
Getting Started with
M68K Ada

Ada 95 Compilation System for the
Motorola M68000 Family

www.xgc.com

Getting Started with
M68K Ada
Ada 95 Compilation System for the
Motorola M68000 Family

Order Number: M68K-ADA-GS-031214

XGC Technology

London
UK
<www.xgc.com>

Getting Started with M68K Ada: Ada 95 Compilation System for the
Motorola M68000 Family

Publication date December 14, 2003
© 1998, 1999, 2000, 2001, 2002, 2003, 2004 XGC Software

Acknowledgments

M68K Ada is based on technology originally developed by the GNAT team at New York University and now maintained by Ada Core
Technologies, Inc., and includes software from the GNU C compiler, debugger and binary utilities developed by and on behalf of the Free
Software Foundation, Inc., Cambridge, Massachusetts. Development of the original mission-critical capability was funded by TRW Aerospace
and the Ministry of Defence.

Contents

About this Guide xiii
1 Audience xiii
2 Related Documents xiii
3 Reader's Comments xiv
4 Documentation Conventions xiv

Basic Techniques 1Chapter 1

1.1 Hello World 1
1.1.1 How to Prepare an Ada Program 2
1.1.2 How to Compile 2
1.1.3 How to Run a Program on the
Simulator 4

1.2 How to Recompile a Program 4
1.3 The Generated Code 5

1.3.1 Tracing Simulation 8
1.4 What's in My Program? 9
1.5 Restrictions 10

v

Advanced Techniques 13Chapter 2

2.1 Using a Custom Start File 13
2.2 Using a Custom Linker Script File 15
2.3 How to Get a Map File 15
2.4 Generating PROM Programming Files 16
2.5 Using the Debugger 18
2.6 Using Optimizations 20
2.7 Working with the Target 21

2.7.1 How to Down-load the Debug Monitor 22
2.7.2 Preparing a Program to Run under the
Monitor 23

Real-Time Programs 25Chapter 3

3.1 The Ravenscar Profile 26
3.1.1 The Main Subprogram 27
3.1.2 Periodic Tasks 28
3.1.3 Form of a Periodic Task 29
3.1.4 Aperiodic Tasks 30

3.2 Additional Packages 32
3.3 Interrupts without Tasks 33

The M68000 Family 35Appendix A

Options for the M68000 Family 37Appendix B

B.1 Compiler Options 37
B.2 Assembler Options 38
B.3 Motorola Syntax 41
B.4 MIT Instruction Syntax 42
B.5 Floating Point 44
B.6 Machine Directives 44
B.7 Opcodes 45

B.7.1 Branch Improvement 45
B.8 Linker Options 47

Using the M68000 Family Simulator 49Appendix C

C.1 Command Line Switches 49

vi

Getting Started with M68K Ada

The package Ada.Interrupts.Names 53Appendix D

The Host-Target Link 55Appendix E

E.1 RS-232 Information 55

Questions and Answers 59Appendix F

Index 63

vii

Getting Started with M68K Ada

viii

Tables
B.1 Assembler Pseudo Operations 45
E.1 Null Modem Wiring and Pin Connection 56
E.2 The RS-232 Standard 56

ix

x

Examples
1.1 The Source File 2
1.2 How to Compile hello.adb 2
1.3 Binding and Linking 3
1.4 Using gnatmake 4
1.5 Running on the Simulator 4
1.6 Using the gnatmake command 5
1.7 Generating a Machine Code Listing 6
1.8 Output from objdump 7
1.9 Using the Size Command 7
1.10 Using the Object Code Dump Program 7
1.11 Tracing Simulation 8
1.12 A Linker Map 10
2.1 Creating a Custom Start File 14
2.2 Recompiling art0.S 14
2.3 Rebuilding with a Custom art0.S 14
2.4 Making a Custom Linker Script File 15
2.5 Using a Custom Linker Script File 15
2.6 How to Get a Map File 15
2.7 The Map File 15
2.8 Converting to Intel Hex 16
2.9 Generating a HEX File 17
2.10 Running an Intel Hex File 17
2.11 Running an S-Record File 17
2.12 Recompiling with the Debug Option 18
2.13 Running under the Debugger 19
2.14 Dump of Debug Information 20
2.15 Remote Configuration File 22
2.16 Output from the Monitor 23
2.17 Remote Debugging 23
3.1 Main Subprogram with Idle Loop 27
3.2 Idle Loop with Power-Down 28
3.3 A Periodic Task 29
3.4 An Interrupt-Driven Task 30
3.5 Example Interrupt Level Protected Object 33

xi

xii

About this Guide

1. Audience

This guide is written for the experienced programmer who is
already familiar with the Ada 95 programming language and with
embedded systems programming in general. We assume some
knowledge of the target computer architecture.

2. Related Documents

The M68K Ada User's Guide describes the commands, options and
scripts required to use the tool-set.

The M68K Ada Reference Manual Supplement documents the
implementation-defined aspects of the Ada 95 programming
language supported by the compiler.

The library functions, which are common to all XGC compilation
systems, are documented in The XGC Libraries.

xiii

Information on the M68K is available from Motorola,
http://www.motorola.com/.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments in the following ways:

• Internet electronic mail: readers_comments@xgc.com

Please include the following information along with your
comments:

• The full title of the manual and the order number. (The order
number is printed on the title page of this manual.)

• The section numbers and page numbers of the information on
which you are commenting.

• The version of the software that you are using.

Technical support enquiries should be directed to the XGC Web
Site [http://www.xgc.com/].

4. Documentation Conventions

This guide uses the following typographic conventions:

%, $
A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

#

A number sign represents the super-user prompt.

$ vi hello.c

Boldface type in interactive examples indicates typed user
input.

xiv

About this Guide

http://www.motorola.com/
http://www.xgc.com/
http://www.xgc.com/
http://www.xgc.com/

file

Italic or slanted type indicates variable values, place-holders,
and function argument names.

[|], { | }
In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

...
In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated.

cat(1)
A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mb/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

xv

Documentation Conventions

xvi

Basic TechniquesChapter 1

To start with we'll write a small program and run it on the simulator.
This will give you a general idea of how things work. Later we
will describe how to run a program on the real target computer.

1.1. Hello World

The subject of this chapter is a small program called “hello”. Using
library functions and simulated input-output to do the printing, it
simply prints the message “Hello World” on your terminal. You
will find the source code in the directory examples on the
M68K Ada CD-ROM.

Three steps are needed to create an executable file from an Ada
source file:

1. The source file(s) must first be compiled.

2. The file(s) then must be bound using the M68K Ada binder.

1

3. All appropriate object files must be linked to produce an
executable.

All three steps are best handled using the gnatmake program.
Given the name of the main program, gnatmake automatically
performs the necessary compilation, binding and linking steps. See
Section 1.2, “How to Recompile a Program” [4].

1.1.1. How to Prepare an Ada Program

Any editor may be used to prepare an Ada program. If emacs is
used, the optional Ada mode may be helpful in laying out the
program. The program text is a normal text file. We will suppose
in our initial example that you have used your editor to prepare the
following standard format text file:

Example 1.1. The Source File

with Text_IO;
procedure Hello is
begin
 Text_IO.Put_Line ("Hello World");
end Hello;

This file should be named hello.adb. Using the default file naming
conventions, M68K Ada requires that each file contain a single
compilation unit whose file name corresponds to the unit name
with periods replaced by hyphens and whose extension is .ads for
a spec and .adb for a body.

1.1.2. How to Compile

You can compile the program using the following command:

Example 1.2. How to Compile hello.adb

$ m68k-coff-gcc -c hello.adb

2

Chapter 1. Basic Techniques

The command m68k-coff-gcc is used to access the compiler. This
command is capable of compiling programs in several languages
including Ada 95, C, assembly language and object code. It
determines you have given it an Ada program by the filename
extension (.ads or .adb), and will call the Ada compiler to compile
the specified file.

The -c switch is always required. It tells gcc to stop after
compilation. (For C programs, gcc can also do linking, but this
capability is not used directly for Ada programs, so the -c switch
must always be present.)

This compile command generates the file hello.o which is the
object file corresponding to the source file hello.adb. It also
generates a file hello.ali, which contains additional information
used to check that an Ada program is consistent. To get an
executable file, we then use gnatbind to bind the program and
gnatlink to link the program.

Example 1.3. Binding and Linking

$ m68k-coff-gnatbind hello.ali
$ m68k-coff-gnatlink hello.ali

The result is an executable file named hello.

You may use the option -v to get more information about which
version of the tool was used and which files were read.

A simpler method of carrying out these steps is to use the gnatmake
command. gnatmake is a master program that invokes all of the
required compilation, binding and linking tools in the correct order.
In particular, it automatically recompiles any modified sources, or
sources that depend on modified sources, so that a consistent
compilation is ensured.

