I
- 0000000
Getting Started with
M68K Ada

Ada 95 Compilation System for the
M otorola M 68000 Family

WWW.Xgc.com







Getting Started with
M68K Ada

Ada 95 Compilation System for the
M otorola M 68000 Family

Order Number: M68K-ADA-GS-031214

XGC Technology

London
UK

<VWW. XgC. conp



Getting Started with M68K Ada: Ada 95 Compilation System for the
M otorola M 68000 Family

Publication date December 14, 2003
© 1998, 1999, 2000, 2001, 2002, 2003, 2004 X GC Software

Acknowledgments

M68K Adais based on technology originally developed by the GNAT team at New York University and now maintained by Ada Core
Technologies, Inc., and includes software from the GNU C compiler, debugger and binary utilities developed by and on behalf of the Free
Software Foundation, Inc., Cambridge, Massachusetts. Development of the original mission-critical capability was funded by TRW Aerospace
and the Ministry of Defence.




Contents

About this Guide xiii

1 Audience xiii

2 Related Documents Xiii

3 Reader's Comments Xxiv

4 Documentation Conventions Xiv

Chapter 1 Basic Techniques 1

1.1 HelloWorld 1
1.1.1 How to Prepare an AdaProgram 2
1.1.2 How to Compile 2
1.1.3 How to Run aProgram on the
Simulator 4

1.2 How to Recompile aProgram 4

1.3 The Generated Code 5
1.3.1 Tracing Simulation 8

1.4 What'sin My Program? 9

15 Restrictions 10




Getting Started with M68K Ada

Chapter 2 Advanced Techniques 13

2.1 Using aCustom Start File 13

2.2 Using aCustom Linker Script File 15

2.3 HowtoGetaMap File 15

2.4  Generating PROM Programming Files 16

25 Using the Debugger 18

2.6 Using Optimizations 20

2.7 Working with the Target 21
2.7.1 How to Down-load the Debug Monitor 22
2.7.2 Preparing a Program to Run under the
Monitor 23

Chapter 3 Real-Time Programs 25

3.1 TheRavenscar Profile 26
3.1.1 TheMain Subprogram 27
3.1.2 Periodic Tasks 28
3.1.3 Form of aPeriodic Task 29
3.1.4 Aperiodic Tasks 30

3.2 Additiona Packages 32

3.3 Interrupts without Tasks 33

Appendix A The M68000 Famlly 35

Appendix B OptiOﬂS for the M68000 Fami Iy 37

B.1 Compiler Options 37
B.2 Assembler Options 38
B.3 MotorolaSyntax 41
B.4 MIT Instruction Syntax 42
B.5 Foating Point 44
B.6 Machine Directives 44
B.7 Opcodes 45
B.7.1 Branch Improvement 45
B.8 Linker Options 47

Appendix C Us ng the M68000 Fami Iy Smulator 49
C.1 Command Line Switches 49

Vi



Getting Started with M68K Ada

Appendix D

Appendix E

Appendix F

The package Ada.Interrupts.Names 53

The Host-Target Link 55
E.1 RS-232Information 55

Questions and Answers 59

Index 63

Vii



viii



Tables

B.1 Assembler Pseudo Operations 45
E.1 Null Modem Wiring and Pin Connection 56
E.2 TheRS-232 Standard 56







Examples

11
12
1.3
14
15
16
1.7
1.8
1.9
1.10
111
112
21
22
23
24
25
2.6
2.7
2.8
29
2.10
211
212
213
214
2.15
2.16
217
31
32
3.3
34
35

The Source File 2
How to Compilehel | 0. adb 2
Binding and Linking 3
Using gnatmake 4
Running on the Simulator 4
Using the gnatmake command 5
Generating a Machine Code Listing 6
Output from objdump 7
Using the Size Command 7
Using the Object Code Dump Program 7
Tracing Simulation 8
A Linker Map 10
Creating a Custom Start File 14
Recompiling art0.S 14
Rebuilding with a Custom art0.S 14
Making a Custom Linker Script File 15
Using a Custom Linker Script File 15
How to Get aMap File 15
TheMap File 15
Converting to Intel Hex 16
Generating aHEX File 17
Running an Intel Hex File 17
Running an S-Record File 17
Recompiling with the Debug Option 18
Running under the Debugger 19
Dump of Debug Information 20
Remote Configuration File 22
Output from the Monitor 23
Remote Debugging 23
Main Subprogram with Idle Loop 27
Idle Loop with Power-Down 28
A Periodic Task 29
An Interrupt-Driven Task 30
Example Interrupt Level Protected Object 33

Xi



Xii



About this Guide

1. Audience

This guide is written for the experienced programmer who is
already familiar with the Ada 95 programming language and with
embedded systems programming in general. We assume some
knowledge of the target computer architecture.

2. Related Documents

The M68K Ada User's Guide describesthe commands, optionsand
scripts required to use the tool -set.

The M68K Ada Reference Manual Supplement documents the
implementation-defined aspects of the Ada 95 programming
language supported by the compiler.

The library functions, which are common to all XGC compilation
systems, are documented in The XGC Libraries.

Xiii



About this Guide

Information on the M68K is available from Motorola,
http://www.motorola.con/.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments in the following ways.
 |Internet electronic mail: r eaders_comment s@gc. com

Please include the following information aong with your
comments:

» Thefull title of the manual and the order number. (The order
number is printed on the title page of this manual.)

» The section numbers and page numbers of the information on
which you are commenting.

» Theversion of the software that you are using.

Technical support enquiries should be directed to the XGC Web
Site [http://www.xgc.com/].

4. Documentation Conventions
This guide uses the following typographic conventions:
% $

A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

A number sign represents the super-user prompt.

$ vi hello.c
Boldface type in interactive examples indicates typed user
input.

Xiv


http://www.motorola.com/
http://www.xgc.com/
http://www.xgc.com/
http://www.xgc.com/

Documentation Conventions

file
Italic or danted type indicates variable values, place-holders,
and function argument names.

LI 1}

In syntax definitions, brackets indicate items that are optional
and bracesindicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated.

cat(1)
A cross-reference to areference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mbl/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

XV



XVi



Basic Techniques

Chapter 1
To start with we'll writeasmall program and run it on the simulator.
Thiswill give you a general idea of how things work. Later we
will describe how to run a program on the real target computer.
1.1. Hello World

The subject of thischapter isasmall program called “hello”. Using
library functions and simulated input-output to do the printing, it
simply prints the message “Hel | o Wor | d” on your terminal. You
will find the source code in the directory exanpl es on the

M68K Ada CD-ROM.

Three steps are needed to create an executable file from an Ada
sourcefile:

1. The source file(s) must first be compiled.

2. Thefilg(s) then must be bound using the M68K Ada binder.




Chapter 1. Basic Techniques

3. All appropriate object files must be linked to produce an
executable.

All three steps are best handled using the gnatmake program.
Given the name of the main program, gnatmake automatically
performsthe necessary compilation, binding and linking steps. See
Section 1.2, “How to Recompile a Program” [4].

1.1.1. How to Prepare an Ada Program

Any editor may be used to prepare an Ada program. If emacsis
used, the optional Ada mode may be helpful in laying out the
program. The program text is a normal text file. We will suppose
inour initial examplethat you have used your editor to preparethe
following standard format text file:

Example 1.1. The Source File

with Text 10
procedure Hello is
begin
Text 1O Put_Line ("Hello Wrld")
end Hello

Thisfile should be named hel | 0. adb. Using the default file naming
conventions, M68K Ada requires that each file contain asingle
compilation unit whose file name corresponds to the unit name
with periods replaced by hyphens and whose extension is. ads for
aspec and . adb for a body.

1.1.2. How to Compile

You can compile the program using the following command:
Example 1.2. How to Compilehel | 0. adb

$ mb8k-coff-gcc -¢ hello. adb




How to Compile

The command m68k-coff-gcc is used to access the compiler. This
command is capable of compiling programsin several languages
including Ada 95, C, assembly language and object code. It
determines you have given it an Ada program by the filename
extension (. ads or . adb), and will call the Adacompiler to compile
the specified file.

The - ¢ switch isaways required. It tells gcc to stop after
compilation. (For C programs, gcc can also do linking, but this
capability is not used directly for Ada programs, so the - ¢ switch
must always be present.)

This compile command generates thefile hel | 0. 0 which isthe
object file corresponding to the source file hel | 0. adb. It also
generates afilehel 1 0. al i , which contains additional information
used to check that an Ada program is consistent. To get an
executable file, we then use gnatbind to bind the program and
gnatlink to link the program.

Example 1.3. Binding and Linking

$ mb8k-cof f-gnat bind hello.ali
$ mb8k-coff-gnatlink hello. ali

Theresult is an executable file named hel | o.

You may use the option - v to get more information about which
version of the tool was used and which files were read.

A ssmpler method of carrying out these stepsisto usethe gnatmake
command. gnatmake is a master program that invokes all of the
required compilation, binding and linking toolsin the correct order.
In particular, it automatically recompiles any modified sources, or
sources that depend on modified sources, so that a consistent
compilation is ensured.

