example, you might
want to turn on internal debugging flags, or even to make
emergency repairs.

set write on , set write off

If you specify set write on, the debugger opens executable
files for both reading and writing; if you specify set write off
(the default), the debugger opens them read-only.

If you have already loaded a file, you must load it again (using
the exec-file command) after changing set write, for your new
setting to take effect.

show write

Display whether executable files are opened for writing as well
as reading.

113

Patching Programs

114

The Debugger FilesChapter 12

The debugger needs to know the file name of the program to be
debugged, both in order to read its symbol table and in order to
start your program.

12.1. Commands to Specify Files

The usual way to specify an executable file name is with the
command argument given when you start the debugger, (see
Chapter 2, Getting In and Out of the Debugger [7]).

Occasionally it is necessary to change to a different file during the
debugger session. Or you may run the debugger and forget to
specify a file you want to use. In these situations the debugger
commands to specify new files are useful.

file filename

Use filename as the program to be debugged. It is read for its
symbols and for the contents of pure memory. It is also the

115

program executed when you use the run command. If you do
not specify a directory and the file is not found in the debugger
working directory, the debugger uses the environment variable
PATH as a list of directories to search, just as the shell does
when looking for a program to run. You can change the value
of this variable, for both the debugger and your program, using
the path command.

On systems with memory-mapped files, an auxiliary file
filename.syms may hold symbol table information for
filename. If so, the debugger maps in the symbol table from
filename.syms, starting up more quickly. See the descriptions
of the file options -mapped and -readnow (available on the
command line, and with the commands file, symbol-file, or
add-symbol-file, described below), for more information.

file
file with no argument makes the debugger discard any
information it has on both executable file and the symbol table.

exec-file [filename]

Specify that the program to be run (but not the symbol table)
is found in filename. The debugger searches the environment
variable PATH if necessary to locate your program. Omitting
filename means to discard information on the executable file.

symbol-file [filename]

Read symbol table information from file filename. PATH is
searched when necessary. Use the file command to get both
symbol table and program to run from the same file.

symbol-file with no argument clears out the debugger
information on your program's symbol table.

The symbol-file command causes the debugger to forget the
contents of its convenience variables, the value history, and
all breakpoints and auto-display expressions. This is because
they may contain pointers to the internal data recording symbols
and data types, which are part of the old symbol table data
being discarded inside the debugger.

116

Chapter 12. The Debugger Files

symbol-file does not repeat if you press Enter again after
executing it once.

On some kinds of object files, the symbol-file command does
not normally read the symbol table in full right away. Instead,
it scans the symbol table quickly to find which source files and
which symbols are present. The details are read later, one
source file at a time, as they are needed.

The purpose of this two-stage reading strategy is to make the
debugger start up faster. For the most part, it is invisible except
for occasional pauses while the symbol table details for a
particular source file are being read. (The set verbose command
can turn these pauses into messages if desired. See Section 14.6,
“Optional Warnings and Messages” [130].)

We have not implemented the two-stage strategy for COFF
yet. When the symbol table is stored in COFF format,
symbol-file reads the symbol table data in full right away.

symbol-file filename [-readnow] [-mapped] , file filename [
-readnow] [-mapped]

You can override the debugger two-stage strategy for reading
symbol tables by using the -readnow option with any of the
commands that load symbol table information, if you want to
be sure the debugger has the entire symbol table available.

load filename

The file is loaded at whatever address is specified in the
executable. For some object file formats, you can specify the
load address when you link the program; for other formats,
like a.out, the object file format specifies a fixed address.

If you are using the simulator, then the program will be
automatically loaded into the simualtor when you enter the
run command. If you have selected the remote target, then you
may use the load command to download the program. Note
that the debugger may be used with a program that is already
loaded.

