I
- 0000000
Getting Started with
M1750 Ada

Ada 95 Compilation System for Spacecr aft
Microprocessors

WWW.Xgc.com

Getting Started with
M1750 Ada

Ada 95 Compilation System for Spacecr aft
M icroprocessors

Order Number: M1750-ADA-GS-040730

XGC Technology

London
UK
Web: <www. xgc. coms

Getting Started with M 1750 Ada: Ada 95 Compilation System for Spacecr aft
Microprocessor s

Publication date July 30, 2004

© 1998, 1999, 2000, 2001, 2002, 2003, 2004 XGC Technology

Acknowledgments

M1750 Adais based on GCC-1750, which was devel oped under contract with the European Space Agency, contract number 11935/NL/JG and
on the front end of the GNAT Ada compiler developed at New York University. GCC-1750 includes software from the GNU C compiler,
debugger and binary utilities developed by and on behalf of the Free Software Foundation, Inc., Cambridge, Massachusetts.

Development of the mission-critical capability was funded by TRW Aerospace and the UK Ministry of Defence.

Contents

Chapter 1

About this Guide xi

1

2
3
4

Audience xi

Related Documents xi
Reader's Comments xii
Documentation Conventions Xii

Basic Techniques 1
1.1 HelloWorld 1

12
13
14
15

1.1.1 How to Prepare an AdaProgram 2
1.1.2 How to Compile 2

1.1.3 How to Run aProgram on the
Simulator 4

How to Recompile a Program 4

The Generated Code 5

What'sin My Program? 8

Restrictions 9

Getting Started with M1750 Ada

Chapter 2 Advanced Techniques 11

2.1 How to Customizethe Start File 12

2.2 Using aCustom Linker Script File 13

2.3 HowtoGetaMap File 13

2.4 Generating PROM Programming Files 14

25 Using the Debugger 15

2.6 Using Optimizations 18

2.7 Working with the Target 19
2.7.1 How to Down-load the Debug Monitor 20
2.7.2 Preparing a Program to Run under the
Monitor 21

2.8 Checking for Stack Overflow 22

2.9 Expanded Memory 23

210 SystemCdls 24
2.10.1 How to Use Text_1O Without System
Cdls 25

Chapter 3 Real-Time Programs 27

3.1 TheRavenscar Profile 28
3.1.1 TheMainTask 29
3.1.2 Periodic Tasks 30
3.1.3 Form of aPeriodic Task 31
3.1.4 Aperiodic Tasks 32
3.2 Additiona Predefined Packages 35
3.3 Interrupts without Tasks 36

Appendix A Expanded Memory 39

A.1 Expanded Memory Solutions 39
A.1.1 The Single-Program Solution 40
A.1.2 The Multi-Program Solution 40

Appendix B M1750 Compiler Options 43

Appendix C M1750 Assembler Options and Directives 45

C.1 MIL-STD-1750 Options 45
C.2 Floating Point 46

Getting Started with M1750 Ada

C.3 M1750 Machine Directives 47

C.4 Opcodes 48
C.4.1 Extended Floating Load Register
(ELFR) 48
C.4.2 Expanded Memory Support 48
C.4.3 Branch Improvement 49
C.44 XIO Commands 49
C.45 Specia Characters 50

Appendix D M1750 Smulator Optl ons 51

D.1 TheCommandLine 51

D.2 Command Line Switches 53

D.3 Examplesof Simulator Use 54
D.3.1 Tracing Smulation 54
D.3.2 Tasking Reports 56
D.3.3 TheRAM Tags Report 58

D.4 How to Customize the Simulator 60

Appendix E The package Ada.Interrupts.Names 63

Appendix F The Host-Target Link 65
F1 RS-232Information 65

Appendix G Questions and Answers 69

Index 73

Vi

Tables

C.1 M1750 Pseudo Operations for Branches 49
F1 TheRS-232 Standard 66
F.2 Null Modem Wiring and Pin Connection 67

Vii

viii

Examples

11
12
1.3
14
15
16
1.7
1.8
1.9
21
22
23
24
25
2.6
2.7
2.8
29
2.10
31
32
3.3
34
35
C1
D.1
D.2
D.3
D.4

The Source File 2
The Compile Command 2
Binding and Linking 3
Using gnatmake to Compile 3
Using gnatmake to Recompile 4
Generating a Machine Code Listing 6
Output from Object Code Dump Program 7
Using the Size Program 7
Object Code Section Headers 8
Creating a Custom Start File 12
Making a Custom Linker Script File 13
Using the Custom Linker Script File 13
TheMap File 14
Running under the Debugger 17
Dump of Debug Information 18
Remote Configuration File 20
Remote Debugging 22
Stack Overflow Check 23

Code to Support Write 26
Main Subprogram with Idle Loop 29
Idle Loop with Power-Down 30
A Periodic Task 32
An Interrupt-Driven Task 34
Example Interrupt Level Protected Object 37
X10 Command inAda 50

Simulator Help 52
Tracing Simulation 55
Tracing Tasking 57
A RAM Tags Report 59

About this Guide

1. Audience

This guide is written for the experienced programmer who is
already familiar with the Ada 95 programming language and with
embedded systems programming in general. We assume some
knowledge of the target computer architecture.

2. Related Documents

The XGC Ada User's Guide describes the commands, options and
scripts required to use the tool -set.

The XGC Ada Reference Manual Supplement documents the
implementation-defined aspects of the Ada 95 programming
language supported by the compiler.

The library functions, which are common to all XGC compilers,
are documented in The XGC Libraries.

Xi

About this Guide

The M1750 Ada Technical Summary, which contains technical
and commercial information about the compiler.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments in the following ways.
 |Internet electronic mail: r eaders_comment s@gc. com

Please include the following information aong with your
comments:

» Thefull title of the manual and the order number. (The order
number is printed on the title page of this manual.)

» The section numbers and page numbers of the information on
which you are commenting.

» Theversion of the software that you are using.

Technical support enquiries should be directed to the XGC Web
Site [http://www.xgc.com/] or by email to support@xgc.com.

4. Documentation Conventions
This guide uses the following typographic conventions:
% $

A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

A number sign represents the superuser prompt.

$ vi hello.c
Boldface type in interactive examples indicates typed user
input.