The following example shows how to use gnatmake to build the
program hel | o.




Chapter 1. Basic Techniques

Example 1.4. Using gnatmake

$ n68k-cof f - gnat make hello
m68k- cof f-gcc -c¢ hello.adb
m68k- cof f - gnat bind -x hel l 0. al
m68k- cof f-gnatlink hello. al

$

Again the result is an executable file named hel | o.

1.1.3. How to Run a Program on the Simulator

The program that we just built can be run on the simulator using
the following command. If all has gone well, you will see the
message "Hello World".

Example 1.5. Running on the Simulator

$ n68k-coff-run hello
Hel lo Wrld

1.2. How to Recompile a Program

Asyou work on a program, you keep track of which units you
modify and make sure you not only recompile these units, but aso
any units that depend on units you have modified.

gnatbind will warn you if you forget one of these compilation
steps, so it is never possible to generate an inconsistent program
asaresult of forgetting to do a compilation, but it can be annoying
to keep track of the dependencies. One approach would be to use
athe make utility, but the trouble with make filesis that the
dependencies may change as you change the program, and you
must make sure that the make file is kept up to date manually, an
error-prone process.

The gnatmake command takes care of these details automatically.
Invoke it using one of the following forms:




The Generated Code

Example 1.6. Using the gnatmake command

$ n68k-cof f-gnatmake -v hello

GNATMAKE n68k-ada/- 1.7/ Copyright 1995-2001 Free Software Foundation, Inc
“hello.ali" being checked ..
-> "hello.adb" time stanp msnatch

m68k- cof f-gcc -¢ hello. adb

End of conpilation

m68k- cof f - gnat bi nd -x hel l 0. al

m68k- cof f-gnatlink hello.al

The argument is the file containing the main program or
alternatively the name of the main unit. gnatmake examines the
environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files,
generating the executablefile, hel | 0. In alarge program, it can be
extremely helpful to use gnatmake, because working out by hand
what needs to be recompiled can be difficult.

Note that gnatmake takes into account all the intricate rulesin
Ada 95 for determining dependencies. These include paying
attention to inlining dependencies and generic instantiation
dependencies. Unlike some other Adamake tools, gnatmake does
not rely on the dependencies that were found by the compiler on
aprevious compilation, which may possibly bewrong dueto source
changes. It works out the exact set of dependencies from scratch
each timeitisrun.

The linker is configured so that there are defaults for the start file
and thelibrary | i bgcc, | i bc and I'i bgnat . Other libraries, such as
the standard C math library | i bm a, are not included by default,
and must be mentioned on the linker's command line.

1.3. The Generated Code

If you want to see the generated code, then use the option - W, - a.
Thefirst part (- W, ) means pass the second part (- a) to the
assembler. To get alisting that includes interleaved source code,
usetheoptions- g and - W, - ahl d. See The M68K Ada Users Guide,
for more information on assembler options.




Chapter 1. Basic Techniques

$ mb8k-cof f-gcc

O ~NOOOO UL, WN

NNONNONRONRNONNNNNNRRRRERRRRRR R
GO BRWWNEPRPOO®OWOOWOWNDUAWNREO O

0000

000b

000c
0010

0000
0004
0006
0008
000a

0010
0016
0018
001a

0020
0022

Here is an example where we generate a machine code listing.

Example 1.7. Generating a Machine Code Listing

4865 6C6C
6F20 576F
726C 64
00

0000 0001
0000 000B

4E56 0000
BBCF
6B02
4E45
203C 0000
0024
223C 0000
0030
2F01
2F00
4EB9 0000
0000
4ESE
4E75

-c - -Wa,-a hello.adb

file  "hello.adb"
gcc2_conpi | ed.
__gnu_conpi | ed_ada

.section .rdata,"r"

. LCO:
.ascii "Hello Wrld"
.even
. LCL:
.long 1
.long 11
.text
.even
.globl _ada hello
_ada_hel l o:
link.w %6, #0
cnp. | Y%sp, Y85
bmi.b .+4
trap #5

move.| #. LCO, %0
move.| #. LC1, %1
move. | %1, - (%p)
move. |l %l0, - (%sp)

jsr xgc__text io_ put _line$2

unl k %6
res

You could also use the object code dump utility
m68Kk-coff-objdump to disassemble the generated code. If you
compiled using the debug option - g then the disassembled
instructions will be annotated with symboalic references.

Here is an example using the object code dump utility.




The Generated Code

Example 1.8. Output from objdump
$ n68k-coff-objdunp -d hello.o
hel | 0. o: file format coff-nb68k
Di sassembly of section .text:

00000000 <_ada_hel | 0>:

0:  4e56 0000 linkw 9%np,#0

4: bbcf cnpal Y%p, ¥a5

6: 6b02 bni s a < ada_hel | o+0xa>
8: 4e45 trap #5

a: 203c 0000 0024 novel #36, %60
10: 223c 0000 0030 novel #48, %1

16:  2f01 movel %1, - (%p)

18:  2f00 movel %0, - (%p)

la:  4eb9 0000 0000 |sr 0 < ada_hel | 0>
20: 4ebe unl k % p

22: 4e75 rts

You can see how big your program is using the size command.
The sizesare in bytes.

Example 1.9. Using the Size Command

$ n68k-cof f-size hello.o

t ext data bss dec hex filenane
56 0 0 56 38 hello.o
$ nmb8k-coff-size hello
t ext data bss dec hex filenane

10352 420 604 11376 2¢70 hello

To get more detail you can use the object code dump program, and
ask for headers.

Example 1.10. Using the Object Code Dump Program
$ nb68k-cof f-obj dunp -h hello.o

hel | 0. o: file format coff-n68k




Chapter 1. Basic Techniques

Sections
[ dx Name Size VMVA LMA File off Algn
0 .text 00000024 00000000 00000000 00000104 2**2
CONTENTS, ALLOC, LOAD, RELCC, CODE
1 .data 00000000 00000024 00000024 00000000 2**2
ALLCC, LOAD, DATA
2 .bss 00000000 00000024 00000024 00000000 2**2
ALLCC, NEVER_LOAD
3 .stab 0000015c 00000024 00000024 00000128 2**2
CONTENTS, RELOC, DEBUGG NG
4 . stabstr 00000372 00000180 00000180 00000284 2**0
CONTENTS, DEBUGE NG
5 .rdata 00000014 000004f2 000004f2 000005f6 2**2

CONTENTS, ALLOC, LOAD, READONLY

1.3.1. Tracing Simulation

The simulator supports several optionsincluding the trace option
(-t) and the statistics option (- s). Use the option - - hel p for more
information.

Example 1.11. Tracing Simulation

$ n68k-coff-run -t hello
<_cold_ start>

------------ I
CPU time in pending ----psr----- di sassenbl ed
m croseconds 7654321 ttsmi xnzvc pc instruction
------------ I
0. 000 s 7 00000100:  braw 0x104
<start>
0. 160 s 7 00000104: rmovew  #112, %r
0.320 s 7 00000108: noveal #1310716, %p
art0.S: 777
0. 480 s 7 0000010E: nmoveq  #0, %0
0. 560 s 7 z 00000110: nmovec 90, Y%acr




What's in My Program?

. 120
. 880
. 040
. 200
. 360
. 520
. 680
. 840

NFRPPRPRPRRPRREPRPOO

w nu unu nu no no nn

ENIENIENIEN RN PN EEN RN

N N N N N NN

z

00000114:
00000118:
0000011C:
00000120:
00000124:
00000128:
0000012C.
00000130:
.000 Stopped at PC = 0x00000130: interrupted

nmovec
nmovec
nmovec
nmovec
nmovec
nmovec
nmovec
nmovec

%0, %f c
%0, %t t 0
%0, Y%t t 1
%0, % sp
%0, % tt0
%0, % tt1
%0, %musr
%0, Y%rsp

1.4. What'sin My Program?

You have written ten lines of Ada, yet the size command says your
program is over 5K bytes. What happened?

Answer: Your program has been linked with code from the M68K
libraries. In addition to the application code, the executable program

contains the following:

* Program startup code (art0)

» Program elaboration code (adainit)

» Any Adalibrary packages mentioned in application code with

lists (libada)

» Any System packages with-ed by the compiler

» Object code from the library libgcc.a, as required

* Object code from other libraries given on the linker command

line.

The following command will give you alink map that lists the
object filesthat have been linked into your program, and the address
of every global dataitem and subprogram.

$ n68k-cof f - gnat make hello.adb -largs -W, - Map=hel | 0. map




Chapter 1. Basic Techniques

Hereis part of the link map generated by the last command. We
have reduced the width of the map to fit on a page by replacing the
path name of the library directory with $p.