117

Commands to Specify Files

load does not repeat if you press Enter again after using it.

section sect addr

The section command changes the base address of section sect
of the exec file to addr. This can be used if the exec file does
not contain section addresses, (such as in the a.out format), or
when the addresses specified in the file itself are wrong. Each
section must be changed separately. The info files command
lists all the sections and their addresses.

info files , info target

info files and info target are synonymous; both print the
current target (see Chapter 13, Specifying a Debugging
Target [121]), including the name of the executable file currently
in use by the debugger, and the files from which symbols were
loaded. The command help target lists all possible targets
rather than current ones.

All file-specifying commands allow both absolute and relative file
names as arguments. The debugger always converts the file name
to an absolute file name and remembers it that way.

12.2. Errors Reading Symbol Files

While reading a symbol file, the debugger occasionally encounters
problems, such as symbol types it does not recognize, or known
bugs in compiler output. By default, the debugger does not notify
you of such problems, since they are relatively common and
primarily of interest to people debugging compilers. If you are
interested in seeing information about ill-constructed symbol tables,
you can either ask the debugger to print only one message about
each such type of problem, no matter how many times the problem
occurs; or you can ask the debugger to print more messages, to see
how many times the problems occur, with the set complaints
command (see Section 14.6, “Optional Warnings and
Messages” [130]).

The messages currently printed, and their meanings, include:

118

Chapter 12. The Debugger Files

inner block not inside outer block in symbol

The symbol information shows where symbol scopes begin
and end (such as at the start of a function or a block of
statements). This error indicates that an inner scope block is
not fully contained in its outer scope blocks.

The debugger circumvents the problem by treating the inner
block as if it had the same scope as the outer block. In the error
message, symbol may be shown as “(don't know)” if the outer
block is not a function.

block at address out of order

The symbol information for symbol scope blocks should occur
in order of increasing addresses. This error indicates that it
does not do so.

The debugger does not circumvent this problem, and has
trouble locating symbols in the source file whose symbols it
is reading. (You can often determine which source file is
affected by specifying set verbose on. See Section 14.6,
“Optional Warnings and Messages” [130])

bad block start address patched

The symbol information for a symbol scope block has a start
address smaller than the address of the preceding source line.
This is known to occur in the SunOS 4.1.1 (and earlier) C
compiler.

The debugger circumvents the problem by treating the symbol
scope block as starting on the previous source line.

bad string table offset in symbol n

Symbol number n contains a pointer into the string table which
is larger than the size of the string table.

The debugger circumvents the problem by considering the
symbol to have the name foo, which may cause other problems
if many symbols end up with this name.

119

Errors Reading Symbol Files

unknown symbol type 0xnn

The symbol information contains new data types that the
debugger does not yet know how to read. 0xnn is the symbol
type of the misunderstood information, in hexadecimal.

stub type has NULL name

The debugger could not find the full definition for a struct or
class.

const/volatile indicator missing (ok if using g++ v1.x),

got...

The symbol information for a C++ member function is missing
some information that recent versions of the compiler should
have output for it.

info mismatch between compiler and debugger

The debugger could not parse a type specification output by
the compiler.

120

Chapter 12. The Debugger Files

Specifying a Debugging
Target

Chapter 13

A target is the execution environment occupied by your program.
You can use the target command to specify one of the target types
configured for the debugger (see Section 13.2, “Commands for
Managing Targets” [122]).

13.1. Active Targets

When you type run, your executable file becomes an active process
target as well. When a process target is active, all the debugger
commands requesting memory addresses refer to that target;
addresses in an executable file target are obscured while the process
target is active.

Use the exec-file command to select a new executable target (see
Section 12.1, “Commands to Specify Files” [115]).

121

13.2. Commands for Managing Targets

target type parameters

Connects the debugger host environment to a target machine.

The target command does not repeat if you press Enter again
after executing the command.

help target

Displays the names of all targets available. To display targets
currently selected, use either info target or info files (see
Section 12.1, “Commands to Specify Files” [115]).

help target name
Describe a particular target, including any parameters necessary
to select it.

set gnutarget args

The debugger uses its own library BFD to read your files. The
debugger knows whether it is reading an executable, a core,
or a .o file, however you can specify the file format with the
set gnutarget command. Unlike most target commands, with
gnutarget the target refers to a program, not a machine.