The following example shows how to use gnatmake to build the
program hello.

3

How to Compile

Example 1.4. Using gnatmake

$ m68k-coff-gnatmake hello
m68k-coff-gcc -c hello.adb
m68k-coff-gnatbind -x hello.ali
m68k-coff-gnatlink hello.ali
$

Again the result is an executable file named hello.

1.1.3. How to Run a Program on the Simulator

The program that we just built can be run on the simulator using
the following command. If all has gone well, you will see the
message "Hello World".

Example 1.5. Running on the Simulator

$ m68k-coff-run hello
Hello World

1.2. How to Recompile a Program

As you work on a program, you keep track of which units you
modify and make sure you not only recompile these units, but also
any units that depend on units you have modified.

gnatbind will warn you if you forget one of these compilation
steps, so it is never possible to generate an inconsistent program
as a result of forgetting to do a compilation, but it can be annoying
to keep track of the dependencies. One approach would be to use
a the make utility, but the trouble with make files is that the
dependencies may change as you change the program, and you
must make sure that the make file is kept up to date manually, an
error-prone process.

The gnatmake command takes care of these details automatically.
Invoke it using one of the following forms:

4

Chapter 1. Basic Techniques

Example 1.6. Using the gnatmake command

$ m68k-coff-gnatmake -v hello
GNATMAKE m68k-ada/-1.7/ Copyright 1995-2001 Free Software Foundation, Inc.
 "hello.ali" being checked ...
 -> "hello.adb" time stamp mismatch
m68k-coff-gcc -c hello.adb
End of compilation
m68k-coff-gnatbind -x hello.ali
m68k-coff-gnatlink hello.ali

The argument is the file containing the main program or
alternatively the name of the main unit. gnatmake examines the
environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files,
generating the executable file, hello. In a large program, it can be
extremely helpful to use gnatmake, because working out by hand
what needs to be recompiled can be difficult.

Note that gnatmake takes into account all the intricate rules in
Ada 95 for determining dependencies. These include paying
attention to inlining dependencies and generic instantiation
dependencies. Unlike some other Ada make tools, gnatmake does
not rely on the dependencies that were found by the compiler on
a previous compilation, which may possibly be wrong due to source
changes. It works out the exact set of dependencies from scratch
each time it is run.

The linker is configured so that there are defaults for the start file
and the library libgcc, libc and libgnat. Other libraries, such as
the standard C math library libm.a, are not included by default,
and must be mentioned on the linker's command line.

1.3. The Generated Code

If you want to see the generated code, then use the option -Wa,-a.
The first part (-Wa,) means pass the second part (-a) to the
assembler. To get a listing that includes interleaved source code,
use the options -g and -Wa,-ahld. See The M68K Ada Users Guide,
for more information on assembler options.

5

The Generated Code

Here is an example where we generate a machine code listing.

Example 1.7. Generating a Machine Code Listing

$ m68k-coff-gcc -c -O2 -Wa,-a hello.adb
 1 .file "hello.adb"
 2 gcc2_compiled.:
 3 __gnu_compiled_ada:
 4 .section .rdata,"r"
 5 .LC0:
 6 0000 4865 6C6C .ascii "Hello World"
 6 6F20 576F
 6 726C 64
 7 000b 00 .even
 8 .LC1:
 9 000c 0000 0001 .long 1
 10 0010 0000 000B .long 11
 11 .text
 12 .even
 13 .globl _ada_hello
 14 _ada_hello:
 15 0000 4E56 0000 link.w %a6,#0
 16 0004 BBCF cmp.l %sp,%a5
 17 0006 6B02 bmi.b .+4
 18 0008 4E45 trap #5
 19 000a 203C 0000 move.l #.LC0,%d0
 19 0024
 20 0010 223C 0000 move.l #.LC1,%d1
 20 0030
 21 0016 2F01 move.l %d1,-(%sp)
 22 0018 2F00 move.l %d0,-(%sp)
 23 001a 4EB9 0000 jsr xgc__text_io__put_line$2
 23 0000
 24 0020 4E5E unlk %a6
 25 0022 4E75 rts
...

You could also use the object code dump utility
m68k-coff-objdump to disassemble the generated code. If you
compiled using the debug option -g then the disassembled
instructions will be annotated with symbolic references.

Here is an example using the object code dump utility.

6

Chapter 1. Basic Techniques

Example 1.8. Output from objdump

$ m68k-coff-objdump -d hello.o

hello.o: file format coff-m68k

Disassembly of section .text:

00000000 <_ada_hello>:
 0: 4e56 0000 linkw %fp,#0
 4: bbcf cmpal %sp,%a5
 6: 6b02 bmis a <_ada_hello+0xa>
 8: 4e45 trap #5
 a: 203c 0000 0024 movel #36,%d0
 10: 223c 0000 0030 movel #48,%d1
 16: 2f01 movel %d1,-(%sp)
 18: 2f00 movel %d0,-(%sp)
 1a: 4eb9 0000 0000 jsr 0 <_ada_hello>
 20: 4e5e unlk %fp
 22: 4e75 rts
...

You can see how big your program is using the size command.
The sizes are in bytes.

Example 1.9. Using the Size Command

$ m68k-coff-size hello.o
 text data bss dec hex filename
 56 0 0 56 38 hello.o
$ m68k-coff-size hello
 text data bss dec hex filename
 10352 420 604 11376 2c70 hello

To get more detail you can use the object code dump program, and
ask for headers.

Example 1.10. Using the Object Code Dump Program

$ m68k-coff-objdump -h hello.o

hello.o: file format coff-m68k

7

The Generated Code

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 00000024 00000000 00000000 00000104 2**2
 CONTENTS, ALLOC, LOAD, RELOC, CODE
 1 .data 00000000 00000024 00000024 00000000 2**2
 ALLOC, LOAD, DATA
 2 .bss 00000000 00000024 00000024 00000000 2**2
 ALLOC, NEVER_LOAD
 3 .stab 0000015c 00000024 00000024 00000128 2**2
 CONTENTS, RELOC, DEBUGGING
 4 .stabstr 00000372 00000180 00000180 00000284 2**0
 CONTENTS, DEBUGGING
 5 .rdata 00000014 000004f2 000004f2 000005f6 2**2
 CONTENTS, ALLOC, LOAD, READONLY

1.3.1. Tracing Simulation

The simulator supports several options including the trace option
(-t) and the statistics option (-s). Use the option --help for more
information.

Example 1.11. Tracing Simulation

$ m68k-coff-run -t hello
 <__cold_start>

-- Instruction trace --

------------+-------+----+-+-----+--------+----------------------
CPU time in pending ----psr----- disassembled
microseconds 7654321 ttsm i xnzvc pc instruction
------------+-------+----+-+-----+--------+----------------------
 0.000 s 7 00000100: braw 0x104
 <start>
 0.160 s 7 00000104: movew #112,%sr
 0.320 s 7 00000108: moveal #1310716,%sp
art0.S:777
 0.480 s 7 0000010E: moveq #0,%d0
 0.560 s 7 z 00000110: movec %d0,%cacr

8

Chapter 1. Basic Techniques

 0.720 s 7 z 00000114: movec %d0,%dfc
 0.880 s 7 z 00000118: movec %d0,%dtt0
 1.040 s 7 z 0000011C: movec %d0,%dtt1
 1.200 s 7 z 00000120: movec %d0,%isp
 1.360 s 7 z 00000124: movec %d0,%itt0
 1.520 s 7 z 00000128: movec %d0,%itt1
 1.680 s 7 z 0000012C: movec %d0,%mmusr
 1.840 s 7 z 00000130: movec %d0,%msp
 2.000 Stopped at PC = 0x00000130: interrupted

1.4. What's in My Program?

You have written ten lines of Ada, yet the size command says your
program is over 5K bytes. What happened?

Answer: Your program has been linked with code from the M68K
libraries. In addition to the application code, the executable program
contains the following:

• Program startup code (art0)

• Program elaboration code (adainit)

• Any Ada library packages mentioned in application code with
lists (libada)

• Any System packages with-ed by the compiler

• Object code from the library libgcc.a, as required

• Object code from other libraries given on the linker command
line.

The following command will give you a link map that lists the
object files that have been linked into your program, and the address
of every global data item and subprogram.

$ m68k-coff-gnatmake hello.adb -largs -Wl,-Map=hello.map

9

What's in My Program?

Here is part of the link map generated by the last command. We
have reduced the width of the map to fit on a page by replacing the
path name of the library directory with $p.