Example 1.12. A Linker Map

$ more hello. map

Archive menber included because of file (synbol)

$p/l'i bgnat. a(a-except.o) b~hello.o (ada__exceptions__ el abs)
$p/libgnat.a(x-textio.0) b~hello.o (xgc__text io el abs)

$p/l'i bgnat.a(x-mal l oc.0) $p/libgnat.a(a-except.o) (__gnat_malloc)

$p/libgnat.a(a-ioexce.o) $p/libgnat.a(x-textio.o) (ada__io_exceptions__use_ er
$p/libc.a(schandler.o) $p/art0.0 (default_systemcall _handl er)

$p/libc.a(bcopy. o) $p/libgnat.a(a-except.o) (bcopy)
$p/libc.a(read. o) $p/libgnat.a(x-textio.o) (read)
$p/libc.a(wite.o) $p/libgnat.a(x-textio.o) (wite)
$p/libc.a(sbrk.o) $p/libgnat.a(x-malloc.0) (sbrk)
$p/libc.a(sys_handler.o) $p/libc.a(schandler.o) (sys_handler)
$p/libc.a(errno.o) $p/libc.a(read.o) (errno)

Al l ocating common synbol s

Common synhol si ze file

__exception_id 0x4 $p/art0.0

__stack_ptr 0x4 $p/art0.0

errno 0x4 $p/l'ibc. a(errno. o)
__exception_pc 0x4 $p/art0.0

xgc__text_io__current_out
0x4 $p/ i bgnat. a(x-textio.o0)

1.5. Restrictions

Before you go much further, you should be aware of the built-in
restrictions. M68K Adadoes not support the full Ada 95 language:
it supports a restricted language that conforms to aformal Profile
designed for high integrity applications.

In the main, the built-in restrictions prohibit the use of
non-deterministic Ada features that would otherwise invalidate

10



Restrictions

static program analysis. For a complete list of the default
restrictions, see The M68K Ada Technical Summary.

To set aprofile, usethe pragmaPr of i | e as shown in the following
example.

pragma Profile (Ravenscar);

procedure Main is

11



12



Chapter 2 Advanced Techniques

Once you have mastered writing and running a small program,
you'll want to check out some of the more advanced techniques
required to write and run real application programs. In this chapter,
we cover the following topics:

» Customizing the start file and linker script file

» Generating PROM programming files

Using the debugger

» Using optimizations

Working with the target

2.1. Using a Custom Start File

Thestartfileart 0. S containsinstructionstoinitialize the arithmetic
unit, floating point unit and timer. The default start file may be
suitable for your requirements. You can see the source code in file

13



Chapter 2. Advanced Techniques

| opt / n68k- ada- 1. 7/ n68k-cof f/src/libc/art0.S. If itisnot
suitable, make a copy in aworking directory, then edit it as
necessary.

Example 2.1. Creating a Custom Start File

$ mkdir work

$ cd work

$ cp /opt/nb8k-ada- 1. 7/ m68k-coff/src/libc/art0.S .
$vi art0.S

One of the configuration parameters you may wish to changeis
the clock speed. The default speed is 25 MHz, which is the clock
frequency of the smulator. If your clock runs at (say) 35 MHz,
then you should modify the statement in art 0. S that defines the
clock frequency.

Once you have completed the changes, you must compileart0. S
to generate an object codefile called art 0. 0. Thisisthefile that
the default linker script will look for. Note that the compiler will
select MC68040 by default. If your target isaMC68000, then use
the compile-time option - n68000.

The following example gives the command you need:

Example 2.2. Recompiling art0.S

$ mb8k-coff-gcc -¢c art0.S

If you now rebuild your application program, thelocal fileart 0.0
will be used in preference to the library file. You can check that
your local version has been used in the map file.

Example 2.3. Rebuilding with a Custom art0.S

$ $ nb8k-coff-gnatmake -f -g tt3 -largs -nostartfiles art0.S

14



Using a Custom Linker Script File

Note If you run aprogram built for 35 MHz on the simulator,
be sure to specify aclock frequency of 35 MHz. The
default is 25 MHz.

2.2. Using a Custom Linker Script File

The default linker script fileis
/ opt / m68k- ada- 1. 7/ m68k-cof f/1i b/ | dscripts/coff_erc.x.You
should copy thisfileto your local directory, and edit as necessary.

Example 2.4. Making a Custom Linker Script File

$ cp /opt/n68k-ada- 1. 7/ m68k-cof f/lib/ldscripts/coff_erc.x myboard.|d
$ vi nyboard.ld

You can then build aprogram using your custom linker script rather
than the default as follows:

Example 2.5. Using a Custom Linker Script File

$ n68k-cof f-gnatmake -f hello -largs -T nyboard.|d

2.3. How to Get a Map File

If al you need is alink map, then you can ask the linker for one.
Thisisalittle more subtle than you may expect, because the option
must be passed to the program m68k-coff-1d rather than the ada
linker. Here is an example that generates a map called hel | o. map.

Example 2.6. How to Get a Map File

$ nB8k-cof f-gnatmake hello -largs -W, - Map=hel | 0. map

Example 2.7. TheMap File

$ nore hello. nap

*(.text)

15



Chapter 2. Advanced Techniques

0x00000104
0x00000104
0x00000104
0x00000606
0x00000608
0x00000632
0x0000065¢
0x00000608
0x0000063a
0x0000062a
0x0000066¢
0x0000066¢
0x00000690
0x00000936
0x00000690
0x000009c4
0x00000a10
0x000008f 4
0x000006b6
0x0000076a
0x000009f e
0x000007f 8
0x000007ca
...lots of output...

text

*fill*
.text

text

text

0x502 art0.0
__warmstart
start

0x2

0x64 b~hello.0
__break_start
ada_main__ el abb
adai ni t
mai n
adafina

0x24 ./hello.o
_ada_hello

0x392 |ibgnat. a(a-except.o0)
ada__exceptions__save_occurrence
ada__exceptions___el abs
ada__exceptions__save_occurrence$2
ada__exceptions___init_proc$2
ada__exceptions__exception_information
ada__exceptions__exception_nessage
ada__exceptions__reraise_occurrence
ada__exceptions___init_proc
ada__exceptions__exception_nane
ada__exceptions__exception_identity

2.4. Generating PROM Programming Files

By default, the executable file isin Common Object File Format
(COFF). Using the object code utility program m68k-coff-obj copy,
COFF files may be converted into several other industry-standard
formats, such as ELF, Intel Hex, and Motorola S Records.

The following example shows how we convert a COFFfileto Intel
Hex format.

Example 2.8. Converting to Intel Hex

$ mb8k- cof f - obj copy

--output-target=ihex hello hello.ihex

If you don't need the COFF file, then you can get the linker to
generate the Intel Hex file directly. Note that the Intel Hex file

16



Generating PROM Programming Files

contains no debug information, soif you expect to use the debugger,
you should generate the COFF file too.

Example 2.9. Generatinga HEX File

$ nb8k- cof f-gnat make hello -largs - W, - of or mat =i hex
$ nore hello.ihex

: 100000000013FFFC00000100000001DC000001DC27
:10001000000001D4000001E4000001E4000001E45C
:10002000000001D400000258000001D400000204C6
:1000300000000260000001DC000001DC0000026042
:100040000000026000000260000002600000026028
: 100050000000026000000260000002600000026018
:100060000000020C00000214000002280000023010
:100070000000023800000240000002480000025068
:100080000000026A00000280000002880000045E96
:100090000000047E0000049E000004BE000004DE9S
...lots of output...

$

We can run the Intel Hex file, asin the following example:
Example 2.10. Running an Intel Hex File

$ n68k-coff-run hello
Hel lo world
$

Or we can generate Motorola S Records, and run from there. Note
that we use the option - f to force arebuild.

Example 2.11. Running an S-Record File

$ n68k-cof f-gnat make -f hello.adb -largs -W, -of ormat =srec
$ more hello

S008000068656 C6C6FE3
$11300000013FFFC00000100000001DC000001DC23
$1130010000001D4000001E4000001E4000001E458
$1130020000001D400000258000001D400000204C2
$113003000000260000001DC000001DC000002603E
$11300400000026000000260000002600000026024
$11300500000026000000260000002600000026014

17



Chapter 2. Advanced Techniques

S11300600000020C0000021400000228000002300C
S11300700000023800000240000002480000025064
S11300800000026A00000280000002880000045E92
S11300900000047E0000049E000004BE000004DE94
S11300A0000004F2000004FE000004FE000004FE5S0
S11300B0000004FEQ000004FE000004FEO00004FE34
S11300C0000001E4000001E4000001E4000001E498
...lots of output...

$ mB8k-coff-run hello

Hel lo world

$

2.5. Using the Debugger

Before we can make full use of the debugger, we must recompile
hel | 0. adb using the compiler's debug option. This option tellsthe
compiler to include information about the source code, and the
mapping of source code to generated code. Then the debugger can
operate at source code level rather than at machine code level.

The debug information does not alter the generated code in any
way but it does make object code files much bigger. Normally this
isnot a problem, but if you wish to remove the debug information
from afile, then use the object code utility m68k-coff-strip.

Thisishow we recompilehel | 0. adb with the- g option. There are
other debug optionstoo. Seethe M68K Ada User's Guidefor more
information on debug options.