Note To specify a file format with set gnutarget, you
must know the actual BFD name. See Section 12.1,
“Commands to Specify Files” [115].

show gnutarget

Use the show gnutarget command to display what file format
gnutarget is set to read. If you have not set gnutarget, the
debugger will determine the file format for each file
automatically and show gnutarget displays the following
message:

The current BFD target is "auto".

122

Chapter 13. Specifying a Debugging Target

Here are some common targets (available, or not, depending on
the debugger configuration):

target remote dev

Remote serial target in the debugger-specific protocol. The
argument dev specifies what serial device to use for the
connection (e.g. /dev/ttya). See Section 13.3, “Remote
Debugging” [123]. target remote now supports the load
command. This is only useful if you have some other way of
getting the debug monitor to the target system, and you can
put it somewhere in memory where it won't get clobbered by
the download.

target sim

This is the target CPU simulator.

target remote

A target computer connected to the host computer by a serial
interface.

13.3. Remote Debugging

If you are trying to debug a program running on a machine that
cannot run the debugger in the usual way, it is often useful to use
remote debugging. For example, you might use remote debugging
on an operating system kernel, or on a small system which does
not have a general-purpose operating system powerful enough to
run a full-featured debugger.

Some configurations of the debugger have special serial or TCP/IP
interfaces to make this work with particular debugging targets. In
addition, the debugger comes with a generic serial protocol (specific
to the debugger, but not specific to any particular target system)
which you can use if you write the remote stubs—the code that
runs on the remote system to communicate with the debugger.

Other remote targets may be available in your configuration of the
debugger; use help target to list them.

123

Remote Debugging

124

Controlling the DebuggerChapter 14

You can alter the way the debugger interacts with you by using the
set command. For commands controlling how the debugger displays
data, see Section 8.7, “Print Settings” [71]; other settings are
described here.

14.1. Prompt

The debugger indicates its readiness to read a command by printing
a string called the prompt. This string is normally “(gdb)”. You
can change the prompt string with the set prompt command.

set prompt newprompt

Directs the debugger to use newprompt as its prompt string
henceforth.

show prompt

Prints a line of the form: “Gdb's prompt is: your-prompt”

125

14.2. Command Editing

The debugger reads its input commands via the readline interface.
This GNU library provides consistent behavior for programs which
provide a command line interface to the user. Advantages are GNU
Emacs-style or vi-style inline editing of commands, csh-like history
substitution, and a storage and recall of command history across
debugging sessions.

You may control the behavior of command line editing in the
debugger with the command set.

set editing , set editing on

Enable command line editing (enabled by default).

set editing off
Disable command line editing.

show editing

Show whether command line editing is enabled.

14.3. Command History

The debugger can keep track of the commands you type during
your debugging sessions, so that you can be certain of precisely
what happened. Use these commands to manage the debugger
command history facility.

set history filename fname

Set the name of the debugger command history file to fname.
This is the file where the debugger reads an initial command
history list, and where it writes the command history from this
session when it exits. You can access this list through history
expansion or through the history command editing characters
listed below. This file defaults to the value of the environment
variable GDBHISTFILE, or to ./.gdb_history if this variable
is not set.

126

Chapter 14. Controlling the Debugger

set history save , set history save on

Record command history in a file, whose name may be
specified with the set history filename command. By default,
this option is disabled.

set history save off
Stop recording command history in a file.

set history size size

Set the number of commands which the debugger keeps in its
history list. This defaults to the value of the environment
variable HISTSIZE, or to 256 if this variable is not set.

History expansion assigns special meaning to the character !.

Since ! is also the logical not operator in C, history expansion is
off by default. If you decide to enable history expansion with the
set history expansion on command, you may sometimes need to
follow ! (when it is used as logical not, in an expression) with a
space or a tab to prevent it from being expanded. The readline
history facilities do not attempt substitution on the strings != and
!(, even when history expansion is enabled.