Example 1.12. A Linker Map

$ more hello.map
Archive member included because of file (symbol)

$p/libgnat.a(a-except.o) b~hello.o (ada__exceptions___elabs)
$p/libgnat.a(x-textio.o) b~hello.o (xgc__text_io___elabs)
$p/libgnat.a(x-malloc.o) $p/libgnat.a(a-except.o) (__gnat_malloc)
$p/libgnat.a(a-ioexce.o) $p/libgnat.a(x-textio.o) (ada__io_exceptions__use_error)
$p/libc.a(schandler.o) $p/art0.o (default_system_call_handler)
$p/libc.a(bcopy.o) $p/libgnat.a(a-except.o) (bcopy)
$p/libc.a(read.o) $p/libgnat.a(x-textio.o) (read)
$p/libc.a(write.o) $p/libgnat.a(x-textio.o) (write)
$p/libc.a(sbrk.o) $p/libgnat.a(x-malloc.o) (sbrk)
$p/libc.a(sys_handler.o) $p/libc.a(schandler.o) (sys_handler)
$p/libc.a(errno.o) $p/libc.a(read.o) (errno)

Allocating common symbols
Common symbol size file

__exception_id 0x4 $p/art0.o
__stack_ptr 0x4 $p/art0.o
errno 0x4 $p/libc.a(errno.o)
__exception_pc 0x4 $p/art0.o
xgc__text_io__current_out
 0x4 $p/libgnat.a(x-textio.o)
...

1.5. Restrictions

Before you go much further, you should be aware of the built-in
restrictions. M68K Ada does not support the full Ada 95 language:
it supports a restricted language that conforms to a formal Profile
designed for high integrity applications.

In the main, the built-in restrictions prohibit the use of
non-deterministic Ada features that would otherwise invalidate

10

Chapter 1. Basic Techniques

static program analysis. For a complete list of the default
restrictions, see The M68K Ada Technical Summary.

To set a profile, use the pragma Profile as shown in the following
example.

pragma Profile (Ravenscar);

procedure Main is
...

11

Restrictions

12

Advanced TechniquesChapter 2

Once you have mastered writing and running a small program,
you'll want to check out some of the more advanced techniques
required to write and run real application programs. In this chapter,
we cover the following topics:

• Customizing the start file and linker script file

• Generating PROM programming files

• Using the debugger

• Using optimizations

• Working with the target

2.1. Using a Custom Start File

The start file art0.S contains instructions to initialize the arithmetic
unit, floating point unit and timer. The default start file may be
suitable for your requirements. You can see the source code in file

13

/opt/m68k-ada-1.7/m68k-coff/src/libc/art0.S. If it is not
suitable, make a copy in a working directory, then edit it as
necessary.

Example 2.1. Creating a Custom Start File

$ mkdir work
$ cd work
$ cp /opt/m68k-ada-1.7/m68k-coff/src/libc/art0.S .
$ vi art0.S

One of the configuration parameters you may wish to change is
the clock speed. The default speed is 25 MHz, which is the clock
frequency of the simulator. If your clock runs at (say) 35 MHz,
then you should modify the statement in art0.S that defines the
clock frequency.

Once you have completed the changes, you must compile art0.S
to generate an object code file called art0.0. This is the file that
the default linker script will look for. Note that the compiler will
select MC68040 by default. If your target is a MC68000, then use
the compile-time option -m68000.

The following example gives the command you need:

Example 2.2. Recompiling art0.S

$ m68k-coff-gcc -c art0.S

If you now rebuild your application program, the local file art0.0
will be used in preference to the library file. You can check that
your local version has been used in the map file.

Example 2.3. Rebuilding with a Custom art0.S

$ $ m68k-coff-gnatmake -f -g tt3 -largs -nostartfiles art0.S

14

Chapter 2. Advanced Techniques

Note If you run a program built for 35 MHz on the simulator,
be sure to specify a clock frequency of 35 MHz. The
default is 25 MHz.

2.2. Using a Custom Linker Script File

The default linker script file is
/opt/m68k-ada-1.7/m68k-coff/lib/ldscripts/coff_erc.x. You
should copy this file to your local directory, and edit as necessary.

Example 2.4. Making a Custom Linker Script File

$ cp /opt/m68k-ada-1.7/m68k-coff/lib/ldscripts/coff_erc.x myboard.ld
$ vi myboard.ld

You can then build a program using your custom linker script rather
than the default as follows:

Example 2.5. Using a Custom Linker Script File

$ m68k-coff-gnatmake -f hello -largs -T myboard.ld

2.3. How to Get a Map File

If all you need is a link map, then you can ask the linker for one.
This is a little more subtle than you may expect, because the option
must be passed to the program m68k-coff-ld rather than the ada
linker. Here is an example that generates a map called hello.map.

Example 2.6. How to Get a Map File

$ m68k-coff-gnatmake hello -largs -Wl,-Map=hello.map

Example 2.7. The Map File

$ more hello.map
...
 *(.text)

15

Using a Custom Linker Script File

 .text 0x00000104 0x502 art0.o
 0x00000104 __warm_start
 0x00000104 start
 fill 0x00000606 0x2
 .text 0x00000608 0x64 b~hello.o
 0x00000632 __break_start
 0x0000065c ada_main___elabb
 0x00000608 adainit
 0x0000063a main
 0x0000062a adafinal
 .text 0x0000066c 0x24 ./hello.o
 0x0000066c _ada_hello
 .text 0x00000690 0x392 libgnat.a(a-except.o)
 0x00000936 ada__exceptions__save_occurrence
 0x00000690 ada__exceptions___elabs
 0x000009c4 ada__exceptions__save_occurrence$2
 0x00000a10 ada__exceptions___init_proc$2
 0x000008f4 ada__exceptions__exception_information
 0x000006b6 ada__exceptions__exception_message
 0x0000076a ada__exceptions__reraise_occurrence
 0x000009fe ada__exceptions___init_proc
 0x000007f8 ada__exceptions__exception_name
 0x000007ca ada__exceptions__exception_identity
...lots of output...

2.4. Generating PROM Programming Files

By default, the executable file is in Common Object File Format
(COFF). Using the object code utility program m68k-coff-objcopy,
COFF files may be converted into several other industry-standard
formats, such as ELF, Intel Hex, and Motorola S Records.

The following example shows how we convert a COFF file to Intel
Hex format.

Example 2.8. Converting to Intel Hex

$ m68k-coff-objcopy --output-target=ihex hello hello.ihex

If you don't need the COFF file, then you can get the linker to
generate the Intel Hex file directly. Note that the Intel Hex file

16

Chapter 2. Advanced Techniques

contains no debug information, so if you expect to use the debugger,
you should generate the COFF file too.

Example 2.9. Generating a HEX File

$ m68k-coff-gnatmake hello -largs -Wl,-oformat=ihex
$ more hello.ihex
:100000000013FFFC00000100000001DC000001DC27
:10001000000001D4000001E4000001E4000001E45C
:10002000000001D400000258000001D400000204C6
:1000300000000260000001DC000001DC0000026042
:100040000000026000000260000002600000026028
:100050000000026000000260000002600000026018
:100060000000020C00000214000002280000023010
:100070000000023800000240000002480000025068
:100080000000026A00000280000002880000045E96
:100090000000047E0000049E000004BE000004DE98
...lots of output...
$

We can run the Intel Hex file, as in the following example:

Example 2.10. Running an Intel Hex File

$ m68k-coff-run hello
Hello world
$

Or we can generate Motorola S Records, and run from there. Note
that we use the option -f to force a rebuild.

Example 2.11. Running an S-Record File

$ m68k-coff-gnatmake -f hello.adb -largs -Wl,-oformat=srec
$ more hello
S008000068656C6C6FE3
S11300000013FFFC00000100000001DC000001DC23
S1130010000001D4000001E4000001E4000001E458
S1130020000001D400000258000001D400000204C2
S113003000000260000001DC000001DC000002603E
S11300400000026000000260000002600000026024
S11300500000026000000260000002600000026014

17

Generating PROM Programming Files

S11300600000020C0000021400000228000002300C
S11300700000023800000240000002480000025064
S11300800000026A00000280000002880000045E92
S11300900000047E0000049E000004BE000004DE94
S11300A0000004F2000004FE000004FE000004FE50
S11300B0000004FE000004FE000004FE000004FE34
S11300C0000001E4000001E4000001E4000001E498
...lots of output...
$ m68k-coff-run hello
Hello world
$

2.5. Using the Debugger

Before we can make full use of the debugger, we must recompile
hello.adb using the compiler's debug option. This option tells the
compiler to include information about the source code, and the
mapping of source code to generated code. Then the debugger can
operate at source code level rather than at machine code level.

The debug information does not alter the generated code in any
way but it does make object code files much bigger. Normally this
is not a problem, but if you wish to remove the debug information
from a file, then use the object code utility m68k-coff-strip.

This is how we recompile hello.adb with the -g option. There are
other debug options too. See the M68K Ada User's Guide for more
information on debug options.