Example 2.12. Recompiling with the Debug Option

bash$ n68k-cof f-gnat make -f -g hello
m68k- cof f-gcc -¢ -g hello.adb
m68k- cof f - gnat bi nd -x hel l 0. al
m68k- cof f-gnatlink -g hello.al

The debugger is m68k-coff-gdb. By default the debugger will run
aM®68K program on the M68K simulator. If you prefer to run and
debug on areal M68K then you must arrange for your target to
communicate with the host using the debugger's remote debug

18



Using the Debugger

protocol. Thisis described in Section 2.7, “Working with the
Target” [21].

Example 2.13. Running under the Debugger

$ nb8k-coff-gdb hello

XCC n68k-ada Version 1.7 (debugger)

Copyright (c) 1996, 2002, XGC Software.

Based on gdb version 5.1.1

Copyright (c) 1998 Free Software Foundation...

(gdb) br main

Breakpoint 1 at 0x644: file b~hello.adb, |ine 39.
(gdb) run

Starting program .../examples/hello

Connected to the sinulator.

Loadi ng sections:

[ dx Name Si ze VMA LMA File off Algn
0 .ivec 00000100 00000000 00000000 00002000 2**2
CONTENTS, ALLQOC, LOAD
1.init 00000004 00000100 00000100 00002100 2**2
CONTENTS, ALLQC, LOAD, CODE
2 .text 00001908 00000104 00000104 00002104 2**2
CONTENTS, ALLQC, LOAD, CODE
3 .rdata 000000ec 00001a0c 00001a0c 00003a0c 2**2
CONTENTS, ALLQOC, LOAD
4 .data 000001fc 00100000 00001af8 00004000 2**2

CONTENTS, ALLOC, LOAD, DATA
Start address 0x104
Transfer rate: 59296 bits in <1 sec.

Breakpoint 1, main () at b~hello.adb: 39
39 adainit;

(gdb)c

Cont i nui ng.

Hello Wrld

Program exited normal ly.
[Switching to process 0]
(gdb) qui t

You can view the debug information using the object dump utility,
asfollows:

19



Chapter 2. Advanced Techniques

Example 2.14. Dump of Debug I nformation

bash$ n68k- cof f-obj dunp -G hell o

hel | o:
Cont ent
Symum

-1

W N - O

file format coff-nb68k
s of .stab section:

n_type n_othr n_desc n_ value n_strx String

Hdr Sym 0 1598  00004b7d 1

SO 0 0 00000608 13 ..l exanpl es/

SO 0 0 00000608 1 b~hel | 0. adb

LSYM 0 0 00000000 58 long int:t(0,1)=r(0
LSYM 0 0 00000000 105 unsi gned char:t (0,2

2.6. Using Optimizations

$ nb8k-
$ nb8k-
text
22312

Optimization makes your program smaller and faster. In most cases
it also makes the generated code easier to understand. So think of
the option - @ asthe norm, and only use other levels of optimization
when you want to get something special.

The extent to which optimization makes a whole program smaller
and faster depends on many things. In the case of hel | 0. adb there
will be little benefit since most of the code in the executablefile
isinthelibrary functions, and these are already optimized.

The following example is more representative and shows the
Whetstone benchmark program reduced to 49% of its size, and
running nearly twice as fast. You can find Whetstone in the
CD-ROM directory benchmarks/ .

Here are the results when compiling with no optimization.

coff-gcc -c -Q0 whet stone. adb
cof f-size whetstone.o
data bss dec hex filenane
0 0 22312 5728 whet stone. o

20



Working with the Target

$ nmB8k-cof f - gnat make -f -00 whet stone
$ nm68k-cof f-run whet st one
,.,. Whetstone GIS Version 0.1
- Floating point benchmark
Time taken = 325 nfec
Whet stone rating = 3077 KWPS

Here are the results when compiling with optimization level 2.

$ nb8k-coff-gcc -¢ - whet stone. adb
$ nb8k-cof f-si ze whetstone. o
t ext data bss dec hex filenane
10976 0 0 10976 2ae0 whetstone.o
$ nb8k- cof f - gnat make -f - (2 whetstone
$ nmB8k-cof f-run whet stone
,.,. Wetstone GIS Version 0.1
- Floating point benchmark
Time taken = 184 nBec
\Wet stone rating = 5431 KWPS

At optimization level 3, the compiler will automatically in-line
callsof small functions. Thismay increase the size of the generated
code, and the code will run faster. However the code motion due
to inlining may make the generated code difficult to read and debug.

2.7. Working with the Target

M68K Adaalso supports debugging on the target computer. Before
you can do this, you must connect the target board to the host
computer using two serial cables that include a null modem. One
cable connects the board's serial connector A to the host, and is
used to down-load the monitor and for application program input
and output. The other cable connectsto the board's serial connector
B, and is used by the debugger to load programs, and to perform
debugging operations.

21



Chapter 2. Advanced Techniques

2.7.1. How to Down-load the Debug M onitor

Before we can use the debugger to down-load and debug programs
running on the target, we must down-load the M68K Ada debug
monitor. Thisisasmall program that resides in the upper 32K
bytes of RAM, and communicates with the M68K debugger over
the serial interface B. You will find the source codein the directory
[ opt/ m68k- ada- 1. 7/ m68k- cof f/ src/ monitor/.

$ I's /opt/nB8k-ada-1. 7/ m68k- cof f/ src/ moni tor/
CVS Makefile README artl.S install.sh rencomc tl.c t2.adb t2.c
t6 t6.c xgcnon.M xgcnon.c  xgenon. |l d

The ready-to-load (S-Record) version is
[ opt/ m68k- ada- 1. 7/ m68k- cof f /1 i b/ xgcnon.

We assume the target board is fitted with a Motorola monitor.

In this guide we use the program tip to work as aterminal. This
program is generally available on Solaris platforms, but is seldom
seen on Linux or Windows. If you don't have tip then there are
other programs (such as Kermit) that will do as well.

We configured tip to use the serial interface connected to the target
at 19200 bpsin the file denB2. On Solaris, the configuration
statement isin thefile/ et ¢/ r enot e. The following example shows
the configuration line used to generate the rest of this text. Note
thereis no entry for the output EOF string. Thisis not required.

The configuration line we use is as follows:
Example 2.15. Remote Configuration File
$ cat /etc/rennte
den2: \
dv=/dev/termb: br#19200: el ="C*"S*"Q'U'D: i e=%%:

22



Preparing a Program to Run under the Monitor

t bd

The debug monitor is called xgcmon. Thisfileisformatted in
Motorola S-Records ready for down-loading in response to the
load command, as shown in the following example.

Example 2.16. Output from the Monitor

The monitor is now running and ready to communicate over the
other serial interface. To leaveti p type ~..

2.7.2. Preparing a Program to Run under the M onitor

Because the debug monitor is a complete supervisor-mode
application program it is not appropriate to down-load the programs
we built in the previous section. We must rebuild the program using
the start fileart 1.

Themoduleart 1 consists of the code from art 0 to do with
initializing the high-level language environment. It omits the trap
vector and trap handling code. You can get the source from

[ opt/ m68k- ada- 1. 7/ m68k- cof f/ src/monitor/art 1. S.

The following code shows how to compile the Ackermann
benchmark program using a custom linker script and thefileart 1.

$ nB8k-cof f-gcc -0 ackermann. ¢ -0 ackermann -T xgcnon.ld artl.o

Thefilexgcnon. | d may be found on the CD-ROM in the run-time
source directory / opt / m68k- ada- 1. 7/ m68k- cof f / sr ¢/ noni t or .

Thefollowing example shows the Ackermann benchmark running
under the control of the debugger. You should substitute your serial
device namefor t t yS0.

Example 2.17. Remote Debugging

$ mb8k-cof f - gdb acker mann
XGC nb8k-ada Version 1.7bl (debugger)
Copyright (c) 1996, 2002, XGC Sof tware.

23



Chapter 2. Advanced Techniques

Based on gdb version 5.1.1

Copyright (c) 1998 Free Software Foundation. .

(gdb) set renotebaud 19200

(gdb) tar rem/dev/ttyS0O

Renot e debuggi ng using /dev/ttyS0O

0x21f965¢ in ?? ()

(gdb) 1 oad

Loadi ng section .text, size 0x1948 | m 0x2000000

Loadi ng section .rdata, size 0x3d8 | m 0x2001948

Loadi ng section .data, size 0x50 I ma 0x2001d20

Start address 0x2000110

Transfer rate: 6698 bits/sec

(gdb) run

Starting program /hdb3/xgc/benchmarks/ ackermann

,.,. ackermann GIS Version 0.1

---- ackermann Function call benchmark, A (3, 6).
- ackermann time taken = 1.130e+00 Seconds.

**x% gckermann PASSED

Programexited normally.

(gdb) quit
$

24



Chapter 3 Real-Time Programs

M68K Adais highly suitable for hard real-time applications that
reguire accurate timing and afast and predictable response to
interrupts from peripheral devices. Thisis achieved with the
following features:

Ravenscar profile

The package Ada. Real _Ti me and ahigh-resolution real-time clock
(aprecision of one micrasecond)

Preemptive priority scheduling with ceiling locking (120
microsecond task switch?)