The commands to control history expansion are:

set history expansion on , set history expansion

Enable history expansion. History expansion is off by default.

set history expansion off
Disable history expansion.

The readline code comes with more complete documentation
of editing and history expansion features. Users unfamiliar
with Emacs or vi may wish to read it.

show history , show history filename , show history save ,
show history size , show history expansion

These commands display the state of the debugger history
parameters. show history by itself displays all four states.

127

Command History

show commands

Display the last ten commands in the command history.

show commands n
Print ten commands centered on command number n.

show commands +
Print ten commands just after the commands last printed.

14.4. Screen Size

Certain commands to the debugger may produce large amounts of
information output to the screen. To help you read all of it, the
debugger pauses and asks you for input at the end of each page of
output. Type RET when you want to continue the output, or q to
discard the remaining output. Also, the screen width setting
determines when to wrap lines of output. Depending on what is
being printed, the debugger tries to break the line at a readable
place, rather than simply letting it overflow onto the following line.

Normally the debugger knows the size of the screen from the
termcap database together with the value of the Term environment
variable and the stty rows and stty cols settings. If this is not
correct, you can override it with the set height and set width
commands:

set height lpp , show height , set width cpl , show width

These set commands specify a screen height of lpp lines and
a screen width of cpl characters. The associated show
commands display the current settings.

If you specify a height of zero lines, the debugger does not
pause during output no matter how long the output is. This is
useful if output is to a file or to an editor buffer.

Likewise, you can specify set width 0 to prevent the debugger
from wrapping its output.

128

Chapter 14. Controlling the Debugger

14.5. Numbers

You can always enter numbers in octal, decimal, or hexadecimal
in the debugger by the usual conventions: octal numbers begin with
0, decimal numbers end with ., and hexadecimal numbers begin
with 0x. Numbers that begin with none of these are, by default,
entered in base 10; likewise, the default display for numbers—when
no particular format is specified—is base 10. You can change the
default base for both input and output with the set radix command.

set input-radix base

Set the default base for numeric input. Supported choices for
base are decimal 8, 10, or 16. base must itself be specified
either unambiguously or using the current default radix; for
example, any of

set radix 012
set radix 10.
set radix 0xa

sets the base to decimal. On the other hand, set radix 10 leaves
the radix unchanged no matter what it was.

set output-radix base

Set the default base for numeric display. Supported choices
for base are decimal 8, 10, or 16. base must itself be specified
either unambiguously or using the current default radix.

show input-radix

Display the current default base for numeric input.

show output-radix

Display the current default base for numeric display.

129

Numbers

14.6. Optional Warnings and Messages

By default, the debugger is silent about its inner workings. If you
are running on a slow machine, you may want to use the set
verbose command. This makes the debugger tell you when it does
a lengthy internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those that
announce that the symbol table for a source file is being read; see
symbol-file in Section 12.1, “Commands to Specify Files” [115].

set verbose on

Enables the debugger output of certain informational messages.

set verbose off
Disables the debugger output of certain informational messages.

show verbose

Displays whether set verbose is on or off.

By default, if the debugger encounters bugs in the symbol table of
an object file, it is silent; but if you are debugging a compiler, you
may find this information useful (see Section 12.2, “Errors Reading
Symbol Files” [118]).

set complaints limit

Permits the debugger to output limit complaints about each
type of unusual symbols before becoming silent about the
problem. Set limit to zero to suppress all complaints; set it to
a large number to prevent complaints from being suppressed.

show complaints

Displays how many symbol complaints the debugger is
permitted to produce.

By default, the debugger is cautious, and asks what sometimes
seems to be a lot of stupid questions to confirm certain commands.
For example, if you try to run a program which is already running:

130

Chapter 14. Controlling the Debugger

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n)

If you are willing to unflinchingly face the consequences of your
own commands, you can disable this “feature”:

set confirm off

Disables confirmation requests.

set confirm on
Enables confirmation requests (the default).

show confirm

Displays state of confirmation requests.