Xii

http://www.xgc.com/
http://www.xgc.com/
http://www.xgc.com/
support@xgc.com

Documentation Conventions

file
Italic or danted type indicates variable values, place-holders,
and function argument names.

LI 1}

In syntax definitions, brackets indicate items that are optional
and bracesindicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated.

cat(1)
A cross-reference to areference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mbl/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

Xiii

Xiv

Chapter 1 BaS| C TeChnl queS

To start with we'll write asmall program and run it on the
instruction set simulator. Thiswill give you a general idea of how
things work. Later we will describe how to run a program on the
real target computer.

1.1. Hello World

The subject of thischapter isasmall program called “hello”. Using
library functions and simulated input-output to do the printing, it
simply printsthe message “Hel | o Worl d” ontheterminal. Youwill
find the source codein the directory / exanpl es onthe M1750 Ada
CD-ROM.

Three steps are needed to create an executabl efile from Adasource
files:

1. The source file(s) must first be compiled.

2. Thefileg(s) then must be bound using the M 1750 Ada binder.

Chapter 1. Basic Techniques

3. All appropriate object files must be linked to produce an
executablefile.

1.1.1. How to Prepare an Ada Program

Any editor may be used to prepare an Ada program. If emacsis
used, the optional Ada mode may be helpful in laying out the
program. The program text is a normal text file. We will suppose

inour initial examplethat you have used your editor to preparethe
following text file:

Example 1.1. The Source File

with Text _IQ
procedure Hello is
begin
Text _| O Put_Line ("Hello Wrld")
end Hello

The Ada compiler requires that each file contains asingle
compilation unit whose file name corresponds to the unit name
with periods replaced by hyphens and whose extension is. ads for

aspec and . adb for abody. This example file should be named
hel I 0. adb.

1.1.2. How to Compile

You can compile the file using the following command:

Example 1.2. The Compile Command

$ ml750-coff-gcc -c hello.adb

The command m1750-coff-gcc is used to run the compiler. This
command will accept programsin several languagesincluding Ada
95, C, assembly language and object code. It determines you have
given it an Ada program by the filename extension (. ads or . adh),
and will call the Ada compiler to compile the specified file.

How to Compile

The- ¢ switch is always required. It tells gec to stop after
compilation. (For C programs, gcc can also do linking, but this
capability is not used directly for Ada programs, so the - ¢ switch
must always be present.)

This compile command generates the file hel | 0. o which isthe
object file corresponding to the sourcefile hel | 0. adb. It also
generates afilehel | 0. al i , which contains additional information
used to check that an Ada program is consistent. To get an
executable file, we then use gnatbind to bind the program and
gnatlink to link the program.

Example 1.3. Binding and Linking

$ ml750-cof f-gnat bi nd hello. al
$ ml750-coff-gnatlink hello.al

Theresult is an executable file called hel | o.

You may use the option - v to get more information about which
version of the tool was used and which files were read.

A smpler method of carrying out these stepsisto usethegnatmake
command. gnatmake is a master program that invokes all of the
required compilation, binding and linking toolsin the correct order.
In particular, it automatically recompiles any modified sources, or
sources that depend on modified sources, so that a consistent
compilation is ensured.

The following example shows how to use gnatmake to build the
program hel | o.

Example 1.4. Using gnatmake to Compile

$ nml750- cof f - gnat make hel | o
mL750- cof f-gcc -c hello.adb
mL750- cof f-gnatbind -x hello.al
mL750- cof f-gnatlink hello.al

Again, the result is an executable file called hel | o.

Chapter 1. Basic Techniques

1.1.3. How to Run a Program on the Simulator

The program that we just built can be run on the simulator using
the following command. If all has gone well, you will seethe
message "Hello World".

$ mL750-coff-run hello
Hel lo Wrld

1.2. How to Recompile a Program

Asyou work on a program, you keep track of which units you
modify and make sure you not only recompile these units, but aso
any units that depend on units you have modified.

The binder, gnatbind, will warn you if you forget one of these
compilation steps, so it isnever possible to generate an inconsistent
program as aresult of forgetting to do a compilation, but it can be
annoying to keep track of the dependencies. One approach would
be to use athe UNIX make program, but the trouble with make
filesisthat the dependencies may change as you change the
program, and you must make sure that the make file is kept up to
date manually, an error-prone process.

The Adamake tool, gnatmake takes care of these details
automatically. In the following example we recompile and rebuild
the example program, which has been updated.

Example 1.5. Using gnatmake to Recompile

$ nl750- cof f - gnat make hel | 0. adb

$ nl750- cof f - gnat make -v hello

GNATMAKE 1.7 Copyright 1995-2001 Free Software Foundation, Inc
"hello.ali" being checked ..
-> "hello.adb" tinme stanp msnatch

mL750- cof f-gcc -c¢ hello.adb

End of conpilation

mL750- cof f-gnathind -x hello.al

mL750- cof f-gnat!link hello.al

The Generated Code

The argument is the file containing the main program or
alternatively the name of the main unit. gnatmake examines the
environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files,
generating the executable file, hel | 0. In alarge program, it can be
extremely helpful to use gnatmake, because working out by hand
what needs to be recompiled can be difficult.

Note that gnatmake takes into account all the intricate rulesin
Ada 95 for determining dependencies. These include paying
attention to inlining dependencies and generic instantiation
dependencies. Unlike some other Adamake tools, gnatmake does
not rely on the dependencies that were found by the compiler on
aprevious compilation, which may possibly bewrong dueto source
changes. It works out the exact set of dependencies from scratch
each timeitisrun.

The linker is configured so that there are defaults for the start file
and thelibrary I'i bgcc, i bc and | i bada. Other libraries, such as
the standard C math library | i bm a, are not included by defaullt,
and must be mentioned on the linker's command line.

1.3. The Generated Code

If you want to see the generated code, then use the compiler option
-\, - a. Thefirst part (- W4,) means pass the second part (- a) to the
assembler. To get alisting that includes interleaved source code,
use the options- g and - W, - ahl d. See The XGC Ada Users Guide,
for more information on assembler options.

Here is an example where we generate a machine code listing.