Low interrupt latency (15 microseconds)

The packages Ada. Dynanmic_Priorities,
Ada. Synchronous_Task_Control and Ada. Task_I dentification

ISimulated generic 68040 at 25 MHz

25



Chapter 3. Real-Time Programs

» Support for periodic tasks and task deadlines, as required by
ARINC 653

M68K Ada also offers reduced program size by:

» Optimized code generation

» Use of trap instructions to raise exceptions

e Small run-time system size

» Optimizations that permit interrupt handling without tasking

This chapter describes how to use Ada tasks, and the associated
language features, in example real-time programs.

3.1. The Ravenscar Profile

In support of safety-critical applications, Ada 95 offers various
restrictions that can be invoked by the programmer to prevent the
use of language featuresthat are thought to be unsafe. Restrictions
can be set individually, or can be set collectively in what is called
aprofile. XGC Adasupportsall the Ada 95 restrictions and supports
the implementation-defined pragma Profile. To get the compiler
to work to the Ravenscar profile, you should place the following
line at the top of each compilation unit.

pragma Profile (Ravenscar);

By default, M68K Ada supports a limited form of tasking that is
asuperset of what is supported by the Ravenscar profile. The
built-in restrictions alow for statically declared tasks to
communicate using protected types, the Ada 83 rendezvous or the
predefined package Ada. Synchr onous_Task_Control .

The Ravenscar profile prohibits the rendezvous and several other
unsafe features. When using this profile, application programs are
guaranteed to be deterministic and may be analyzed using static
analysistooals.

The relevant Ada language features are as follows:

26



The Main Subprogram

» The pragmaPriority

» Task specs and bodies

» Protected objects

* Interrupt handlers

» Thedelay until statement

* The package Ada.Real_Time

3.1.1. TheMain Subprogram

The main subprogram, which contains the program entry point
runs as task number 1. The TCB? for this task is created in the
run-time system, and the stack is the main stack declared in the
linker script file.

For other than atrivial program, the main task should probably be
regarded astheidle task or background task. You can make sure
that it runs at the lowest priority using the pragma Priority in the
declarative part of the main subprogram.

Example 3.1. Main Subprogram with Idle L oop

with My_Packages. ..
procedure T1 is

pragma Priority (0);
begin

| oop

nul | ;

end | oop;

end T1;

You might want the background task to continuously run some
built-in tests, or you may wish to switch the CPU into low power
mode until the next interrupt is raised.

2Task Control Block

27



Chapter 3. Real-Time Programs

Here is an example main subprogram that goes into low-power
mode when there is nothing else to do. Note that the function
__xgc_set _pwdn isincluded in the standard library | i bc.

Example 3.2. Idle Loop with Power-Down

with My_Packages. ..
procedure T1 is
pragma Priority (0);
procedure Power Down;
pragma Inport (C, Power_Down, "__xgc_set_pwdn");
begi n
Confirm successful entry to the main program (say)

Enter idle loop
| oop
Power _Down;,
end | oop;
end T1;

Therest of the program comprises periodic and aperiodic tasks
that are declared in packages, that are with-ed from the main

subprogram. Tasks are numbered from 2 in the order in which they
are elaborated.

Important |n M68K Ada, thereisno default idletask. If all of your
application tasks become blocked, then the program
will fail with Program_Error.

3.1.2. Periodic Tasks

The package Ada. Real _Ti me declares types and subprograms for
use by real-time application programs. In M68K Ada, this package
isimplemented to offer maximum timing precision with minimum
overhead.

The resolution of the time-related types is one microsecond. With
a32-bit word size, therangeis approximately +/- 35 minutes. This
isfar greater than the maximum delay period likely to be needed
in practice. For a25 MHz MC68040 processor, the lateness of a

28



Form of a Periodic Task

delay is approximately 55 microseconds. That means that given a
delay statement that expires at time T, and given that the delayed
task hasahigher priority than any ready task, then the delayed task
will restart at T + 55 microseconds. This lateness is independent
of the duration of the delay, and represents the time for a context
switch plus the overhead of executing the delay mechanism.

Itistherefore possibleto run tasks at quite high frequencies, without
an excessive overhead. On a25 MHz M68K, you can run atask at
1000Hz, with an overhead (in terms of CPU time) of approximately
10 percent, leaving 90 percent for the application program.

3.1.3. Form of a Periodic Task

The general form of a periodic task is given in the following
example. You should note that tasks and protected objects must be
declared in alibrary package, and not in a subprogram.

The task's three scheduling parameters are declared as constants,

giving the example task afrequency of 100 Hz, and a phase lag of
3 milliseconds, and a priority of 3. You will have computed these
parameters by hand, or using acommercial scheduling tool.

Example 3.3. A Periodic Task

TO : constant Tine := O ock;
Cets set at elaboration time and used by all periodic tasks

Taskl Priority : constant SystemPriority := 3;
Taskl Period : constant Tine_Span := To_Tine_Span (0.010);
Taskl Offset : constant Tine_Span := To_Tinme_Span (0.003);

task Taskl is
pragma Priority (Taskl Priority);
end Taskl,;

task body Taskl is
Next Time : Time := TO + Taskl Offset;
begin
| oop
Next Time := Next Tinme + Taskl Period;

29



Chapter 3. Real-Time Programs

delay until Next Tine;

nul |

Do sonet hi ng

1

end | oop;

end Taskl;

The task must have an outer loop the runs for ever. The periodic
running of the task is controlled by the delay statement, which
gives the task atime ot defined by Offset, Period, and the
execution time of the rest of the bodly.

The value of Task1_Period should be awhole number of
microseconds, otherwise, through the accumulation of rounding
errors, you may experience agradual change in phase that may
invalidate the scheduling analysis you did earlier.

3.1.4. Aperiodic Tasks

Like periodic tasks, aperiodic tasks have an outer loop and asingle
statement to invoke the task body.

In the following example, we declare atask that runs in response
to an interrupt. You can use this code with a main subprogram to
build a complete application that will run on the M68K simulator.

Here is the code for the package and its body:

Example 3.4. An Interrupt-Driven Task

package EGA Pack is
task Task2 is
pragma Priority (1);
end Task2;
end EG4_Pack;

with Ada. | nterrupts. Nanes;
with Interfaces;
with Text IO

package body EG4 Pack is

30



Aperiodic Tasks

use Ada.lnterrupts. Nanes;
use Interfaces;
use Text _IG

protected 10is
procedure Handl er;
pragma Attach_Handl er (Handler, Levell Autovector);
entry Get (C: out Character);
private
Rx_Ready : Bool ean : = Fal se;
end 10

protected body 10is
procedure Handler is
Status_Word : Unsigned_8;
for Status Wrd' Address use 16#00050069#;
begi n
Rx_Ready := (Status_Word and 16#01#) /= 0;
end Handl er;

entry Get (C: out Character) when Rx_Ready is
Data _Word : Unsigned_8;
for Data_Word' Address use 16#00050063#;

begi n
C := Character'Val (Data_Wrd and 16#7f#);
Rx_Ready := Fal se;

end Get;

end 10

task body Task2 is
C: Character;
begi n
| oop
10 Get (O);

-- Do something with the character
Put ("C="");, Put (Q, Put (''");
New Li ne;

end | oop;
end Task2;

end EGA_Pack;




Chapter 3. Real-Time Programs

Points to note are as follows:

» The package Ada.Interrupts.Names declares the names of the
M68K external interrupts.

» Weuse address clausesto declare memory-mapped | O locations.

» Thetype Unsigned 32 permits bitwise operators such as ‘and'
and 'or'.

e Theinterrupt handler runsin supervisor mode with the Interrupt
Mask set to the level of the interrupt.

3.2. Additional Packages

Programs that are not restricted to the Ravenscar Profile may also
use the predefined packages Ada. Asynchr onous_Task_Control ,
Ada. Dynanic_Priorities, Ada. Synchronous_Task_Control and
Ada. Task_I| dentification.

The function Current _Task allows atask to get an identifier for
itself. Thisidentifier may then be used in callsthe the subprograms
inAda. Asynchronous_Task_Cont r ol , which alow atask to be placed
on hold, or to continue. Tasks that are on hold consume no CPU
time but do retain their state.

The packageAda. Task_| denti fi cati on allowsatask to be aborted.
In M68K Adathis places the task in a state from which it may be
restarted using the subprograms in XGC. Taski ng. St ages.

The base priority of any task (including the current task) may be
regquested or changed using the package Ada. Dynani ¢_Prioriti es.

The implementation-defined package Ada. Peri odi c_Tasks allows
periodic tasks to be given a period and then run without using the
delay statement.

The implementation-defined package Ada. Task_Deadl i nes allows
periodic tasks to be given a deadline that can be updated on each
iteration. If atask failsto meet a hard deadline, then the program
fails with a status that indicates the deadline has been missed.

32



Interrupts without Tasks

3.3. Interrupts without Tasks

A protected operation that is attached to an interrupt must be a
parameterless protected procedure. Thisisenforced by the pragma
Attach_Handler and by the type Parameterless Handler from
package Ada.Interrupts. For interrupt handlers that have pragma
Interrupt_Handler and are not attached to an interrupt isit
convenient to allow both parameters and protected functions. The
XGC compiler supports this as alegal extension to the Ada
language.