131

Optional Warnings and Messages

132

Canned Sequences of
Commands

Chapter 15

Aside from breakpoint commands (see Section 5.1.6, “Breakpoint
Command Lists” [35], the debugger provides two ways to store
sequences of commands for execution as a unit: user-defined
commands and command files.

15.1. User-Defined Commands

A user-defined command is a sequence of the debugger commands
to which you assign a new name as a command. This is done with
the define command. User commands may accept up to 10
arguments separated by whitespace. Arguments are accessed within
the user command via $arg0...$arg9. A trivial example:

define adder
 print $arg0 + $arg1 + $arg2

To execute the command use:

133

adder 1 2 3

This defines the command adder, which prints the sum of its three
arguments. Note the arguments are text substitutions, so they may
reference variables, use complex expressions, or even perform
inferior functions calls.

define commandname

Define a command named commandname. If there is already
a command by that name, you are asked to confirm that you
want to redefine it.

The definition of the command is made up of other the
debugger command lines, which are given following the define
command. The end of these commands is marked by a line
containing end.

if

Takes a single argument, which is an expression to evaluate.
It is followed by a series of commands that are executed only
if the expression is true (nonzero). There can then optionally
be a line else, followed by a series of commands that are only
executed if the expression was false. The end of the list is
marked by a line containing end.

while

The syntax is similar to if: the command takes a single
argument, which is an expression to evaluate, and must be
followed by the commands to execute, one per line, terminated
by an end. The commands are executed repeatedly as long as
the expression evaluates to true.

document commandname

Document the user-defined command commandname, so that it
can be accessed by help. The command commandname must
already be defined. This command reads lines of documentation
just as define reads the lines of the command definition, ending

134

Chapter 15. Canned Sequences of Commands

with end. After the document command is finished, help on
command commandname displays the documentation you have
written.

You may use the document command again to change the
documentation of a command. Redefining the command with
define does not change the documentation.

help user-defined

List all user-defined commands, with the first line of the
documentation (if any) for each.

show user , show user commandname

Display the debugger commands used to define commandname
(but not its documentation). If no commandname is given, display
the definitions for all user-defined commands.

When user-defined commands are executed, the commands of the
definition are not printed. An error in any command stops execution
of the user-defined command.

If used interactively, commands that would ask for confirmation
proceed without asking when used inside a user-defined command.
Many debugger commands that normally print messages to say
what they are doing omit the messages when used in a user-defined
command.

15.2. User-Defined Command Hooks

You may define hooks, which are a special kind of user-defined
command. Whenever you run the command foo, if the user-defined
command hook-foo exists, it is executed (with no arguments) before
that command.

In addition, a pseudo-command, stop exists. Defining (hook-stop)
makes the associated commands execute every time execution
stops in your program: before breakpoint commands are run,
displays are printed, or the stack frame is printed.

135

User-Defined Command Hooks

For example, to ignore SIGALRM signals while single-stepping,
but treat them normally during normal execution, you could define:

define hook-stop
handle SIGALRM nopass
end
define hook-run
handle SIGALRM pass
end
define hook-continue
handle SIGLARM pass
end

You can define a hook for any single-word command in the
debugger, but not for command aliases; you should define a hook
for the basic command name, e.g. backtrace rather than bt. If an
error occurs during the execution of your hook, execution of the
debugger commands stops and the debugger issues a prompt (before
the command that you actually typed had a chance to run).

If you try to define a hook which does not match any known
command, you get a warning from the define command.

15.3. Command Files

A command file for the debugger is a file of lines that are the
debugger commands. Comments (lines starting with #) may also
be included. An empty line in a command file does nothing; it does
not mean to repeat the last command, as it would from the terminal.

When you start the debugger, it automatically executes commands
from its init files. These are files named .gdbinit. The debugger
reads the init file (if any) in your home directory, then processes
command line options and operands, and then reads the init file (if
any) in the current working directory. This is so the init file in your
home directory can set options (such as set complaints) which
affect the processing of the command line options and operands.
The init files are not executed if you use the -nx option; see
Section 2.1.2, “Choosing Modes” [9].