Chapter 1. Basic Techniques

Example 1.6. Generating a Machine Code Listing

$ ml750-coff-gcc

[y

O ~NO Ol W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

0000
0002
0004
0006
0008
000a
000c
000e
0010
0012
0014

0016
0018

0000
0002
0004
0006
000a
000e
0010
0012
0016
001a
001e
0020
0022

0048
0065
006C
006C
006F
0020
0057
006F
0072
006C
0064

0001
000B

9FEE
81EF
81BF
4AB9
FOBO
7B02
7708
8500
8510
TEFO
81FE
8FEE
7FFO

8000
0000

0000
000B
0000

file

gcc2_conpi l ed

-c - -Wa,-a hello.adb

"hel | 0. adb"

__gnu_conpi l ed_ada
.section .rdata,"r"

. LQO:
.wor d
.wor d
.wor d
.wor d
.wor d
.wor d
.wor d
.wor d
.wor d
.wor d
.wor d

. LCL:
.wor d
.wor d
.text

72

101
108
108
111
32

87

111
114
108
100

1
11

.global _ada_hello

_ada_hel l o:
pshm
[r
[r
xorm
c
bge
bex
[im
[im
Sjs
[r
popm
urs

r14,r14

r14,r15

r11,r15

r11, 0x8000

ri1, stack_limt
.14

8

ro,.LC0

rl,.LC1
ri5,ada_text io_put line 2
r15,rl14

r14,r14

ris

You could also use the object code dump utility
m1750-coff-objdump to disassemble the generated code. If you
compiled using the debug option - g then the disassembled
instructions will be annotated with symboalic references.

The Generated Code

Here is an example using the object code dump utility.

Example 1.7. Output from Object Code Dump Program

$ ml750-coff-objdump -d hello.o

hello.0

Di sassembly of section .text:

00000000 <_ada_hel | 0>:

0: 9f ee pshm
2: 81 ef I'r

4: 81 bf I'r

6: 4a b9 80 00 Xorm
a: f0 b0 00 00 c

e: 7b 02 bge

10: 77 08 bex

12: 85 00 00 00 [im

16: 85 10 00 Ob [im

la: 7e f0 00 00 Sjs

le: 81 fe I'r
20: 8f ee popm
22: 7f 0 urs

file format coff-ml750

ri4,rl4

rid, r15

ri1,r15

ril, 32768

r11,0 <_ada_hel | 0>
2

8

ro, 0

ri, 11

r15,0 <_ada_hel | 0>
ris, rl14

ri4,rl4

ris

You can see how big your program is using the size command.
Note that the sizes are in 8-bit bytes and not 16-bit words.

Example 1.8. Using the Size Program

$ ml750-coff-size hello.o
t ext

62 0 0

$ ml750-coff-size hello
t ext
9134

744 870

dat a bss dec

dat a bss dec
10748

hex filenane
3e hello.o

hex filenane
29fc hello

To get more detail you can use the object code dump program, and
ask for headers. Once again the sizes are in bytes. The addresses

are byte addresses.

Chapter 1. Basic Techniques

Example 1.9. Object Code Section Headers

VMVA LMA File off
00000000 00000000 00001000
ALLCC, LOAD, CODE

00000040 00000040 00001040
ALLOC, LOAD, READONLY
00000100 00000100 00001100
ALLCC, LOAD, CODE

000022c2 000022c2 000032c2
ALLCC, LOAD, READONLY
00010000 00002438 00004000
ALLCC, LOAD, DATA

000102f0 000102f0 00000000

00000000 00000000 000042¢8
DEBUGG NG, NEVER LOAD
00000000 00000000 00009148
DEBUGG NG, NEVER LOAD

$ ml750-cof f-objdunp -h hello
hel | o: file format coff-nl750
Sections
| dx Nanme Si ze
0 .init 00000036
CONTENTS
1 .ivec 00000040
CONTENTS
2 .text 000021c2
CONTENTS
3 .rdata 00000176
CONTENTS
4 .data 000002e8
CONTENTS
5 .bss 00000366
ALLOC
6 .stab 00004e60
CONTENTS
7 .stabstr 00005f 3¢
CONTENTS

Al gn
2**1

2¥*1
2¥*1
2¥*1
2¥*1
2¥*1
2¥*1

2+%0

1.4. What'sin My Program?

You have written five lines of Ada, yet the size command says

your program is over 10K bytes. What happened?

Answer: Although we aim to minimize the size of the executable
image of your program, there are object code modules that are
needed to support the code you've written. Your program has been
linked with code from the M 1750 Ada libraries. In addition to the
application code, the executabl e program contains the following:

» Program startup code (art0)

» Program elaboration code (adainit)

* Any Adalibrary packages mentioned in application code with

lists (libada)

Restrictions

» Any System packages referenced by the compiler

» Object code from the library libgcc.a, as required

» Object code from other libraries given on the linker command

line.

Thefollowing command will give you alist of the object filesthat
have been linked into your program.

$ nl750- cof f - gnat make hel l0.adb -largs -t
mL750- cof f-gcc -c hello.adb
mL750- cof f-gnatbind -x hello. al
mL750- coff-gnatlink -t hello.al

[opt/ ml750- ada- 1. 7/ mL750- cof f/ bi n/1 d: node cof f_nl750
[opt/ mL750-ada- 1. 7/1i b/ gcc-1i b/ m750-coff/2.8.1/art0.0

b~hello.0
./hello.o

(/opt/mL750-
(/opt/mL750-
(/opt/mL750-
(/opt/mL750-
(/opt/mL750-
(/opt/mL750-
(/opt/mL750-
(/opt/mL750-
(/opt/mL750-
(/opt/mL750-
(/opt/mL750-
(/opt/mL750-

ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-

PR RPRPPRPRPRRPRPRRPRREPRERE

.7/1iblgee
.7/1iblgee
.7/1iblgee
.7/1iblgee
.7/1iblgee
.7/1iblgee
.7/1iblgee
.7/1iblgee
.7/1iblgee
.7/1iblgee
.7/1iblgee
.7/1iblgee

-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-

cof f/2.
cof f/2.
cof f/2.
cof f/2.
cof f/2.
cof f/2.
cof f/2.
cof f/2.
cof f/2.
cof f/2.
cof f/2.
cof f/2.