Example 2.12. Recompiling with the Debug Option

bash$ m68k-coff-gnatmake -f -g hello
m68k-coff-gcc -c -g hello.adb
m68k-coff-gnatbind -x hello.ali
m68k-coff-gnatlink -g hello.ali

The debugger is m68k-coff-gdb. By default the debugger will run
a M68K program on the M68K simulator. If you prefer to run and
debug on a real M68K then you must arrange for your target to
communicate with the host using the debugger's remote debug

18

Chapter 2. Advanced Techniques

protocol. This is described in Section 2.7, “Working with the
Target” [21].

Example 2.13. Running under the Debugger

$ m68k-coff-gdb hello
XGC m68k-ada Version 1.7 (debugger)
Copyright (c) 1996, 2002, XGC Software.
Based on gdb version 5.1.1
Copyright (c) 1998 Free Software Foundation...
(gdb) br main
Breakpoint 1 at 0x644: file b~hello.adb, line 39.
(gdb)run
Starting program: .../examples/hello
Connected to the simulator.

Loading sections:
Idx Name Size VMA LMA File off Algn
 0 .ivec 00000100 00000000 00000000 00002000 2**2
 CONTENTS, ALLOC, LOAD
 1 .init 00000004 00000100 00000100 00002100 2**2
 CONTENTS, ALLOC, LOAD, CODE
 2 .text 00001908 00000104 00000104 00002104 2**2
 CONTENTS, ALLOC, LOAD, CODE
 3 .rdata 000000ec 00001a0c 00001a0c 00003a0c 2**2
 CONTENTS, ALLOC, LOAD
 4 .data 000001fc 00100000 00001af8 00004000 2**2
 CONTENTS, ALLOC, LOAD, DATA
Start address 0x104
Transfer rate: 59296 bits in <1 sec.

Breakpoint 1, main () at b~hello.adb:39
39 adainit;
(gdb)c
Continuing.
Hello World

Program exited normally.
[Switching to process 0]
(gdb)quit

You can view the debug information using the object dump utility,
as follows:

19

Using the Debugger

Example 2.14. Dump of Debug Information

bash$ m68k-coff-objdump -G hello

hello: file format coff-m68k

Contents of .stab section:

Symnum n_type n_othr n_desc n_value n_strx String

-1 HdrSym 0 1598 00004b7d 1
0 SO 0 0 00000608 13 ../examples/
1 SO 0 0 00000608 1 b~hello.adb
2 LSYM 0 0 00000000 58 long int:t(0,1)=r(0
3 LSYM 0 0 00000000 105 unsigned char:t(0,2
...

2.6. Using Optimizations

Optimization makes your program smaller and faster. In most cases
it also makes the generated code easier to understand. So think of
the option -O2 as the norm, and only use other levels of optimization
when you want to get something special.

The extent to which optimization makes a whole program smaller
and faster depends on many things. In the case of hello.adb there
will be little benefit since most of the code in the executable file
is in the library functions, and these are already optimized.

The following example is more representative and shows the
Whetstone benchmark program reduced to 49% of its size, and
running nearly twice as fast. You can find Whetstone in the
CD-ROM directory benchmarks/.

Here are the results when compiling with no optimization.

$ m68k-coff-gcc -c -O0 whetstone.adb
$ m68k-coff-size whetstone.o
 text data bss dec hex filename
 22312 0 0 22312 5728 whetstone.o

20

Chapter 2. Advanced Techniques

$ m68k-coff-gnatmake -f -O0 whetstone
$ m68k-coff-run whetstone
,.,. Whetstone GTS Version 0.1
---- Floating point benchmark.
Time taken = 325 mSec
Whetstone rating = 3077 KWIPS

Here are the results when compiling with optimization level 2.

$ m68k-coff-gcc -c -O2 whetstone.adb
$ m68k-coff-size whetstone.o
 text data bss dec hex filename
 10976 0 0 10976 2ae0 whetstone.o
$ m68k-coff-gnatmake -f -O2 whetstone
$ m68k-coff-run whetstone
,.,. Whetstone GTS Version 0.1
---- Floating point benchmark.
Time taken = 184 mSec
Whetstone rating = 5431 KWIPS

At optimization level 3, the compiler will automatically in-line
calls of small functions. This may increase the size of the generated
code, and the code will run faster. However the code motion due
to inlining may make the generated code difficult to read and debug.

2.7. Working with the Target

M68K Ada also supports debugging on the target computer. Before
you can do this, you must connect the target board to the host
computer using two serial cables that include a null modem. One
cable connects the board's serial connector A to the host, and is
used to down-load the monitor and for application program input
and output. The other cable connects to the board's serial connector
B, and is used by the debugger to load programs, and to perform
debugging operations.

21

Working with the Target

2.7.1. How to Down-load the Debug Monitor

Before we can use the debugger to down-load and debug programs
running on the target, we must down-load the M68K Ada debug
monitor. This is a small program that resides in the upper 32K
bytes of RAM, and communicates with the M68K debugger over
the serial interface B. You will find the source code in the directory
/opt/m68k-ada-1.7/m68k-coff/src/monitor/.

$ ls /opt/m68k-ada-1.7/m68k-coff/src/monitor/
CVS Makefile README art1.S install.sh remcom.c t1.c t2.adb t2.c
t6 t6.c xgcmon.M xgcmon.c xgcmon.ld

The ready-to-load (S-Record) version is
/opt/m68k-ada-1.7/m68k-coff/lib/xgcmon.

We assume the target board is fitted with a Motorola monitor.

In this guide we use the program tip to work as a terminal. This
program is generally available on Solaris platforms, but is seldom
seen on Linux or Windows. If you don't have tip then there are
other programs (such as Kermit) that will do as well.

We configured tip to use the serial interface connected to the target
at 19200 bps in the file dem32. On Solaris, the configuration
statement is in the file /etc/remote. The following example shows
the configuration line used to generate the rest of this text. Note
there is no entry for the output EOF string. This is not required.

The configuration line we use is as follows:

Example 2.15. Remote Configuration File

$ cat /etc/remote
...
dem32:\
 :dv=/dev/term/b:br#19200:el=^C^S^Q^U^D:ie=%$:
...

22

Chapter 2. Advanced Techniques

The debug monitor is called xgcmon. This file is formatted in
Motorola S-Records ready for down-loading in response to the
load command, as shown in the following example.

Example 2.16. Output from the Monitor

tbd

The monitor is now running and ready to communicate over the
other serial interface. To leave tip type ~..

2.7.2. Preparing a Program to Run under the Monitor

Because the debug monitor is a complete supervisor-mode
application program it is not appropriate to down-load the programs
we built in the previous section. We must rebuild the program using
the start file art1.

The module art1 consists of the code from art0 to do with
initializing the high-level language environment. It omits the trap
vector and trap handling code. You can get the source from
/opt/m68k-ada-1.7/m68k-coff/src/monitor/art1.S.

The following code shows how to compile the Ackermann
benchmark program using a custom linker script and the file art1.

$ m68k-coff-gcc -O ackermann.c -o ackermann -T xgcmon.ld art1.o

The file xgcmon.ld may be found on the CD-ROM in the run-time
source directory /opt/m68k-ada-1.7/m68k-coff/src/monitor.

The following example shows the Ackermann benchmark running
under the control of the debugger. You should substitute your serial
device name for ttyS0.

Example 2.17. Remote Debugging

$ m68k-coff-gdb ackermann
XGC m68k-ada Version 1.7b1 (debugger)
Copyright (c) 1996, 2002, XGC Software.

23

Preparing a Program to Run under the Monitor

Based on gdb version 5.1.1
Copyright (c) 1998 Free Software Foundation...
(gdb) set remotebaud 19200
(gdb) tar rem /dev/ttyS0
Remote debugging using /dev/ttyS0
0x21f965c in ?? ()
(gdb) load
Loading section .text, size 0x1948 lma 0x2000000
Loading section .rdata, size 0x3d8 lma 0x2001948
Loading section .data, size 0x50 lma 0x2001d20
Start address 0x2000110
Transfer rate: 6698 bits/sec.
(gdb) run
Starting program: /hdb3/xgc/benchmarks/ackermann
,.,. ackermann GTS Version 0.1
---- ackermann Function call benchmark, A (3, 6).
 - ackermann time taken = 1.130e+00 Seconds.
**** ackermann PASSED ============================.
Program exited normally.
(gdb) quit
$

24

Chapter 2. Advanced Techniques

Real-Time ProgramsChapter 3

M68K Ada is highly suitable for hard real-time applications that
require accurate timing and a fast and predictable response to
interrupts from peripheral devices. This is achieved with the
following features:

• Ravenscar profile

• The package Ada.Real_Time and a high-resolution real-time clock
(a precision of one microsecond)

• Preemptive priority scheduling with ceiling locking (120
microsecond task switch1)

• Low interrupt latency (15 microseconds)

• The packages Ada.Dynamic_Priorities,
Ada.Synchronous_Task_Control and Ada.Task_Identification

1Simulated generic 68040 at 25 MHz

25

• Support for periodic tasks and task deadlines, as required by
ARINC 653

M68K Ada also offers reduced program size by:

• Optimized code generation

• Use of trap instructions to raise exceptions

• Small run-time system size

• Optimizations that permit interrupt handling without tasking

This chapter describes how to use Ada tasks, and the associated
language features, in example real-time programs.