136

Chapter 15. Canned Sequences of Commands

You can also request the execution of a command file with the
source command:

source filename

Execute the command file filename.

The lines in a command file are executed sequentially. They are
not printed as they are executed. An error in any command
terminates execution of the command file.

Commands that would ask for confirmation if used interactively
proceed without asking when used in a command file. Many
debugger commands that normally print messages to say what they
are doing omit the messages when called from command files.

15.4. Commands for Controlled Output

During the execution of a command file or a user-defined command,
normal the debugger output is suppressed; the only output that
appears is what is explicitly printed by the commands in the
definition. This section describes three commands useful for
generating exactly the output you want.

echo text

Print text. Nonprinting characters can be included in text using
C escape sequences, such as \n to print a newline. No newline
is printed unless you specify one. In addition to the standard
C escape sequences, a backslash followed by a space stands
for a space. This is useful for displaying a string with spaces
at the beginning or the end, since leading and trailing spaces
are otherwise trimmed from all arguments. To print and foo
= , use the command echo \ and foo = \ .

A backslash at the end of text can be used, as in C, to continue
the command onto subsequent lines. For example,

137

Commands for Controlled Output

echo This is some text\n\
which is continued\n\
onto several lines.\n

produces the same output as

echo This is some text\n
echo which is continued\n
echo onto several lines.\n

output expression

Print the value of expression and nothing but that value: no
newlines, no $nn = . The value is not entered in the value
history either. See Section 8.1, “Expressions” [60], for more
information on expressions.

output/fmt expression
Print the value of expression in format fmt. You can use the
same formats as for print. See Section 8.4, “Output
Formats” [65], for more information.

printf string, expressions...

Print the values of the expressions under the control of string.
The expressions are separated by commas and may be either
numbers or pointers. Their values are printed as specified by
string, exactly as if your program were to execute the C
subroutine

printf (string, expressions...);

For example, you can print two values in hex like this:

printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the
format string are the simple ones that consist of backslash
followed by a letter.

138

Chapter 15. Canned Sequences of Commands

Using History
Interactively

Chapter 16

This chapter describes how to use the History Library interactively,
from a user's standpoint.

16.1. History Interaction

The History Library provides a history expansion feature similar
to the history expansion in csh. The following text describes the
syntax you use to manipulate history information.

History expansion takes two parts. In the first part, determine which
line from the previous history will be used for substitution. This
line is called the event. In the second part, select portions of that
line for inclusion into the current line. These portions are called
words. The debugger breaks the line into words in the same way
that the Bash shell does, so that several English (or UNIX) words
surrounded by quotes are considered one word.

139

16.1.1. Event Designators

An event designator is a reference to a command line entry in the
history list.

!
Start a history substitution, except when followed by a space,
tab, or the end of the line... = or (.

!!
Refer to the previous command. This is a synonym for !-1.

!n
Refer to command line n.

!-n
Refer to the command line n lines back.

!string
Refer to the most recent command starting with string.

!?string[?]
Refer to the most recent command containing string.

16.1.2. Word Designators

A : separates the event designator from the word designator. It can
be omitted if the word designator begins with a ̂ , $, * or %. Words
are numbered from the beginning of the line, with the first word
being denoted by a 0 (zero).

0 (zero)
The zero'th word. For many applications, this is the command
word.

n
The n'th word.

^
The first argument. that is, word 1.

140

Chapter 16. Using History Interactively

$
The last argument.

%
The word matched by the most recent ?string? search.

x-y
A range of words; -y Abbreviates 0-y.

*
All of the words, excepting the zero'th. This is a synonym for
1-$. It is not an error to use * if there is just one word in the
event. The empty string is returned in that case.

16.1.3. Modifiers

After the optional word designator, you can add a sequence of one
or more of the following modifiers, each preceded by a :.