QO 0O 0O CO O O O O O O O o

.1/li bada. a) a- except. 0
.1/1i bada. a)

.1/li bada. a) a-i oexce. 0
.1/libada. a)x-mall oc. 0
.1/li bada. a)s-stcosc. 0
.11ibc
.11ibc
.11ibc
.11ibc
.11ibc
.11ibc
.11ibc

a-textio.o

a)open. o

a)close.o
a)unlink.o
a)l seek. o
a)read. o
ayjwite.o
a)shrk.o

In this example, the Text_|Ofilea-text _i 0.0 is8K bytesin size

and accounts for most of the program's 10K bytes.

1.5. Restrictions

Before you go much further, you should be aware of the built-in
restrictions. M 1750 Adadoes not support the full Ada 95 language:
it supports a restricted language that conforms to aformal Profile

designed for high integrity applications.

Chapter 1. Basic Techniques

The built-in restrictions prohibit the use of non-deterministic Ada
features that would otherwise invalidate static program analysis.
For acomplete list of the profiles and restrictions, see The XGC
Ada Reference Manual Supplement.

10

Chapter 2 Advanced Techniques

Once you have mastered writing and running a small program,
you'll want to check out some of the more advanced techniques
required to write and run real application programs. In this chapter,
we cover the following topics:

Customizing the start file and linker script file
Generating PROM programming files

Using the debugger

Using optimizations

Working on the target

Checking for stack overflow

Expanded memory

11

Chapter 2. Advanced Techniques

2.1. How to Customize the Sart File

On areal project you will almost certainly need to customize the
start file and the linker script file. These contain details of the target
hardware configuration and project options such asrunning in user
mode or supervisor mode.

Thestartfileart 0. S containsinstructionstoinitialize the arithmetic
unit, floating point unit and system registers. The default start file
may be suitablefor your requirements. You can see the source code
infile/opt/m750-ada- 1. 7/ ml750-cof f/src/libc/art 0. S. If this
is not suitable, make a copy in aworking source directory, then
edit it as necessary.

Example 2.1. Creating a Custom Start File

$ nkdir src

$ cd src

$ cp /opt/nml750-ada- 1. 7/ mLl750-cof f/src/libc/art0.S nyart0.S
$ vi nyart0.S

When you compile, you should cite the new start file on the
command line, asin the following example. We al so ask the linker
tolist al thefilesthat were included in the link.

$ $ ml750-cof f-gnatmake -f hello -largs -t -nostartfiles nyart0.S
mL750- cof f-gcc -c hello.adb

mL750- cof f-gnatbind -x hello. al

mL750-coff-gnatlink -t nyart0.S -nostartfiles hello.al

[opt/ mL750- ada- 1. 7/ mL750- cof f/bin/1 d: node cof f_ml750

b~hello0.0

.Ihello.o

[tnp/ ccYINaCHL. o

(/opt/nml750-ada-1.7/1ib/gcc-1ib/ m750-coff/2.8.1/1ibada. a)a-except.o
(/opt/nl750-ada-1.7/1ib/gcc-1ib/m750-coff/2.8.1/1ibada.a)a-textio.o
(/opt/nml750-ada-1.7/1ib/gcc-1ib/ m750-coff/2.8.1/1ibada. a)a-i oexce.o
(/opt/nl750-ada-1.7/1ib/gcc-1ib/ m750-coff/2.8.1/1ibada.a)x-malloc.o
(/opt/nl750-ada-1.7/1ib/gcc-1ib/ m750-coff/2.8.1/1ibada.a)s-stcosc.o
(/opt/nml750-ada-1.7/1ib/gcc-1ib/ml750-coff/2.8.1/1ibc.a)open.o
(/opt/nml750-ada-1.7/1ib/gcc-1ib/ml750-coff/2.8.1/1ibc.a)close.o
(/opt/nml750-ada-1.7/1ib/gcc-1ib/ml750-coff/2.8.1/1ibc.a)unlink.o

12

Using a Custom Linker Script File

(/opt/nml750-ada-1.7/1ib/gcc-1ib/m750-coff/2.8.1/1ibc.a)lseek.o
(/opt/nl750-ada-1.7/1ib/gcc-1ib/m750-coff/2.8.1/1ibc.a)read.o
(/opt/nml750-ada-1.7/1ib/gcc-1ib/m750-coff/2.8.1/1ibc.a)wite.o
(/opt/nl750-ada-1.7/1ib/gcc-1ib/m750-coff/2.8.1/1ibc.a)sbrk.o

2.2. Using a Custom Linker Script File

The linker script file describes the layout of memory on the target
computer and includes instructions on how the linker isto place
object code modulesin that memory. The default linker script file
is/opt/mL750-ada- 1. 7/ nL750- cof f/1i b/ dscri pts/ cof f _nl750. x.
You should copy thisfile to your local directory, and edit as
necessary. See the linker chapter in the XGC User Manual for a
description of the format of thefile.

Example 2.2. Making a Custom Linker Script File

$ cp /opt/ml750-ada- 1. 7/ mL750-cof f/1i b/ I dscripts/coff_ml750. x
$ mv coff_ml750.x myboard.|d
$ vi nyboard.|d

. make any changes ..

You can then build aprogram using your custom linker script rather
than the default as follows:

Example 2.3. Using the Custom Linker Script File

$ nl750- cof f-gnat make -f hello -largs -T nyboard.|d

You can add theline“ STARTUP(myart0.0)” to your custom linker
script file. Thiswill pick up your custom start file object code
without having to mention its name of the make command line.

2.3. How to Get a Map File

If al you need is alink map, then you can ask the linker for one.
Thisisalittle more subtle than you may expect, because the option

13

Chapter 2. Advanced Techniques

must be passed to the program m21750-coff-Id rather than the Ada
linker. Here is an example that generates amap called hel | o. nap.

$ nl750- cof f - gnat make hello -largs -W, - Map=hel | 0. map

Example 2.4. TheMap File

$ more hello. mp

LOAD / opt / nL750-
LOAD b~hell 0.0

LOAD ./hello.o

LOAD / opt / nL750-
LOAD / opt / nL750-
LOAD / opt / nL750-
LOAD / opt / nL750-

ada-1.7/1ib/gcc

ada-1.7/1ib/gcc
ada-1.7/1ib/gcc
ada-1.7/1ib/gcc
ada-1.7/1ib/gcc

0x00002000
0x00001000
0x00010000
0x00010000
0x00010000
0x00000000
0x00020000
0x0001fffe
0x0001f 000
0x0001effe
0x0001d000
0x0001cffe

...lots of output...