3.1. The Ravenscar Profile

In support of safety-critical applications, Ada 95 offers various
restrictions that can be invoked by the programmer to prevent the
use of language features that are thought to be unsafe. Restrictions
can be set individually, or can be set collectively in what is called
a profile. XGC Ada supports all the Ada 95 restrictions and supports
the implementation-defined pragma Profile. To get the compiler
to work to the Ravenscar profile, you should place the following
line at the top of each compilation unit.

pragma Profile (Ravenscar);

By default, M68K Ada supports a limited form of tasking that is
a superset of what is supported by the Ravenscar profile. The
built-in restrictions allow for statically declared tasks to
communicate using protected types, the Ada 83 rendezvous or the
predefined package Ada.Synchronous_Task_Control.

The Ravenscar profile prohibits the rendezvous and several other
unsafe features. When using this profile, application programs are
guaranteed to be deterministic and may be analyzed using static
analysis tools.

The relevant Ada language features are as follows:

26

Chapter 3. Real-Time Programs

• The pragma Priority

• Task specs and bodies

• Protected objects

• Interrupt handlers

• The delay until statement

• The package Ada.Real_Time

3.1.1. The Main Subprogram

The main subprogram, which contains the program entry point
runs as task number 1. The TCB2 for this task is created in the
run-time system, and the stack is the main stack declared in the
linker script file.

For other than a trivial program, the main task should probably be
regarded as the idle task or background task. You can make sure
that it runs at the lowest priority using the pragma Priority in the
declarative part of the main subprogram.

Example 3.1. Main Subprogram with Idle Loop

with My_Packages...
procedure T1 is
 pragma Priority (0);
begin
 loop
 null;
 end loop;
end T1;

You might want the background task to continuously run some
built-in tests, or you may wish to switch the CPU into low power
mode until the next interrupt is raised.

2Task Control Block

27

The Main Subprogram

Here is an example main subprogram that goes into low-power
mode when there is nothing else to do. Note that the function
__xgc_set_pwdn is included in the standard library libc.

Example 3.2. Idle Loop with Power-Down

with My_Packages...
procedure T1 is
 pragma Priority (0);
 procedure Power_Down;
 pragma Import (C, Power_Down, "__xgc_set_pwdn");
begin
 -- Confirm successful entry to the main program (say)
 ...

 -- Enter idle loop
 loop
 Power_Down;
 end loop;
end T1;

The rest of the program comprises periodic and aperiodic tasks
that are declared in packages, that are with-ed from the main
subprogram. Tasks are numbered from 2 in the order in which they
are elaborated.

Important In M68K Ada, there is no default idle task. If all of your
application tasks become blocked, then the program
will fail with Program_Error.

3.1.2. Periodic Tasks

The package Ada.Real_Time declares types and subprograms for
use by real-time application programs. In M68K Ada, this package
is implemented to offer maximum timing precision with minimum
overhead.

The resolution of the time-related types is one microsecond. With
a 32-bit word size, the range is approximately +/- 35 minutes. This
is far greater than the maximum delay period likely to be needed
in practice. For a 25 MHz MC68040 processor, the lateness of a

28

Chapter 3. Real-Time Programs

delay is approximately 55 microseconds. That means that given a
delay statement that expires at time T, and given that the delayed
task has a higher priority than any ready task, then the delayed task
will restart at T + 55 microseconds. This lateness is independent
of the duration of the delay, and represents the time for a context
switch plus the overhead of executing the delay mechanism.

It is therefore possible to run tasks at quite high frequencies, without
an excessive overhead. On a 25 MHz M68K, you can run a task at
1000Hz, with an overhead (in terms of CPU time) of approximately
10 percent, leaving 90 percent for the application program.

3.1.3. Form of a Periodic Task

The general form of a periodic task is given in the following
example. You should note that tasks and protected objects must be
declared in a library package, and not in a subprogram.

The task's three scheduling parameters are declared as constants,
giving the example task a frequency of 100 Hz, and a phase lag of
3 milliseconds, and a priority of 3. You will have computed these
parameters by hand, or using a commercial scheduling tool.

Example 3.3. A Periodic Task

T0 : constant Time := Clock;
-- Gets set at elaboration time and used by all periodic tasks

Task1_Priority : constant System.Priority := 3;
Task1_Period : constant Time_Span := To_Time_Span (0.010);
Task1_Offset : constant Time_Span := To_Time_Span (0.003);

task Task1 is
 pragma Priority (Task1_Priority);
end Task1;

task body Task1 is
 Next_Time : Time := T0 + Task1_Offset;
begin
 loop
 Next_Time := Next_Time + Task1_Period;

29

Form of a Periodic Task

 delay until Next_Time;

 -- Do something
 null;
 end loop;
end Task1;

The task must have an outer loop the runs for ever. The periodic
running of the task is controlled by the delay statement, which
gives the task a time slot defined by Offset, Period, and the
execution time of the rest of the body.

The value of Task1_Period should be a whole number of
microseconds, otherwise, through the accumulation of rounding
errors, you may experience a gradual change in phase that may
invalidate the scheduling analysis you did earlier.

3.1.4. Aperiodic Tasks

Like periodic tasks, aperiodic tasks have an outer loop and a single
statement to invoke the task body.

In the following example, we declare a task that runs in response
to an interrupt. You can use this code with a main subprogram to
build a complete application that will run on the M68K simulator.

Here is the code for the package and its body:

Example 3.4. An Interrupt-Driven Task

package EG4_Pack is
 task Task2 is
 pragma Priority (1);
 end Task2;
end EG4_Pack;

with Ada.Interrupts.Names;
with Interfaces;
with Text_IO;

package body EG4_Pack is

30

Chapter 3. Real-Time Programs

 use Ada.Interrupts.Names;
 use Interfaces;
 use Text_IO;

 protected IO is
 procedure Handler;
 pragma Attach_Handler (Handler, Level1_Autovector);
 entry Get (C : out Character);
 private
 Rx_Ready : Boolean := False;
 end IO;

 protected body IO is
 procedure Handler is
 Status_Word : Unsigned_8;
 for Status_Word'Address use 16#00050069#;
 begin
 Rx_Ready := (Status_Word and 16#01#) /= 0;
 end Handler;

 entry Get (C : out Character) when Rx_Ready is
 Data_Word : Unsigned_8;
 for Data_Word'Address use 16#00050063#;
 begin
 C := Character'Val (Data_Word and 16#7f#);
 Rx_Ready := False;
 end Get;
 end IO;

 task body Task2 is
 C : Character;
 begin
 loop
 IO.Get (C);

 -- Do something with the character
 Put ("C = '"); Put (C); Put (''');
 New_Line;

 end loop;
 end Task2;

end EG4_Pack;

31

Aperiodic Tasks

Points to note are as follows:

• The package Ada.Interrupts.Names declares the names of the
M68K external interrupts.

• We use address clauses to declare memory-mapped IO locations.

• The type Unsigned_32 permits bitwise operators such as 'and'
and 'or'.

• The interrupt handler runs in supervisor mode with the Interrupt
Mask set to the level of the interrupt.

3.2. Additional Packages

Programs that are not restricted to the Ravenscar Profile may also
use the predefined packages Ada.Asynchronous_Task_Control,
Ada.Dynamic_Priorities, Ada.Synchronous_Task_Control and
Ada.Task_Identification.

The function Current_Task allows a task to get an identifier for
itself. This identifier may then be used in calls the the subprograms
in Ada.Asynchronous_Task_Control, which allow a task to be placed
on hold, or to continue. Tasks that are on hold consume no CPU
time but do retain their state.

The package Ada.Task_Identification allows a task to be aborted.
In M68K Ada this places the task in a state from which it may be
restarted using the subprograms in XGC.Tasking.Stages.

The base priority of any task (including the current task) may be
requested or changed using the package Ada.Dynamic_Priorities.

The implementation-defined package Ada.Periodic_Tasks allows
periodic tasks to be given a period and then run without using the
delay statement.

The implementation-defined package Ada.Task_Deadlines allows
periodic tasks to be given a deadline that can be updated on each
iteration. If a task fails to meet a hard deadline, then the program
fails with a status that indicates the deadline has been missed.