#
The entire command line typed so far. This means the current
command, not the previous command.

h
Remove a trailing pathname component, leaving only the head.

r
Remove a trailing suffix of the form .suffix, leaving the
basename.

e
Remove all but the suffix.

t
Remove all leading pathname components, leaving the tail.

p
Print the new command but do not execute it.

141

Modifiers

142

Symbols
#, 14
$, 78
$$, 78
$_, 81
$_ and info breakpoints, 27
$_ and info line, 57
$_, $__, and value history, 68
$__, 81
$_exitcode, 81
$bpnum, 24
$cdir, 55
$cwd, 55
.gdbinit, 136
::, 62
@, 63
{type}, 61

A
abbreviation, 13

active targets, 121
Ada, 93

deviations from, 95
exceptions, 97
generic units, 98
omissions from, 94
problems, 100
tasking, 97

Ada mode
general, 93

artificial array, 63
assembly instructions, 57
assignment, 109
automatic display, 69
awatch, 30

B
b, 24
backtrace, 45
break, 24

Index

143

breakpoint commands, 35
breakpoint conditions, 33
breakpoint numbers, 24
breakpoint on memory address, 24
breakpoint on variable modification,
24
breakpoints, 24
bt, 45

C
c, 38
C and C++ constants, 92
C++ scope resolution, 62
C++ symbol decoding style, 77
call, 112
call stack, 43
calling functions, 112
calling make, 11
casts

to view memory, 61
catch exceptions, 49
cdir, 55
clear, 31
clearing

breakpoints, 30
watchpoints, 30

colon-colon, 62
command files, 135, 136
command line editing, 126
commands, 35
comment, 14
compilation directory, 55
complete, 18
completion, 14
completion of quoted strings, 16
condition, 34
conditional breakpoints, 33
confirmation, 131
continue, 38
continuing, 38

convenience variables, 80
current directory, 55
cwd, 55

D
d, 31
debugging optimized code, 21
debugging target, 121
define, 134
delete, 31
delete breakpoints, 31
delete display, 70
deleting

breakpoints, 30
watchpoints, 30

demangling, 76
dir, 55
directories for source files, 54
directory, 55
directory, compilation, 55
directory, current, 55
dis, 32
disable, 32
disable breakpoints, 31, 32
disable display, 70
disassemble, 57
display, 69
display of expressions, 69
do, 47
document, 134
down, 47
down-silently, 47

E
echo, 137
editing, 126
else, 134
enable, 32
enable breakpoints, 31, 32
enable display, 70

144

Index

end, 35
entering numbers, 129
event designators, 140
examining data, 59
examining memory, 66
exception handlers, 49
exec-file, 116
executable file, 115
exiting the debugger, 10
expansion, 139
expressions, 60
expressions in Ada, 93

F
f, 46
fg, 38
file, 115
finish, 40
flinching, 131
floating-point registers, 82
foo, 119
format options, 71
formatted output, 65
forward-search, 54
frame, 44, 44, 46
frame number, 44
frame pointer, 44

G
GDBHISTFILE, 126

H
h, 17
hbreak, 26
help, 17
help target, 122
help user-defined, 135
history

expansion, 127
file, 126

save, 127
size, 127
substitution, 126

history number, 78

I
i, 18
if, 134
ignore, 35
ignore count (of breakpoint), 34
info, 18
info address, 104
info all-registers, 82
info args, 48
info breakpoints, 27
info catch, 49
info display, 70
info f, 48
info files, 118
info frame, 48, 88
info functions, 105
info line, 56
info locals, 49
info program, 23
info registers, 82
info s, 45
info set, 19
info source, 88, 105
info sources, 105
info stack, 45
info target, 118
info tasks, 97
info types, 105
info variables, 106
info watchpoints, 30
init file, 136
initial frame, 44
innermost frame, 44
inspect, 59
instructions, assembly, 57

145

internal the debugger breakpoints, 28
interrupt, 11

J
jump, 111

L
l, 51
languages, 85
latest breakpoint, 24
leaving the debugger, 10
linespec, 52
list, 51
listing machine instructions, 57
load filename, 117