In the special case where all the operations on a protected type are
interrupt level operations, the XGC compiler will generate run-time
system calls that avoid the use of the tasking system. Then only if
tasks are required will the tasking system be present. This saves
about 6K bytes of memory and reduces the amount of unreachable
(and untestable) code.

Example 3.5. Example Interrupt Level Protected Object

with Ada.lnterrupts. Nanes;

package body Exanpl e Pack is
use Ada.lnterrupts. Nanes;

protected UART Handler is
procedure Handl er;
pragma Attach_Handl er (Handler, UART_A Rx_Tx);

Mist be a paraneterless procedure

procedure Read (Buf : String; Last : Natural);
pragma I nterrupt_Handl er (Read);

Runs at interrupt level, may have paraneters

function Count return Integer;
pragma | nterrupt_Handl er (Count);

Runs at interrupt level, may be a function

end UART Handl er;

protected body UART Handler is

end UART Handl er;

33



Chapter 3. Real-Time Programs

end Exanpl e_Pack;




Appendix A

The M68000 Family

The Motorola M68000 Family includes the following members:

MC68000
First generation 68K processor. 16 bit internal/external data
paths. 16 Mb address space.

MC68008
8 bit external data path. 1-4 MB address space.

MC68010
Similar to MC68000, but with restartable instructions. Can be
used in avirtual memory environment. Loop mode.

MC68ECO000
L ow-power MC68000. 8 or 16 bit externa data bus.

MC68020
32 bit virtual memory microprocessor. 32 bit internal/external
datapaths. 4 GB address space. Can be used with floating point
coprocessor. New instructions added including bitfield

35



Appendix A. The M68000 Family

instructions. New addressing modes added. 256 bytes
instruction cache.

MC68EC020
16 Mb address space.

MC68030
Similar to MC68020 but slightly faster. 256 bytes data cache
added. On- chip MMU.

MC68EC030
L ow-power MC68030. No MMU.

CPU32
Basically a68020 core but without cache, bitfield instructions,
and memory indirect addressing modes. 16 bit external data
path. No coprocessor. CPU32+ Same as CPU32 but with 32
bit external data path.

MC68040
Third generation 32 bit processor. 4K instruction cache. 4K
data cache. On chip floating point processor. On chip MMU.
Most instructions take one cycle.

MCG68EC040
L ow-power MC68040. No MMU. No FPU.

MC68060
Super scalar implementation of the 68K architecture. Canissue
up to two instructions per cycle. 8K instruction cache. 8K data
cache.

M C68EC060
Similar to MC68060. No FPU. No MMU.

MC68330, MC68332, MC68340
Integrated microcontrollers with CPU32.

36



Appendix B Options for the
M68000 Family

The description of the Ada compiler in XGC Ada User's Guide
includesinformation that appliesto all target computers. In addition,
the compiler offers several target-dependent options that specify
which member of the M68000 family is targeted.

The default target isthe MC68040. If you wish to target some other
member of the 68000 family, then you must do the following:

 Specify the target on the compile command line.

» Create acustom linker script file than specifies the target
architecture and machine. The default is
OUTPUT_ARCH( m68k: 68040) .

B.1. Compiler Options

The compiler optionsthat specify atarget computer are asfollows:

37



Appendix B. Options for the M68000 Family

-m68000, -mc68000
Generate output for a MC68000, MC68008 or MC68010.

-m68020, -mc68020
Generate output for a MC68020.

-m68040, -mc68040
Generate output for a MC68040, including the floating point
instructions. Thisis the default.

-mcpu32
Generate code for CPU32 computers, such as the MC68332
and MC68340.

-m68881, -mc68881
Generate output containing MC6888L instructionsfor floating
point. Except for the MC68040, in the absence of this option,
calls are made to afloating point library (which is not
included).

-msoft-float
Generate output containing callsto afloating point library.
Thisisthe default with the MC68000 and M C68020.

-mbitfield, -mno-bitfield
Generate (don't generate) bit field instructions.

B.2. Assembler Options

The Assembler has several additional command line options as
follows:

-l

You can use the -l option to shorten the size of referencesto
undefined symbols. If you do not use the -I option, references
to undefined symbol s are wide enough for afull | ong (32 hits).
(Since the Assembler cannot know where these symbols end
up, the Assembler can only allocate space for the linker to fill
in later. Since the Assembler does not know how far away
these symbols are, it allocates as much space asit can.) If you
usethisoption, the references are only oneword wide (16 bits).

38



Assembler Options

This may be useful if you want the object file to be as small
aspossible, and you know that the relevant symbolsare always
less than 17 bits away.

--bitwise-or
Normally the character | istreated as a comment character,
which meansthat it can not be used in expressions. The
--bitwise-or option turns| into anormal character. In this
mode, you must either use C style comments, or start comments
with a# character at the beginning of aline.

--base-size-default-16, --base-size-default-32
If you use an addressing mode with a base register without
specifying the size, the Assembler will normally use the full
32 bit value. For example, the addressing mode %0@ %d0) is
equivalent to %a0@ %l0: | ) . You may use the
--base-size-default-16 option to tell the Assembler to default
to using the 16 bit value. In this case, %0@ %l0) is equivalent
to%0@ %0: w) . You may usethe --base-size-default-32 option
to restore the default behaviour.

--disp-size-default-16, --disp-size-default-32
If you use an addressing mode with a displacement, and the
value of the displacement is not known, the Assembler will
normally assume that the value is 32 bits. For example, if the
symbol di sp has not been defined, the Assembler will assemble
the addressing mode %a0@ di sp, %0) asthough di sp isa32
bit value. You may use the --disp-size-default-16 option to
tell the Assembler to instead assume that the displacement is
16 bits. In this case, the Assembler will assemble
%0@ di sp, %10) asthough di sp isa 16 bit value. You may use
the --disp-size-default-32 option to restore the default
behaviour.

-m68000, -m68008, -m68302, -m68306, -m68307, -m68322,
-m68356
Assemble for the MC68000. -m68008, -m68302, and so on
are synonymsfor -m68000, since the CPUs are the same from
the point of view of the assembiler.

39



Appendix B. Options for the M68000 Family

-m68010
Assemble for the MC68010.

-m68020
Assemble for the M C68020.

-m68030
Assemble for the M C68030.

-m68040
Assemble for the MC68040. This is the default.

-m68060
Assemble for the M C68060.

-mcpu32, -m68330, -m68331, -m68332, -m68333, -m68334,
-m68336, -m68340, -m68341, -m68349, -m68360
Assemble for the CPU32.

-m5200
Assemble for the ColdFire.

-m68881, -m68882
Assemble 68881 floating point instructions. Thisisthe default
for the 68020, 68030, and the CPU32. The 68040 and 68060
always support floating point instructions.

-mno-68881
Do not assemble 68881 floating point instructions. Thisisthe
default for 68000 and the 68010. The 68040 and 68060 always
support floating point instructions, even if this option is used.

-m68851
Assemble 68851 MMU instructions. Thisisthe default for the
68020, 68030, and 68060. The 68040 accepts a somewhat
different set of MMU instructions; -m68851 and -m68040
should not be used together.

-mno-68851
Do not assemble 68851 MMU instructions. Thisisthe default
for the 68000, 68010, and the CPU32. The 68040 accepts a
somewhat different set of MMU instructions.

40



Motorola Syntax

B.3. Motorola Syntax

The standard Motorola syntax for this chip differsfrom the syntax
discussed in Section B.4, “MIT Instruction Syntax” [42]. The
Assembler can accept Motorola syntax for operands, even if MIT
syntax is used for other operands in the same instruction. The two
kinds of syntax are fully compatible.

In the following table apc stands for any of the address registers
(%0 through %a7), the program counter (%c), the zero-address
relative to the program counter (%pc), or a suppressed address
register (Yza0 through %za7). The use of si ze meansone of wor |,
and it may always be omitted along with the leading dot. The use
of scal e meansoneof 1, 2, 4, or 8, and it may always be omitted
aong with the leading asterisk.

The following addressing modes are understood:

Immediate
#nunber

Data Register
%0 through %7

Address Register
%0 through Ya7@* %7 is also known as %p, i.e. the Stack
Pointer. %6 is also known as % p, the Frame Pointer.

Address Register Indirect
(%0) through (%a7), %a7 isaso known as %p, the Stack
Pointer. %6 is also known as % p, the Frame Pointer.

Address Register Postincrement
(%0) + through ( %a7) +

Address Register Predecrement
- (%0) through - (%&7)

Indirect Plus Offset
nunber (%0) through nunber (%a7), or nunber (%c) .

41



Appendix B. Options for the M68000 Family

The nunber may also appear within the parentheses, asin
(nunber, %0) . When used with the pc, the nunber may be
omitted (with an address register, omitting thenunber produces
Address Register Indirect mode).