32

Chapter 3. Real-Time Programs

3.3. Interrupts without Tasks

A protected operation that is attached to an interrupt must be a
parameterless protected procedure. This is enforced by the pragma
Attach_Handler and by the type Parameterless_Handler from
package Ada.Interrupts. For interrupt handlers that have pragma
Interrupt_Handler and are not attached to an interrupt is it
convenient to allow both parameters and protected functions. The
XGC compiler supports this as a legal extension to the Ada
language.

In the special case where all the operations on a protected type are
interrupt level operations, the XGC compiler will generate run-time
system calls that avoid the use of the tasking system. Then only if
tasks are required will the tasking system be present. This saves
about 6K bytes of memory and reduces the amount of unreachable
(and untestable) code.

Example 3.5. Example Interrupt Level Protected Object

with Ada.Interrupts.Names;

package body Example_Pack is
 use Ada.Interrupts.Names;

 protected UART_Handler is
 procedure Handler;
 pragma Attach_Handler (Handler, UART_A_Rx_Tx);
 -- Must be a parameterless procedure

 procedure Read (Buf : String; Last : Natural);
 pragma Interrupt_Handler (Read);
 -- Runs at interrupt level, may have parameters

 function Count return Integer;
 pragma Interrupt_Handler (Count);
 -- Runs at interrupt level, may be a function
 end UART_Handler;

 protected body UART_Handler is
 ...
 end UART_Handler;

33

Interrupts without Tasks

end Example_Pack;

34

Chapter 3. Real-Time Programs

The M68000 FamilyAppendix A

The Motorola M68000 Family includes the following members:

MC68000
First generation 68K processor. 16 bit internal/external data
paths. 16 Mb address space.

MC68008
8 bit external data path. 1-4 MB address space.

MC68010
Similar to MC68000, but with restartable instructions. Can be
used in a virtual memory environment. Loop mode.

MC68EC000
Low-power MC68000. 8 or 16 bit external data bus.

MC68020
32 bit virtual memory microprocessor. 32 bit internal/external
data paths. 4 GB address space. Can be used with floating point
coprocessor. New instructions added including bitfield

35

instructions. New addressing modes added. 256 bytes
instruction cache.

MC68EC020
16 Mb address space.

MC68030
Similar to MC68020 but slightly faster. 256 bytes data cache
added. On- chip MMU.

MC68EC030
Low-power MC68030. No MMU.

CPU32
Basically a 68020 core but without cache, bitfield instructions,
and memory indirect addressing modes. 16 bit external data
path. No coprocessor. CPU32+ Same as CPU32 but with 32
bit external data path.

MC68040
Third generation 32 bit processor. 4K instruction cache. 4K
data cache. On chip floating point processor. On chip MMU.
Most instructions take one cycle.

MC68EC040
Low-power MC68040. No MMU. No FPU.

MC68060
Super scalar implementation of the 68K architecture. Can issue
up to two instructions per cycle. 8K instruction cache. 8K data
cache.

MC68EC060
Similar to MC68060. No FPU. No MMU.

MC68330, MC68332, MC68340
Integrated microcontrollers with CPU32.

36

Appendix A. The M68000 Family

Options for the
M68000 Family

Appendix B

The description of the Ada compiler in XGC Ada User's Guide
includes information that applies to all target computers. In addition,
the compiler offers several target-dependent options that specify
which member of the M68000 family is targeted.

The default target is the MC68040. If you wish to target some other
member of the 68000 family, then you must do the following:

• Specify the target on the compile command line.

• Create a custom linker script file than specifies the target
architecture and machine. The default is
OUTPUT_ARCH(m68k:68040).

B.1. Compiler Options

The compiler options that specify a target computer are as follows:

37

-m68000, -mc68000
Generate output for a MC68000, MC68008 or MC68010.

-m68020, -mc68020
Generate output for a MC68020.

-m68040, -mc68040
Generate output for a MC68040, including the floating point
instructions. This is the default.

-mcpu32
Generate code for CPU32 computers, such as the MC68332
and MC68340.

-m68881, -mc68881
Generate output containing MC68881 instructions for floating
point. Except for the MC68040, in the absence of this option,
calls are made to a floating point library (which is not
included).

-msoft-float
Generate output containing calls to a floating point library.
This is the default with the MC68000 and MC68020.

-mbitfield, -mno-bitfield
Generate (don't generate) bit field instructions.

B.2. Assembler Options

The Assembler has several additional command line options as
follows:

-l
You can use the -l option to shorten the size of references to
undefined symbols. If you do not use the -l option, references
to undefined symbols are wide enough for a full long (32 bits).
(Since the Assembler cannot know where these symbols end
up, the Assembler can only allocate space for the linker to fill
in later. Since the Assembler does not know how far away
these symbols are, it allocates as much space as it can.) If you
use this option, the references are only one word wide (16 bits).

38

Appendix B. Options for the M68000 Family

This may be useful if you want the object file to be as small
as possible, and you know that the relevant symbols are always
less than 17 bits away.

--bitwise-or
Normally the character | is treated as a comment character,
which means that it can not be used in expressions. The
--bitwise-or option turns | into a normal character. In this
mode, you must either use C style comments, or start comments
with a # character at the beginning of a line.

--base-size-default-16, --base-size-default-32
If you use an addressing mode with a base register without
specifying the size, the Assembler will normally use the full
32 bit value. For example, the addressing mode %a0@(%d0) is
equivalent to %a0@(%d0:l). You may use the
--base-size-default-16 option to tell the Assembler to default
to using the 16 bit value. In this case, %a0@(%d0) is equivalent
to %a0@(%d0:w). You may use the --base-size-default-32 option
to restore the default behaviour.

--disp-size-default-16, --disp-size-default-32
If you use an addressing mode with a displacement, and the
value of the displacement is not known, the Assembler will
normally assume that the value is 32 bits. For example, if the
symbol disp has not been defined, the Assembler will assemble
the addressing mode %a0@(disp,%d0) as though disp is a 32
bit value. You may use the --disp-size-default-16 option to
tell the Assembler to instead assume that the displacement is
16 bits. In this case, the Assembler will assemble
%a0@(disp,%d0) as though disp is a 16 bit value. You may use
the --disp-size-default-32 option to restore the default
behaviour.

-m68000, -m68008, -m68302, -m68306, -m68307, -m68322,
-m68356

Assemble for the MC68000. -m68008, -m68302, and so on
are synonyms for -m68000, since the CPUs are the same from
the point of view of the assembler.

39

Assembler Options

-m68010
Assemble for the MC68010.

-m68020
Assemble for the MC68020.

-m68030
Assemble for the MC68030.

-m68040
Assemble for the MC68040. This is the default.

-m68060
Assemble for the MC68060.

-mcpu32, -m68330, -m68331, -m68332, -m68333, -m68334,
-m68336, -m68340, -m68341, -m68349, -m68360

Assemble for the CPU32.

-m5200
Assemble for the ColdFire.

-m68881, -m68882
Assemble 68881 floating point instructions. This is the default
for the 68020, 68030, and the CPU32. The 68040 and 68060
always support floating point instructions.

-mno-68881
Do not assemble 68881 floating point instructions. This is the
default for 68000 and the 68010. The 68040 and 68060 always
support floating point instructions, even if this option is used.

-m68851
Assemble 68851 MMU instructions. This is the default for the
68020, 68030, and 68060. The 68040 accepts a somewhat
different set of MMU instructions; -m68851 and -m68040
should not be used together.

-mno-68851
Do not assemble 68851 MMU instructions. This is the default
for the 68000, 68010, and the CPU32. The 68040 accepts a
somewhat different set of MMU instructions.

40

Appendix B. Options for the M68000 Family

B.3. Motorola Syntax

The standard Motorola syntax for this chip differs from the syntax
discussed in Section B.4, “MIT Instruction Syntax” [42]. The
Assembler can accept Motorola syntax for operands, even if MIT
syntax is used for other operands in the same instruction. The two
kinds of syntax are fully compatible.

In the following table apc stands for any of the address registers
(%a0 through %a7), the program counter (%pc), the zero-address
relative to the program counter (%zpc), or a suppressed address
register (%za0 through %za7). The use of size means one of w or l,
and it may always be omitted along with the leading dot. The use
of scale means one of 1, 2, 4, or 8, and it may always be omitted
along with the leading asterisk.

The following addressing modes are understood:

Immediate
#number

Data Register
%d0 through %d7

Address Register
%a0 through %a7@* %a7 is also known as %sp, i.e. the Stack
Pointer. %a6 is also known as %fp, the Frame Pointer.

Address Register Indirect
(%a0) through (%a7), %a7 is also known as %sp, the Stack
Pointer. %a6 is also known as %fp, the Frame Pointer.

Address Register Postincrement
(%a0)+ through (%a7)+

Address Register Predecrement
-(%a0) through -(%a7)

Indirect Plus Offset
number(%a0) through number(%a7), or number(%pc).