M
machine instructions, 57
maint info breakpoints, 29
maint print psymbols, 107
maint print symbols, 107
make, 11
mapped, 117
memory

viewing as typed object, 61
memory tracing, 24
memory-mapped symbol file, 117
multiple targets, 121

N
n, 40
names of symbols, 103
negative breakpoint numbers, 28
next, 40
nexti, 42
ni, 42
number representation, 129
numbers for breakpoints, 24

O
online documentation, 17
optimized code, debugging, 21
outermost frame, 44
output, 138
output formats, 65
overloading, 37

P
partial symbol dump, 107
patching binaries, 113
pauses in output, 128
pointer, finding referent, 73
print, 59
print settings, 71
printf, 138
printing data, 59
prompt, 125
ptype, 104

Q
q, 10
quit [expression], 10
quotes in commands, 16
quoting names, 103

R
rbreak, 27
reading symbols immediately, 117
readline, 126
readnow, 117
registers, 82
regular expression, 27
reloading symbols, 106
remote debugging, 123
repeating commands, 14
resuming execution, 38
RET, 14
return, 112
returning from a function, 112

146

Index

reverse-search, 54
run, 22
running, 22
rwatch, 30

S
s, 39
saving symbol table, 117
search, 54
searching, 54
section, 118
select-frame, 45
selected frame, 43
set, 19
set complaints, 130
set confirm, 131
set demangle-style, 77
set editing, 126
set gnutarget, 122
set height, 128
set history expansion, 127
set history filename, 126
set history save, 127
set history size, 127
set input-radix, 129
set language, 87
set listsize, 52
set output-radix, 129
set print address, 71
set print array, 73
set print asm-demangle, 76
set print demangle, 76
set print elements, 74
set print max-symbolic-offset, 73
set print null-stop, 74
set print object, 77
set print pretty, 74
set print sevenbit-strings, 75
set print static-members, 78
set print symbol-filename, 72

set print union, 75
set print vtbl, 78
set prompt, 125
set symbol-reloading, 106
set variable, 110
set varsize-limit, 100
set verbose, 130
set width, 128
set write, 113
setting variables, 109
setting watchpoints, 29
shell, 11
shell escape, 11
show, 19
show commands, 128
show complaints, 130
show confirm, 131
show convenience, 81
show copying, 19
show demangle-style, 77
show directories, 55
show editing, 126
show gnutarget, 122
show height, 128
show history, 127
show input-radix, 129
show language, 88
show listsize, 52
show output-radix, 129
show print address, 72
show print array, 73
show print asm-demangle, 76
show print demangle, 76
show print elements, 74
show print max-symbolic-offset, 73
show print object, 77
show print pretty, 75
show print sevenbit-strings, 75
show print static-members, 78
show print symbol-filename, 72
show print union, 75

147

show print vtbl, 78
show prompt, 125
show symbol-reloading, 106
show user, 135
show values, 79
show varsize-limit, 100
show verbose, 130
show version, 19
show warranty, 20
show width, 128
show write, 113
si, 41
silent, 36
size of screen, 128
source, 137
source path, 54
stack frame, 44
stacking targets, 121
starting, 22
step, 39
stepi, 41
stepping, 38
stupid questions, 131
symbol decoding style, C++, 77
symbol dump, 107
symbol names, 103
symbol overloading, 37
symbol table, 115
symbol-file, 116
symbols, reading immediately, 117

T
target, 121
target remote, 123
target sim, 123
target XGC, 123
tbreak, 26
thbreak, 27
type casting memory, 61

U
u, 40
undisplay, 70
unknown address, locating, 65
until, 40
up, 46
up-silently, 47
user-defined command, 133

V
value history, 78
variable name conflict, 62
variable values

wrong, 62
variables

setting, 110
version number, 19

W
watch, 30
watchpoints, 24
whatis, 104
where, 45
while, 134
wild pointer, interpreting, 73
word completion, 14
working directory, 55
working language, 85
writing into executables, 113
wrong values, 62

X
x, 66

148

Index