-1ib/m750-coff/2.8.1/art0.0

-1ib/m750-coff/2.8.1/1ibada. a
-1ib/m750-coff/2.8.1/1ibgcc.a
-1ib/m750-coff/2.8.1/1ibc.a
-1ib/m750-coff/2.8.1/1ibgcc.a

_STACK_SI ZE=0x2000

_I STACK_SI ZE=0x1000

_PROM SI ZE=0x10000

_RAM S| ZE=0x10000

_RAM START=0x10000

_PROM START=0x0

_RAM END=(_RAM START+_RAM Sl ZE)

_ei stack=(_RAM END- 0x2)

_si stack=(_RAM END- _| STACK_SI ZE)

_estack=(_si stack-0x2)

_sstack=(_si stack-_STACK_SI ZE)

_eheap=(_sst ack- 0x2)

2.4. Generating PROM Programming Files

By default, the executable file isin Common Object File Format
(COFF). Using the object code utility program
m1750-coff-objcopy, COFF files may be converted into several
other industry-standard formats, such as ELF, Intel Hex, and
Motorola S Records.

Thefollowing example shows how we convert a COFFfileto Intel
Hex format.

14

Using the Debugger

$ ml750-cof f-obj copy --output-target=ihex hello hello.ihex

If you don't need the COFF file, then you can get the linker to
generate the Intel Hex file directly. Note that the Intel Hex file
contains no debug information, soif you expect to use the debugger,
you should generate the COFF file too.

$ nl750-cof f-gnat make -f hello -largs -W, -of or mat =i hex
$ nore hello
:1000000085108000853005268520806AB1219313F4
:100010008530806A910300008513000185208112DC
:10002000B123931385F0F7FFESEE85006800900098B

...lots of output...

We can run the Intel Hex file, asin the following example:

$ mL750-coff-run hello
Hel lo world

Or we can generate Motorola S Records, and run from there. Note
that we use the option - f to force arebuild.

$ ml750-cof f-gnatmake -f hello.adb -largs -W, - of ormat =srec
$ more hello

S008000068656C6C6FE3
$113000085108000853005268520806AB1219313F0
$11300108530806A910300008513000185208112D8
$1130020B123931385F0F7FFESEE85006800900097
S113003080AE70F001CC0000000000000000000061
S1130040806A8000806E80038072800680768009DA
$1130050807A800C807E800F80828021808680243C
...lots of output...

$ ml750-coff-run hello

Hello world

2.5. Using the Debugger

Before we can make full use of the debugger, we must recompile
hel | 0. adb using the debug option. This option tells the compiler

15

Chapter 2. Advanced Techniques

to include information about the source code, and the mapping of
source code to generated code. Then the debugger can operate at
source code level rather than at machine code level.

The debug information does not alter the generated code in any
way but it does make object code files much bigger. Normally this
isnot aproblem, but if you wish to remove the debug information
from afile, then use the object code utility m1750-coff-strip.

Thisis how we recompilehel | 0. adb with the - g option. There are
other debug optionstoo. Seethe M1750 Ada User's Guide for more
information on debug options.

bash$ nml750-coff-gnat make -f -g hello
mL750- coff-gcc -c -g hello.adb
mL750- cof f-gnathind -x hello.ali
mL750-cof f-gnatlink -g hello.ali

The debugger is m1750-coff-gdb. By default the debugger will
run aM 1750 program on the M1750 simulator. If you prefer to
run and debug on areal M1750 then you must arrange for your
target to communicate with the host using the debugger's remote
debug protocol. Thisis described in Section 2.7, “Working with
the Target” [19].

16

Using the Debugger

Example 2.5. Running under the Debugger

$ nl750-coff-gdb hello

XGC nl750-ada Version 1.7.6 (debugger)

Copyright (c) 1996, 2005, XGC Software.

Based on gdb version 5.1.1

Copyright (c) 1998 Free Software Foundation
(gdb) break main

Breakpoint 1 at 0x408: file b~hello.adb, |ine 29
(gdb) run

Starting program /home/nettleto/xgc/ ml750-ada/ exanpl es/ hel | o
Connected to the simulator

Loadi ng sections:

I dx Name Si ze VIMVA LMA File off Algn
0 .init 000003fa 00000000 00000000 00001000 2**1
CONTENTS, ALLQOC, LOAD, CODE
1 .text 000005e6 000003fa 000003fa 000013fa 2**1
CONTENTS, ALLQOC, LOAD, CODE
2 .rdata 0000006c 000009e0 000009e0 000019e0 2**1
CONTENTS, ALLOC, LOAD, READONLY
3 .data 000000d4 00010000 00000a4c 00002000 2**1

CONTENTS, ALLOC, LOAD, DATA
Start address 0x0
Transfer rate: 22784 bits in <1 sec

Breakpoint 1, main () at b~hello.adb: 29
29 adainit;

(gdb) conti nue

Cont i nui ng.

Hello Wrld

Program exited normally.
(gdb) qui t

You can view the debug information using the object dump utility,
asfollows:

17

Chapter 2. Advanced Techniques

Example 2.6. Dump of Debug I nformation

bash$ nml750- cof f - obj dunp -G hello

hel | o:

Contents of

file format coff-ml750

.stab section:

Symmum n_type n_othr n_desc n_value n_strx String

-1

A~ W NDE O

Hdr Sym 0
SO
SO
LSYM
LSYM
LSYM

O O O oo

O OO O o~

00

00001508 1

00000438 14 [hone/ opt / ml750- ada- 1. 7/ mL750- cof f/ src/ | i bada/rts/
00000438 1 x-textio. adb

00000000 66 long int:tl=rl;-32768; 32767,

00000000 95 unsi gned char:t2=r2;0; 65535;
00000000 124 | ong integer:t3=r1;0020000000000; 0017777777777,

2.6. Using Optimizations

Optimization makes your program smaller and faster. In most cases
it also makes the generated code easier to understand. So think of
the option - @ asthe norm, and only use other levels of optimization
when you want to get something special.