Index
nunber (apc, regi ster. si ze*scal e)

The nunber may be omitted, or it may appear within the
parentheses. The apc may be omitted. Ther egi st er and the
apc may appear in either order. If both apc and regi ster are
addressregisters, and the si ze and scal e are omitted, then the
first register istaken asthe base register, and the second asthe
index register.

Postindex
([ nunber, apc], regi ster. si ze*scal e, onunber)

Theonunber, or ther egi st er, or both, may be omitted. Either
the nunber or the apc may be omitted, but not both.

Preindex
([ nunber, apc, regi ster. si ze*scal e], onunber)

Thenunber, or theapc, or ther egi st er, or any two of them,
may be omitted. The onunber may be omitted. Ther egi st er
and theapc may appear in either order. If both apc andr egi st er
are addressregisters, and thesi ze and scal e are omitted, then
the first register is taken as the base register, and the second
astheindex register.

B.4. MIT Instruction Syntax

This syntax for the M otorola M 68000 family was developed at the
Massachusetts I nstitute of Technology (MIT).

TheAssembler usesinstructions names and syntax compatible with
the Sun assembler. Intervening periods are ignored; for example,
movl isequivalent tomov. | .

42



MIT Instruction Syntax

In the following table apc stands for any of the address registers
(%0 through %a7), the program counter (%c), the zero-address
relativeto the program counter (%zpc), asuppressed address register
(%za0 through %za7), or it may be omitted entirely. The use of si ze
means one of wor |, and it may be omitted, along with the |eading
colon, unlessascaeisal so specified. The use of scal e meansone
of 1,2, 4, or 8, and it may always be omitted along with the leading
colon.

The following addressing modes are understood:

Immediate
#number

Data Register
%0 through %7

Address Register
%0 through Ya7@* %7 is also known as %p, i.e. the Stack
Pointer. %a6 is also known as % p, the Frame Pointer.

Address Register Indirect
%a0@through %a7@

Address Register Postincrement
%0@ through %a7@

Address Register Predecrement
%0@ through %7@

Indirect Plus Offset
apc@ nunber)

Index
apc @(nunber regi ster :si ze:scal e)

The nunber may be omitted.

Postindex
apc@nunber) @ onunber, regi ster:size:scal e)

The onunber or ther egi st er, but not both, may be omitted.

43



Appendix B. Options for the M68000 Family

Preindex
apc@nunber, regi ster: size: scal e) @ onunber)

The nunber may be omitted. Omitting ther egi st er produces
the postindex addressing mode.

Absolute
symbol , or di gi t's, optionally followed by : b, :w, or : 1.

B.5. Floating Point

The floating point formats generated by directives are these.
float
Si ngl e precision floating point constants.
.double
Doubl e precision floating point constants.
.extend, .Idouble
Ext ended precision (I ong doubl ) floating point constants.

Note Packed decimal (P) format floating literals are not
supported.

B.6. Machine Directives

In order to be compatible with the Sun assembler the Assembler
understands the following directives.

.datal
Thisdirectiveisidentical toa. data 1 directive.
.data2

Thisdirectiveisidentical to a. data 2 directive.




Opcodes

.even

Thisdirectiveisaspecial caseof the. al i gn directive; it aligns
the output to an even byte boundary.

SKip

Thisdirectiveisidentical to a. space directive.

B.7. Opcodes

B.7.1. Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They
expand to the shortest branch instructions that reach the target.

Generally these mnemonics are made by substitutingj for b at the
start of a Motorola mnemonic.

The following table summarizes the pseudo-operations.

Table B.1. Assembler Pseudo Operations

Displacement

Pseudo-Op|BYTE WORD 68020 68000/10 |non-PC
LONG LONG relative

jbsr bsr bsrw bsrl jsr jsr

jra bras bra bral jmp jmp

xxd bXxxs XX bxxl bNXs; jmpl  [bNXs; jmp

dbxx® dbxxs dbXxx dbXxx; bra; jmpl

fixx@ foxxw foxxw foxx N/A foNXw; jmp

ax X: condition, NX: negative of condition, see full description below.

jbsr,jra
These are the simplest jump pseudo-operations; they always
map to one particular machine instruction, depending on the

displacement to the branch target.

45



Appendix B. Options for the M68000 Family

JXX
Here, j XX stands for an entire family of pseudo-operations,
where XX is a conditional branch or condition-codetest. The
full list of pseudo-opsin thisfamily is:

jhi jls jecc jes  jne  jeg jvc  jvs
ipl jmi joe It jot jle

For the cases of non-PC relative displacements and long
displacements on the 68000 or 68010, the Assembler issues a
longer code fragment in terms of NX, the opposite condition to
XX. For example, for the non-PC relative case:

j XX foo
gives
bNXs . L1
jm foo
L1
dbxx
The full family of pseudo-operations covered hereis:
dohi dbls dbcc dbcs dbne dbeq dbvc dbvs
dopl dbmi dbge dblt dbgt dble dbf dbra
dbt
Other than for word and byte displacements, when the source
reads dbXX foo, the Assembler emits
dbXX . L1
bra .L2
L1 jmpl foo
LL2:

fjxX
This family includes the following:

fine  fieg fige filt figt file fjf  fjt




Linker Options

figl  fijgle fjnge fjngl fjngle fijngt fjnle fjnit
fjoge fjogl fjogt fjole fjolt fjor fjseq fjsf
fisne fjst  fjueq fjuge fjugt fjule fjult fjun

For branch targetsthat are not PC relative, the Assembler emits:

jmp foo

when it encountersfj XX f oo.

B.8. Linker Options

The linker script specifies the CPU type of the target computer.
The default script specifiesthe MC68040. Note that the CPU type
iswritten into the executable program so that the simulator knows
which CPU to simulate.

OUTPUT_ARCH(m68k:68000)
Thetarget is the MC68000.

OUTPUT_ARCH(m68Kk:68008)
The target is the MC68008.

OUTPUT_ARCH (m68k:68010)
Thetarget is the MC68010.

OUTPUT_ARCH (m68k:68020)
Thetarget is the MC68020.

OUTPUT_ARCH(m68k:68030)
The target is the MC68030.

OUTPUT_ARCH(m68k:68040)
Thetarget isthe MC68040. Thisis the default.

OUTPUT_ARCH(m68K:cpu32)
Thetarget isany computer that has the CPU32 instruction set.

47



Appendix B. Options for the M68000 Family

OUTPUT_ARCH(m68Kk:68060)
The target is the MC68060.

48



Appendix C US' ng the
M68000 Family
S mulator

The simulator command line has the form:

$ nb8k-coff-run switches file

C.1. Command Line Switches

The simulator includes command line switches that are common
to al targets, and switches that are specific to the target
Mi Croprocessor.

-a" -option -option ...
Introduces further target-specific options as follows:

-cpu CPU
The CPU typeisgiveninthe program file and the simulator
will use this as the CPU type. However, you can change
the CPU type to CPU. Values are as follows:

» MC68000 - Change to the Matorola M C68000

49



Appendix C. Using the M68000 Family Simulator

» MC68008 - Change to the Motorola M C68008
* MC68010 - Change to the Motorola MC68010
» MC68020 - Change to the Motorola M C68020
» MC68040 - Change to the Matorola MC68040
e CPU32 - Change to the Motorola CPU32

» MC68881 - Change to the Motorola MC68881
Floating-Point Co-Processor

-fpu
Simulate the Floating-Point Co-Processor, equivalent to
“-cpu MC68881".

-freq F
Set the clock frequency to F MHz. The default is 25MHz.

-b, --branch-summary

-B,

Print abranch summary that given the percentage of conditional
branches that went both ways. You can use this option to
identify blocks of code that have not been covered by atest
case.

--branch-report

Print a detailed conditional branch report with source line
numbers for each conditional branch instruction that did not
go both ways. You can use this option to identify blocks of
code that have not been covered by atest case.

-C, --Coverage-summary

-C,

Print an execution coverage report that gives the percentage
of executable words that were fetched for execution. You can
use this option to identify blocks of code that are unreachable
from the program entry point.

--cover age-report
Print a detailed report giving the source line numbers of
executable words that were not fetched for execution. You can

50



Command Line Switches

use this option to identify blocks of code that are unreachable
from the program entry point.

-d D, --delay D
Delaysthe start of tracing by D microseconds. Use this option
to skip unwanted lines of trace outpui.

-h, --help
Print alist of the simulator's options.

-i 1, --pending |
Trigger interrupt trace when interrupt | israised (and becomes
pending).

-1, --interrupt |
Trigger interrupt trace when interrupt | is becomes unmasked
and causes the CPU to enter the handler.

AT, --limit T
Set atime limit on simulation of T microseconds.

-m, --trace-memory
Trace memory reads and writes using 70 columns.

-M, --trace-memory-wide
Trace memory reads and writes using a wide format.

-p, -pert
Print a performance summary for the simulation run

-r, --ram-tags-report
Print areport that gives asummary of how each memory block
was used. The blocks are large.

-R, --RAM-tags-report
Print areport that gives asummary of how each memory block
was used. The blocks are small.

-s, --stats
Print execution statistics such as the total number of clock
cycles and the number of instructions executed.