41

Motorola Syntax

The number may also appear within the parentheses, as in
(number,%a0). When used with the pc, the number may be
omitted (with an address register, omitting the number produces
Address Register Indirect mode).

Index
number(apc,register.size*scale)

The number may be omitted, or it may appear within the
parentheses. The apc may be omitted. The register and the
apc may appear in either order. If both apc and register are
address registers, and the size and scale are omitted, then the
first register is taken as the base register, and the second as the
index register.

Postindex
([number,apc],register.size*scale,onumber)

The onumber, or the register, or both, may be omitted. Either
the number or the apc may be omitted, but not both.

Preindex
([number,apc,register.size*scale],onumber)

The number, or the apc, or the register, or any two of them,
may be omitted. The onumber may be omitted. The register

and the apc may appear in either order. If both apc and register

are address registers, and the size and scale are omitted, then
the first register is taken as the base register, and the second
as the index register.

B.4. MIT Instruction Syntax

This syntax for the Motorola M68000 family was developed at the
Massachusetts Institute of Technology (MIT).

The Assembler uses instructions names and syntax compatible with
the Sun assembler. Intervening periods are ignored; for example,
movl is equivalent to mov.l.

42

Appendix B. Options for the M68000 Family

In the following table apc stands for any of the address registers
(%a0 through %a7), the program counter (%pc), the zero-address
relative to the program counter (%zpc), a suppressed address register
(%za0 through %za7), or it may be omitted entirely. The use of size

means one of w or l, and it may be omitted, along with the leading
colon, unless a scale is also specified. The use of scale means one
of 1, 2, 4, or 8, and it may always be omitted along with the leading
colon.

The following addressing modes are understood:

Immediate
#number

Data Register
%d0 through %d7

Address Register
%a0 through %a7@* %a7 is also known as %sp, i.e. the Stack
Pointer. %a6 is also known as %fp, the Frame Pointer.

Address Register Indirect
%a0@ through %a7@

Address Register Postincrement
%a0@+ through %a7@+

Address Register Predecrement
%a0@- through %a7@-

Indirect Plus Offset
apc@(number)

Index
apc@(number,register:size:scale)

The number may be omitted.

Postindex
apc@(number)@(onumber,register:size:scale)

The onumber or the register, but not both, may be omitted.

43

MIT Instruction Syntax

Preindex
apc@(number,register:size:scale)@(onumber)

The number may be omitted. Omitting the register produces
the postindex addressing mode.

Absolute
symbol, or digits, optionally followed by :b, :w, or :l.

B.5. Floating Point

The floating point formats generated by directives are these.

.float

Single precision floating point constants.

.double

Double precision floating point constants.

.extend, .ldouble

Extended precision (long double) floating point constants.

Note Packed decimal (P) format floating literals are not
supported.

B.6. Machine Directives

In order to be compatible with the Sun assembler the Assembler
understands the following directives.

.data1

This directive is identical to a .data 1 directive.

.data2

This directive is identical to a .data 2 directive.

44

Appendix B. Options for the M68000 Family

.even

This directive is a special case of the .align directive; it aligns
the output to an even byte boundary.

.skip

This directive is identical to a .space directive.

B.7. Opcodes

B.7.1. Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They
expand to the shortest branch instructions that reach the target.
Generally these mnemonics are made by substituting j for b at the
start of a Motorola mnemonic.

The following table summarizes the pseudo-operations.

Table B.1. Assembler Pseudo Operations

Displacement

non-PC
relative

68000/10
LONG

68020
LONG

WORDBYTEPseudo-Op

jsrjsrbsrlbsrwbsrjbsr

jmpjmpbralbrabrasjra

bNXs; jmpbNXs; jmplbXXlbXXbXXsjXXa

dbXX; bra; jmpldbXXdbXXsdbXXa

fbNXw; jmpN/AfbXXlfbXXwfbXXwfjXXa

aXX: condition, NX: negative of condition, see full description below.

jbsr, jra
These are the simplest jump pseudo-operations; they always
map to one particular machine instruction, depending on the
displacement to the branch target.

45

Opcodes

jXX
Here, jXX stands for an entire family of pseudo-operations,
where XX is a conditional branch or condition-code test. The
full list of pseudo-ops in this family is:

jvsjvcjeqjnejcsjccjlsjhi
jlejgtjltjgejmijpl

For the cases of non-PC relative displacements and long
displacements on the 68000 or 68010, the Assembler issues a
longer code fragment in terms of NX, the opposite condition to
XX. For example, for the non-PC relative case:

jXX foo

gives

bNXs .L1
 jmp foo
.L1:

dbXX
The full family of pseudo-operations covered here is:

dbvsdbvcdbeqdbnedbcsdbccdblsdbhi
dbradbfdbledbgtdbltdbgedbmidbpl

dbt

Other than for word and byte displacements, when the source
reads dbXX foo, the Assembler emits

dbXX .L1
 bra .L2
.L1: jmpl foo
.L2:

fjXX
This family includes the following:

fjtfjffjlefjgtfjltfjgefjeqfjne

46

Appendix B. Options for the M68000 Family

fjnltfjnlefjngtfjnglefjnglfjngefjglefjgl
fjsffjseqfjorfjoltfjolefjogtfjoglfjoge
fjunfjultfjulefjugtfjugefjueqfjstfjsne

For branch targets that are not PC relative, the Assembler emits:

fbNX .L1
 jmp foo
.L1:

when it encounters fjXX foo.

B.8. Linker Options

The linker script specifies the CPU type of the target computer.
The default script specifies the MC68040. Note that the CPU type
is written into the executable program so that the simulator knows
which CPU to simulate.

OUTPUT_ARCH(m68k:68000)
The target is the MC68000.

OUTPUT_ARCH(m68k:68008)
The target is the MC68008.

OUTPUT_ARCH(m68k:68010)
The target is the MC68010.

OUTPUT_ARCH(m68k:68020)
The target is the MC68020.

OUTPUT_ARCH(m68k:68030)
The target is the MC68030.

OUTPUT_ARCH(m68k:68040)
The target is the MC68040. This is the default.

OUTPUT_ARCH(m68k:cpu32)
The target is any computer that has the CPU32 instruction set.

47

Linker Options

OUTPUT_ARCH(m68k:68060)
The target is the MC68060.

48

Appendix B. Options for the M68000 Family

Using the
M68000 Family
Simulator

Appendix C

The simulator command line has the form:

$ m68k-coff-run switches file

C.1. Command Line Switches

The simulator includes command line switches that are common
to all targets, and switches that are specific to the target
microprocessor.

-a " -option -option ... "
Introduces further target-specific options as follows:

-cpu CPU
The CPU type is given in the program file and the simulator
will use this as the CPU type. However, you can change
the CPU type to CPU. Values are as follows:

• MC68000 - Change to the Motorola MC68000

49

• MC68008 - Change to the Motorola MC68008

• MC68010 - Change to the Motorola MC68010

• MC68020 - Change to the Motorola MC68020

• MC68040 - Change to the Motorola MC68040

• CPU32 - Change to the Motorola CPU32

• MC68881 - Change to the Motorola MC68881
Floating-Point Co-Processor

-fpu
Simulate the Floating-Point Co-Processor, equivalent to
“-cpu MC68881”.

-freq F
Set the clock frequency to F MHz. The default is 25MHz.

-b, --branch-summary
Print a branch summary that given the percentage of conditional
branches that went both ways. You can use this option to
identify blocks of code that have not been covered by a test
case.

-B, --branch-report
Print a detailed conditional branch report with source line
numbers for each conditional branch instruction that did not
go both ways. You can use this option to identify blocks of
code that have not been covered by a test case.

-c, --coverage-summary
Print an execution coverage report that gives the percentage
of executable words that were fetched for execution. You can
use this option to identify blocks of code that are unreachable
from the program entry point.

-C, --coverage-report
Print a detailed report giving the source line numbers of
executable words that were not fetched for execution. You can

50

Appendix C. Using the M68000 Family Simulator

use this option to identify blocks of code that are unreachable
from the program entry point.

-d D, --delay D
Delays the start of tracing by D microseconds. Use this option
to skip unwanted lines of trace output.

-h, --help
Print a list of the simulator's options.

-i I, --pending I
Trigger interrupt trace when interrupt I is raised (and becomes
pending).

-I I, --interrupt I
Trigger interrupt trace when interrupt I is becomes unmasked
and causes the CPU to enter the handler.

-l T, --limit T
Set a time limit on simulation of T microseconds.

-m, --trace-memory
Trace memory reads and writes using 70 columns.

-M, --trace-memory-wide
Trace memory reads and writes using a wide format.

-p, --perf
Print a performance summary for the simulation run

-r, --ram-tags-report
Print a report that gives a summary of how each memory block
was used. The blocks are large.