The extent to which optimization makes a whole program smaller
and faster depends on many things. In the case of hel | 0. adb there
will be little benefit since most of the code in the executablefile
isinthelibrary functions, and these are already optimized.

The following example is more representative and shows the
Whetstone benchmark program reduced to 49% of its size, and
running nearly twice as fast. You can find Whetstone in the
CD-ROM directory benchmarks/ .

Here are the results when compiling with no optimization.

$ ml750-cof f-gcc -c - QD whet st one. adb
$ nl750-cof f-si ze whetstone. o

t ext

data bss dec hex fil ename

18

Working with the Target

18424 0 0 18424 478 whetstone. o
$ ml750- cof f - gnat make -f -Q0 whet stone
$ nml750- cof f-run whet stone
,.,. Whetstone GIS Version 0.1
- Floating point benchmark
Time taken = 2215 nBec
\Wetstone rating = 451 KWPS

Here are the resultswhen compiling with optimization level 2. This
isthe default.

$ nl750-coff-gcc -¢ - whet stone. adb
$ ml750-cof f-si ze whetstone. o
t ext data bss dec hex filenane
9540 0 0 9540 2544 whet stone. o
$ nl750- cof f - gnat make -f -2 whetstone
$ ml750-cof f-run whet st one
,.,. Whetstone GIS Version 0.1
- Floating point benchmark
Time taken = 1211 nBSec
\Wet stone rating = 825 KW PS

At optimization level 3, the compiler will automatically in-line
callsof small functions. Thismay increase the size of the generated
code, and the code will run faster. However the code motion due
to inlining may make the generated code difficult to read and debug.

2.7. Working with the Target

M 1750 Adaalso supports debugging on thetarget computer. Before
you can do this, you must connect the target board to the host
computer using two serial cables that include a null modem. One
cable connects the board's serial connector A to the host, and is
used to down-load the monitor and for application program input
and output. The other cable connectsto the board's serial connector
B, and is used by the debugger to load programs, and to perform
debugging operations.

19

Chapter 2. Advanced Techniques

Note Note that the monitor iswritten for a specific target
computer and will require customization to work with
other target computers.

2.7.1. How to Down-load the Debug M onitor

Before we can use the debugger to down-load and debug programs
running on the target, we must down-load the M1750 Ada debug
monitor. Thisisasmall program that resides in upper RAM, and
communicates with the debugger over a serial interface. You will
find the source code in the directory

[opt/ mL750- ada- 1. 7/ mL750- cof f/ src/ monitor/ .

$ I's /opt/m750-ada-1. 7/ mLl750- cof f/src/ nonitor/
artl. S Makefile rencomc xgcmon.c xgcnon. M
install.sh README tl.c xgenon. | d

In this guide we use the program tip to work as aterminal. This
program is generally available on Solaris platforms, but is seldom
seen on Linux or Windows. If you don't have tip then there are
other programs (such as Kermit) that will do as well.

We configured tip to use the serial interface connected to the target
at 19200 bpsin the fileden82. On Solaris, the configuration
statement isinthefile/ et ¢/ r enot e. Thefollowing example shows
the configuration line used to generate the rest of thistext. Note
thereis no entry for the output EOF string. Thisis not required.

The configuration line we useis as follows:

Example 2.7. Remote Configuration File

$ cat /etc/rennte
denB2:\
dv=/dev/termb: br#19200: el ="C*"S*"Q'U'D: i e=%$:

20

Preparing a Program to Run under the Monitor

The debug monitor is called xgcmon. Thisfileisformatted in
Motorola S-Records ready for down-loading in response to the
load command.

The monitor is now running and ready to communicate over the
other seria interface. To leaveti p type ~..

2.7.2. Preparing a Program to Run under the M onitor

Because the debug monitor is a complete supervisor-mode
application program it is not appropriate to down-load the programs
we built in the previous section. We must rebuild the program using
thestart fileart 1.

The moduleart 1 consists of the code from art 0 to do with
initializing the high-level language environment. It omits the trap
vector and trap handling code. You can get the source from

[opt/ ml750- ada- 1. 7/ nL750- cof f/src/monitor/artl. S.

The following code shows how to compile the Ackermann
benchmark program using acustom linker script, themoduleart 1.

$ ml750-cof f-gcc -O ackermann.c -0 ackermann -T xgcmon.ld artl. o

Thefilexgenon. | d may be found on the CD-ROM in the run-time
source directory.

Thefollowing example shows the Ackermann benchmark running
under the control of the debugger. You should substitute your serial
device namefor tt yS0.

21

Chapter 2. Advanced Techniques

Example 2.8. Remote Debugging

$ ml750-cof f-gdb ackermann
XGC nl750-ada Version 1.7.6 (debugger)
Copyright (c) 1996, 2005, XGC Software.
Based on gdb version 5.1.1
Copyright (c) 1998 Free Software Foundation
(gdb) set remote speed 19200
(gdb) tar rem/dev/ttyS0O
Renot e debuggi ng using /dev/ttyS0O
0x21f965¢c in ?? ()
(gdb) I oad
Loading section .text, size 0x1948 | ma 0x2000000
Loading section .rdata, size 0x3d8 | ma 0x2001948
Loadi ng section .data, size 0x50 I ma 0x2001d20
Start address 0x2000110
Transfer rate: 6698 bits/sec
(gdb) run
Starting program /hdb3/xgc/benchmarks/ acker mann
,.,. ackermann GIS Version 0.1

- ackermann Function call benchmark, A (3, 6).