51



Appendix C. Using the M68000 Family Simulator

-t, --trace
Trace instructions using 70 columns.

-T, --trace-wide
Trace instructions using wide format and include the floating
registersif any have a non-zero value.

-u U, --resolution U
Set the task trace resolution to U microseconds.

-v, --verbose
Verbose Mode. In normal mode the simulator only generates
information in the case of an error. In verbose mode, useful
information is generated as the simulation proceeds.

-V, --version
Print the simulator's version number and exit.

-w, --wide
Print traces and reports in wide or lengthy format.

-z, --tasking-report
Print atasking report. This records interrupt levels and the
number of the current Adatask over arange of time and prints
areport when execution is complete. Recording can be
triggered on interrupt, or after adelay or it can be continuous.
Recording slows the simulator. Uses less than 80 columns.

-Z, --tasking-report-wide
Print atasking report. This records interrupt levels and the
number of the current Adatask over arange of timeand prints
areport when execution is complete. Recording can be
triggered on interrupt, or after adelay or it can be continuous.
Recording slows the simulator. Uses wide format.

52



Appendix D The package
Ada.lnterrupts.Names

The predefined package Ada. | nt errupt s. Nanes contains
declarations for the M68K as follows:

package Ada.Interrupts.Names is
-- Interrupts fromexternal sources

Level 1 Autovector : constant Interrupt ID:
Level 2_Autovector : constant Interrupt ID:
Level 3_Autovector : constant Interrupt ID:
Level 4 Autovector : constant Interrupt ID:
Level 5 Autovector : constant Interrupt ID:
Level 6_Autovector : constant Interrupt ID:
Level 7_Autovector : constant Interrupt ID:

SN

-- Events. Al reserved for the run-tine system

System Cal | . constant Interrupt ID:= 16
Br eakpoi nt . constant Interrupt ID:= 17
Suspend . constant Interrupt_ID := 18
Program Exi t . constant Interrupt_ID:= 19




Appendix D.The package Ada.Interrupts.Names

Ada_Exception : constant Interrupt_ID := 20;
| O _Event : constant Interrupt_ID := 21,
Timer _I nterrupt : constant Interrupt_ID := 22;
Int_23 : constant Interrupt_ID := 23;

-- Faults. Available for application health managenent

Deadl i ne_Error : constant Interrupt_ID := 24;
Application_Error : constant Interrupt_ID := 25;
Nureric_Error : constant Interrupt_ID := 26;
[l egal _Request : constant Interrupt_ID:= 27,
Stack_Overfl ow : constant Interrupt_ID:= 28;
Menory_Viol ation : constant Interrupt_ID := 29;
Har dwar e_Faul t : constant Interrupt_ID := 30;
Power Fai | : constant Interrupt_ID:= 31;

end Ada.Interrupts. Names;




Appendix E The Host-Target Link

The host-target link allows the debugger to communicate with the
debug monitor running on the target computer. The link uses an
RS-232C interface connected to a serial port on the host computer,
and connected to a compatible serial port on the target computer.

The connecting cable must include anull modem. Thisis because
both serial ports are configured to operate aterminal. The null
modem is simply across over that wires the outputs from one port
to the inputs of the other. Details of the wiring are given in
Section E.1, “RS-232 Information” [55].

E.1. RS-232 Information

The wiring of anull modem cableisgivenin Table E.1, “Null
Modem Wiring and Pin Connection” [56].

55



Appendix E.The Host-Target Link

Table E.1. Null Modem Wiring and Pin Connection

25 9Pin 9Pin 25

Pin Pin
FG (Frame Ground) 1 N/A e N/A 1 FG
TD (Transmit Data) 2 3 e 2 3 RD
RD (Receive Data) 3 2 e 3 2 D
RTS (Request To Send) 4 7 e 8 5 CTS
CTS(ClearToSend) 5 - J—— 7 4 RTS
SG (Signal Ground) 7 5 e 5 7 sSG
DSR (Data Set Ready) 6 6 - 4 20 DTR
DTR (DataTerminal 20 4 = --------m- 6 6 DSR

Ready)

The RS-232 standard is given in Table E.2, “The RS-232
Standard” [56].

TableE.2. The RS-232 Standard

DB-25 DCE DB-9
AA X Protective Ground

2 TXD 3 BA |l Transmitted Data

3 RXD 2 BB |O |Received Data

4 RTS 7 CA |l Request To Send

5 CTS 8 CB |O |Clear To Send

6 DSR 6 CC |O |DataSet Ready

7 GND 5 AB |x Signal Ground

8 CD 1 CF |O |Received Line Signal
Detector

9 - X Reserved for data set testing

10 - X Reserved for data set testing

11 X Unassigned

12 SCF O |Secndry Revd Line Signl
Detctr

56



RS-232 Information

DB-25 DCE DB-9

13 SCB O |Secondary Clear to Send

14 SBA I Secondary Transmitted Data

15 DB O |Transmisn Signl Elemnt
Timng

16 SBB O |Secondary Received Data

17 DD O |Receiver Signal Element
Timing

18 X Unassigned

19 SCA I Secondary Request to Send

20 DTR 4 CD |l Data Terminal Ready

21 CG O |Signa Quality Detector

22 9 CE |O |Ring Indicator

23 CH/CI I/0 |Data Signal Rate Selector

24 DA I Transmit Signal Element
Timing

25 X Unassigned

57



58



Appendix F

Questions and Answer's

Hereisalist of questions and answers.

Q: How do | change the installation directory? ..................... 59
Q: How do | un-install MB8K Ada? .......cccccvvvvvvvviviiiieeenen, 60
Q: Can | do mixed language programming? ........cccccceeeeeeennn. 60
Q: What islinked into my program over and above my Ada
UNITS? ot e e e e e e 60
Q: Can | build a program with separate code and data areas?
................................................................................ 60
Q: Can | usethe MB8K B0oot PROM? .....cevvvveiiiiieeeeiiieeeens 60
Q: Which text editor should | USE? ......ccovvvvvveviiiiiieieeeeeeeeee, 60
Q: Which UNIX shell should | USE? .......ccoovviveiiiiiiieeiiieee, 61
Q: Are programs restart-able? ............ccoeeeeie 61

Q: How do | changethe installation directory?

A:  On Solarisand Linux you can install the filesin adirectory
of your choice then create a symbolic link from
/ opt / n68k- ada- 1. 7/ to that directory.

59



Appendix F. Questions and Answers

How do | un-install M68K Ada?

On GNUY/Linux, smply delete the directory
/ opt / n68k- ada- 1. 7/ and its contents.

On Solaris, you should use the pkgrm command. For
example, M68K AdaVersion 1.7 may beremoved asfollows:

# pkgrm XGCrbad17

Can | do mixed language programming?

Yes. You can write a program using both C and Ada 95
programming languages. In particular you can call the C
libraries from code written in Ada.

What is linked into my program over and above my Ada
units?

When you build a program, the linker will include any
run-time system modules that are necessary. The start file
art 0. o is aways necessary. Other files such as object code
for predefined Adalibrary unitswill beincluded only if they
are referenced.

Can | build a program with separate code and data areas?

Yes. Each object code modul e contains separate sectionsfor
instructions, read-only data, variable dataand zeroized data.
During thelinking step, sections are coll ected together under
thedirection of the linker script file. The default isto collect
each kind of section separately and to generate an executable
file with separate code and data.

Can | usethe M68K Boot PROM?

Yes. The program mkprom may be used to create a
compressed image and bootstrap |oader suitable for the Boot
PROM.

Which text editor should | use?

60



M68K Adarequires no specid editing featuresand will work
with your favorite text editor. If you use the emacs editor,
then you will be able to run the compiler from the editor,
and then relate any error messages to the sourcefiles. If you
have no favorite editor, then we recommend the universal
UNIX editor vi.

Which UNIX shell should I use?

We recommend the GNU Bash shell. It offers amuch better
user interface than other shells, and is kept up to date.

Are programs restart-able?

Yes. Thefileart 0. S contains code to initialize al variables
inthe. dat a section from a copy in read-only memory.

61



62



| ndex

A
addressing modes
M680x0, 43
aternate syntax for the 680x0, 41

B

branch improvement
M680x0, 45

D

datal directive
M680x0, 44

data2 directive
M680x0, 44

directives
M680x0, 44

double directive
M680x0, 44

E

even directive
M680x0, 45
extend directive M680x0, 44

F

float directive
M680x0, 44

floating point
M680x0, 44

instruction set
M680x0, 45

L
|double directive M680x0, 44

M
M680x0 addressing modes, 43

63



Index

M680x0 branch improvement, 45
M680x0 directives, 44

M680x0 floating point, 44
M680x0 opcodes, 45

M680x0 options, 38

M680x0 pseudo-opcodes, 45
M680x0 size modifiers, 42
M680x0 syntax, 42

MIT, 42

Motorola syntax for the 680x0, 41

O

opcodes
M680x0, 45

options
M680x0, 38

P
pseudo-opcodes
M680x0, 45

S

size modifiers
M680x0, 42

skip directive
M680x0, 45

syntax
M680x0, 42