-R, --RAM-tags-report
Print a report that gives a summary of how each memory block
was used. The blocks are small.

-s, --stats
Print execution statistics such as the total number of clock
cycles and the number of instructions executed.

51

Command Line Switches

-t, --trace
Trace instructions using 70 columns.

-T, --trace-wide
Trace instructions using wide format and include the floating
registers if any have a non-zero value.

-u U, --resolution U
Set the task trace resolution to U microseconds.

-v, --verbose
Verbose Mode. In normal mode the simulator only generates
information in the case of an error. In verbose mode, useful
information is generated as the simulation proceeds.

-V, --version
Print the simulator's version number and exit.

-w, --wide
Print traces and reports in wide or lengthy format.

-z, --tasking-report
Print a tasking report. This records interrupt levels and the
number of the current Ada task over a range of time and prints
a report when execution is complete. Recording can be
triggered on interrupt, or after a delay or it can be continuous.
Recording slows the simulator. Uses less than 80 columns.

-Z, --tasking-report-wide
Print a tasking report. This records interrupt levels and the
number of the current Ada task over a range of time and prints
a report when execution is complete. Recording can be
triggered on interrupt, or after a delay or it can be continuous.
Recording slows the simulator. Uses wide format.

52

Appendix C. Using the M68000 Family Simulator

The package
Ada.Interrupts.Names

Appendix D

The predefined package Ada.Interrupts.Names contains
declarations for the M68K as follows:

package Ada.Interrupts.Names is

 -- Interrupts from external sources

 Level1_Autovector : constant Interrupt_ID := 1;
 Level2_Autovector : constant Interrupt_ID := 2;
 Level3_Autovector : constant Interrupt_ID := 3;
 Level4_Autovector : constant Interrupt_ID := 4;
 Level5_Autovector : constant Interrupt_ID := 5;
 Level6_Autovector : constant Interrupt_ID := 6;
 Level7_Autovector : constant Interrupt_ID := 7;

 -- Events. All reserved for the run-time system

 System_Call : constant Interrupt_ID := 16;
 Breakpoint : constant Interrupt_ID := 17;
 Suspend : constant Interrupt_ID := 18;
 Program_Exit : constant Interrupt_ID := 19;

53

 Ada_Exception : constant Interrupt_ID := 20;
 IO_Event : constant Interrupt_ID := 21;
 Timer_Interrupt : constant Interrupt_ID := 22;
 Int_23 : constant Interrupt_ID := 23;

 -- Faults. Available for application health management

 Deadline_Error : constant Interrupt_ID := 24;
 Application_Error : constant Interrupt_ID := 25;
 Numeric_Error : constant Interrupt_ID := 26;
 Illegal_Request : constant Interrupt_ID := 27;
 Stack_Overflow : constant Interrupt_ID := 28;
 Memory_Violation : constant Interrupt_ID := 29;
 Hardware_Fault : constant Interrupt_ID := 30;
 Power_Fail : constant Interrupt_ID := 31;

end Ada.Interrupts.Names;

54

Appendix D. The package Ada.Interrupts.Names

The Host-Target LinkAppendix E

The host-target link allows the debugger to communicate with the
debug monitor running on the target computer. The link uses an
RS-232C interface connected to a serial port on the host computer,
and connected to a compatible serial port on the target computer.

The connecting cable must include a null modem. This is because
both serial ports are configured to operate a terminal. The null
modem is simply a cross over that wires the outputs from one port
to the inputs of the other. Details of the wiring are given in
Section E.1, “RS-232 Information” [55].

E.1. RS-232 Information

The wiring of a null modem cable is given in Table E.1, “Null
Modem Wiring and Pin Connection” [56].

55

Table E.1. Null Modem Wiring and Pin Connection

 25
Pin

9 Pin 9 Pin25
Pin

FG1N/A----------N/A1FG (Frame Ground)

RD32----------32TD (Transmit Data)

TD23----------23RD (Receive Data)

CTS58----------74RTS (Request To Send)

RTS47----------85CTS (Clear To Send)

SG75----------57SG (Signal Ground)

DTR204----------66DSR (Data Set Ready)

DSR66----------420DTR (Data Terminal
Ready)

The RS-232 standard is given in Table E.2, “The RS-232
Standard” [56].

Table E.2. The RS-232 Standard

 DB-9DCEDB-25

Protective GroundxAA 1

Transmitted DataIBA3TXD2

Received DataOBB2RXD3

Request To SendICA7RTS4

Clear To SendOCB8CTS5

Data Set ReadyOCC6DSR6

Signal GroundxAB5GND7

Received Line Signal
Detector

OCF1CD8

Reserved for data set testingx-- 9

Reserved for data set testingx-- 10

Unassignedx 11

Secndry Rcvd Line Signl
Detctr

O SCF12

56

Appendix E. The Host-Target Link

 DB-9DCEDB-25

Secondary Clear to SendO SCB13

Secondary Transmitted DataI SBA14

Transmisn Signl Elemnt
Timng

O DB15

Secondary Received DataO SBB16

Receiver Signal Element
Timing

O DD17

Unassignedx 18

Secondary Request to SendI SCA19

Data Terminal ReadyICD4DTR20

Signal Quality DetectorO CG21

Ring IndicatorOCE9 22

Data Signal Rate SelectorI/O CH/CI23

Transmit Signal Element
Timing

I DA24

Unassignedx 25

57

RS-232 Information

58

Questions and AnswersAppendix F

Here is a list of questions and answers.

Q: How do I change the installation directory? 59
Q: How do I un-install M68K Ada? 60
Q: Can I do mixed language programming? 60
Q: What is linked into my program over and above my Ada

units? ... 60
Q: Can I build a program with separate code and data areas?

.. 60
Q: Can I use the M68K Boot PROM? 60
Q: Which text editor should I use? 60
Q: Which UNIX shell should I use? 61
Q: Are programs restart-able? ... 61

Q: How do I change the installation directory?

A: On Solaris and Linux you can install the files in a directory
of your choice then create a symbolic link from
/opt/m68k-ada-1.7/ to that directory.

59

Q: How do I un-install M68K Ada?

A: On GNU/Linux, simply delete the directory
/opt/m68k-ada-1.7/ and its contents.

On Solaris, you should use the pkgrm command. For
example, M68K Ada Version 1.7 may be removed as follows:

pkgrm XGCm6ad17

Q: Can I do mixed language programming?

A: Yes. You can write a program using both C and Ada 95
programming languages. In particular you can call the C
libraries from code written in Ada.

Q: What is linked into my program over and above my Ada
units?

A: When you build a program, the linker will include any
run-time system modules that are necessary. The start file
art0.o is always necessary. Other files such as object code
for predefined Ada library units will be included only if they
are referenced.

Q: Can I build a program with separate code and data areas?

A: Yes. Each object code module contains separate sections for
instructions, read-only data, variable data and zeroized data.
During the linking step, sections are collected together under
the direction of the linker script file. The default is to collect
each kind of section separately and to generate an executable
file with separate code and data.

Q: Can I use the M68K Boot PROM?

A: Yes. The program mkprom may be used to create a
compressed image and bootstrap loader suitable for the Boot
PROM.

Q: Which text editor should I use?

60

Appendix F. Questions and Answers

A: M68K Ada requires no special editing features and will work
with your favorite text editor. If you use the emacs editor,
then you will be able to run the compiler from the editor,
and then relate any error messages to the source files. If you
have no favorite editor, then we recommend the universal
UNIX editor vi.

Q: Which UNIX shell should I use?

A: We recommend the GNU Bash shell. It offers a much better
user interface than other shells, and is kept up to date.

Q: Are programs restart-able?

A: Yes. The file art0.S contains code to initialize all variables
in the .data section from a copy in read-only memory.

61

62

A
addressing modes

M680x0, 43
alternate syntax for the 680x0, 41

B
branch improvement

M680x0, 45

D
data1 directive

M680x0, 44
data2 directive

M680x0, 44
directives

M680x0, 44
double directive

M680x0, 44

E
even directive

M680x0, 45
extend directive M680x0, 44

F
float directive

M680x0, 44
floating point

M680x0, 44

I
instruction set

M680x0, 45

L
ldouble directive M680x0, 44

M
M680x0 addressing modes, 43

Index

63

M680x0 branch improvement, 45
M680x0 directives, 44
M680x0 floating point, 44
M680x0 opcodes, 45
M680x0 options, 38
M680x0 pseudo-opcodes, 45
M680x0 size modifiers, 42
M680x0 syntax, 42
MIT, 42
Motorola syntax for the 680x0, 41

O
opcodes

M680x0, 45
options

M680x0, 38

P
pseudo-opcodes

M680x0, 45

S
size modifiers

M680x0, 42
skip directive

M680x0, 45
syntax

M680x0, 42

64

Index