- ackermann time taken = 1.130e+00 Seconds.
**x% ackermann PASSED
Program exited normal |y

(gdb) quit

2.8. Checking for Stack Overflow

InVersion 1.7, stack checks are included by default. To suppress
all checks use the compiler option - gnat p. The stack limit, which
isthe lowest address in the stack, isheld in global _stack linit.
Hereisan examplethat overflowsthe 8K byte main program stack:

22

Expanded Memory

Example 2.9. Stack Overflow Check

$ nore biggy.adb
procedure Biggy is
S: String (1 .. 10_000);
begin
null;
end Biggy;
$ nl750- cof f - gnat make -g bi ggy
bi ggy. adb: 2: 04: warning: "S" is never assigned a val ue
mL750- cof f - gnat bi nd -x bi ggy. al
mL750- cof f-gnat!ink -g biggy.al
$ ml750-cof f-run higgy
Unhandl ed exception at AS=0 | C=02E2 (000005c4): Storage Error
_ada_bi ggy():
...l exampl es/ bi ggy. adb: 2

Theglobal variable _stack_limitisinitialized inthe run-time system
moduleart 0. S. The value is computed from the stack bounds
declaredinthelinker script file, and stored with the most significant
bit inverted. Thisisto save instructions when making an unsigned
comparison between the limit and the stack pointer.

Notethat _stack_limit is set correctly for the main program, for
interrupt handlers which use the interrupt stack, and for any Ada
tasks, which have their own stacks.

2.9. Expanded Memory

You may distribute the instructions of your program over several
address states up to a maximum of 1M word on the 1750A. Calls
between compilation units may then need to switch address states.
The option for callsthat switch address statesis-mlong-calls, and
you must give the option to the compiler, binder and linker. If you
are using gnatmake then the option -mlong-calls must be given
after -cargs and -largs.

$ ml750- cof f - gnat make -mong-calls -f -g hello
mL750- coff-gcc -c -mong-calls -g hello.adb

23

Chapter 2. Advanced Techniques

mL750- cof f-gnatbind -x hello.al
mL750- cof f-gnatlink -mong-calls -g hello.al

You can confirm that the expanded memory variants of the library
files have been included using the linker's option - t , asfollows:

$ nl750- cof f - gnat make -m ong-calls

mL750- cof f - gcc
mL750- cof f-gnathind -x hello.al

mL750-cof f-gnatlink -mong-calls

-¢ -nlong-calls -g hello.adb

-f -g hello -largs

-g -t hello.al

-W, -t

[opt/ mL750- ada- 1. 7/ mL750- cof f/bin/1 d: node coff_nl750 expanded

[opt/ mL750-ada-1. 7/1i b/ gcc-1ib/ m750-coff/2.8. 1/ mMong-calls/art0.0

b~hell 0.0
.lhello.o

(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-
(/ opt/ mL750-

ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-
ada-

PR RPRRPPRPRPRRPRPRPRRPRERE

.7/1iblgce
.7/1iblgce
.7/1iblgce
.7/1iblgce
.7/1iblgce
.7/1iblgce
.7/1iblgce
.7/1iblgce
.7/1iblgce
.7/1iblgce
.7/1iblgce
.7/1iblgce

-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-
-1i b/ mL750-

cof f/ 2.
cof f/ 2.
cof f/ 2.
cof f/ 2.
cof f/ 2.
cof f/ 2.
cof f/ 2.
cof f/ 2.
cof f/ 2.
cof f/ 2.
cof f/ 2.
cof f/ 2.

OO0 OO OO OO OO OO OO OO OO OO OO OO

.1/ m ong-
.1/ m ong-
.1/ m ong-
.1/ m ong-
.1/ m ong-
.1/ m ong-
.1/ m ong-
.1/ m ong-
.1/ m ong-
.1/ m ong-
.1/ m ong-
.1/ m ong-

calls/libada.a
calls/libada.a
calls/libada.a
calls/libada.a

a-except.o
a-textio.o
a-ioexce.o
x-nalloc.o

N e

cal I s/libada. a)s-stcosc.o

call's/libc.
call's/libc.
call's/libc.
call's/libc.
call's/libc.
call's/libc.
call's/libc.

2.10. System Calls

A system call isthe means by which application programs call an
operating system. System calls are mostly used for input-output.
The predefined Adapackage Ada. Text _I Oand the smaller package
XGC. Text _I Omap all input and output operations onto the system
callssuchasread andwr i t e. The C language input-output functions
declared in <st di 0. h> use the same system calls.

With XGC Ada, we have no operating system as such, just the
run-time system modul e artO. However, we support the system call
mechanism using the BEX instruction and when running on the
simulator we map system calls to host system calls so that

24

How to Use Text_lO Without System Calls

application programs can access host computer files. Thisis
especially useful during program devel opment.

When running on the the target, any system call will bring your
program to an abnormal termination because the required system
call handler is absent in the default configuration. The default
system call handler islocated in the library libc and supports an
appropriate subset of calls. For example, read and write are directed
to UARTA and may be used in a console dialog. You may wish to
customise the default handler so that calls that would otherwise be
non-operational could do something useful. For example, the call
to get the time could be implemented to read the time from some
external clock.

This can be done quite easily and an example system call handler
isincluded with the source filesin

[opt/ mL750- ada- 1. 7/ ml750- cof f/ src/ 1 i be/ sys/ schandl er. c. The
handler is attached to the system call trap in the same fashion as
other interrupts are attached to their handlers. In the example, aC
function is provided to do the attaching.

2.10.1. How to Use Text_I O Without System Calls

Another way to support Text_|O isto replace the various system
callswith callsto application code. For example, if all you needis
the Put functionality in Text_|O, you can create your own version
of write and have it do whatever you want. When your program
islinked, the linker will use your version of wri t e in place of the
library version.

25

Chapter 2. Advanced Techniques

Example 2.10. Codeto Support Write

protected UART is
procedure Wite (Ch : Character);
pragma I nterrupt_Handler (Wite);
end UART;

protected body UART is
procedure Wite (Ch : Character) is
begi n
-- Code to wite one character
end Wite;
end UART;

-- Export pragmas required for conmpatibility with C

procedure Wite (
Result : out Integer;
Fd : in Natural;
Buf : in System Address;
Count : in Natural);
pragma Export (C, Wite, "wite");
pragma Export Val ued Procedure (Wite, "wite");

procedure Wite (
Result : out Integer;
Fd : in Natural;
Buf : in System Address;
Count : in Natural)
is
Ada_Buf : String (1 .. Count);
for Ada_Buf' Address use Buf;
begin
for I in1 .. Count loop
UART. Wite (Ada_Buf (1));
end | oop;

Result := Count;
end Wite;

26

Chapter 3 Real-Time Programs

M1750 Adais highly suitable for hard real-time applications that
reguire accurate timing and afast and predictable response to
interrupts from peripheral devices. Thisis achieved with the
following features:

Ravenscar profile

The package Ada. Real _Ti me and ahigh-resolution real-time clock
(aprecision of one micrasecond)

Preemptive priority scheduling with ceiling locking (120
microsecond task switch?)

Low interrupt latency (15 microseconds)

The packages Ada. Dynanmic_Priorities,
Ada. Synchronous_Task_Control and Ada. Task_I dentification

ISimulated generic M1750 at 10 MHz

27

Chapter 3. Real-Time Programs

» Support for periodic tasks and task deadlines, as required by
ARINC 653

M1750 Ada also offers reduced program size by:

» Optimized code generation

» Use of trap instructions to raise exceptions

e Small run-time system size

» Optimizations that permit interrupt handling without tasking

This chapter describes how to use Ada tasks, and the associated
language features, in example real-time programs.

3.1. The Ravenscar Profile

In support of safety-critical applications, Ada 95 offers various
restrictions that can be invoked by the programmer to prevent the
use of language featuresthat are thought to be unsafe. Restrictions
can be set individually, or can be set collectively in what is called
aprofile. XGC Adasupportsall the Ada 95 restrictions and supports
the implementation-defined pragma Profile. To get the compiler
to work to the Ravenscar profile, you should place the following
line at the top of each compilation unit.

pragma Profile (Ravenscar);

By default, M 1750 Ada supports a limited form of tasking that is
asuperset of what is supported by the Ravenscar profile. The
built-in restrictions alow for statically declared tasks to
communicate using protected types, the Ada 83 rendezvous or the
predefined package Ada. Synchr onous_Task_Control .

The Ravenscar profile prohibits the rendezvous and several other
unsafe features. When using this profile, application programs are
guaranteed to be deterministic and may be analyzed using static
analysistooals.

The relevant Ada language features are as follows:

28

The Main Task

» The pragmaPriority

» Task specs and bodies

» Protected objects

* Interrupt handlers

» Thedelay until statement

» The package Ada.Real_Time

3.1.1. TheMain Task

The main subprogram, which contains the entry point, and which
isat the root of the compilation unit graph, runs as task number 1.
The TCB for thistask is created in the run-time system, and the
stack isthe main stack declared in the linker script file. Other tasks
are numbered from 2 in the order in which they are elaborated.

For other than atrivial program, the environment task should
probably be regarded as the idle task or background task. You can
make surethat it runs at thelowest priority by the use of the pragma
Priority in the declarative part of the main subprogram. Note that
the default priority for the main program and for any tasksis 63.

Example 3.1. Main Subprogram with Idle L oop

procedure T1 is
pragma Priority (0);
begin
| oop
null;
end | oop;
end T1,

You might want the background task to continuously run some
built-in tests, or you may wish to switch the CPU into low power
mode until the next interrupt is raised.

29

Chapter 3. Real-Time Programs

Here is an example main subprogram that goes into low-power
mode when there is nothing else to do. Note that the function
__xgc_set _pwdn isincluded in the standard library | i bc. Note that
lower power mode requires support fromart 0. S and may not be
supportable on your target computer.

Example 3.2. Idle L oop with Power-Down

with Built _In Tests;
procedure T1 is
pragma Priority (0);
procedure Power Down;
pragma Inport (C, Power_Down, "__xgc_set_pwdn");

begi n
| oop
Bui It _In_Tests. Run;
Power _Down;,
end | oop;
end T1;

The rest of the program comprises periodic and aperiodic tasks
that are declared in packages, that are with-ed from the main
subprogram.

Important |n M1750 Ada, thereis no default idle task. If al of
your application tasks become blocked, then the program
will fail with Program_Error.

3.1.2. Periodic Tasks

The package Ada. Real _Ti me declares types and subprograms for
use by real-time application programs. In M1750 Ada, this package
isimplemented to offer maximum timing precision with minimum
overhead.

The resolution of the time-related types is one microsecond. With
a32-bit word size, therange is approximately +/- 35 minutes. This
isfar greater than the maximum delay period likely to be needed
in practice. For a10 MHz processor, the lateness of adelay is
approximately 55 microseconds. That means that given a delay
statement that expires at time T, and given that the delayed task

30

Form of a Periodic Task

has ahigher priority than any ready task, then the delayed task will
restart at T + 55 microseconds. Thislatenessisindependent of the
duration of the delay, and represents the time for a context switch
plus the overhead of executing the delay mechanism.

Itistherefore possibleto run tasks at quite high frequencies, without
an excessive overhead. On one 10 MHz 1750, you can run atask
at 1000Hz, with an overhead (in terms of CPU time) of
approximately 20 percent, leaving 80 percent for the application
program.

Note A delay statement that givesatimethat isalready passed
has missed its deadline, and will raise a soft deadline
fault. The default system call handler logs deadlinefault
to the console. You may wish to modify this codeto log
the fault in non-volatile memory.

3.1.3. Form of a Periodic Task

The general form of a periodic task is given in the following
example. You should note that tasks and protected objects must be
declared in alibrary package, and not in a subprogram.

In the following example, the task's three scheduling parameters
are declared as constants, giving a frequency of 100 Hz, and a
phase lag of 3 milliseconds, and a priority of 3. You will have
computed these parameters by hand, or using a commercial
scheduling tool.

31

Chapter 3. Real-Time Programs

Example 3.3. A Periodic Task

package body Exanple is
TO : constant Tine := Cock;
CGets set at el aboration tine

Taskl Priority : constant SystemPriority := 3;
Taskl Period : constant Time_Span := To_Time_Span (0.010);
Taskl Offset : constant Time_Span := To_Time_Span (0.003);

task Taskl is
pragma Priority (Taskl_Priority);
end Taskl,

task body Taskl is
Next _Time : Time := TO + Taskl_Off set;
begin
| oop
Do sonet hi ng

Next _Time := Next_Time + Taskl Peri od;
delay until Next Tine;
end | oop;
end Taskl,
end Exanpl e;

The task must have an outer loop that runs for ever. The periodic
running of the task is controlled by the delay statement, which
gives the task atime dot defined by Offset, Period, and the
execution time of the rest of the bodly.

The value of Task1_Period should be a whole number of
microseconds, otherwise, through the accumulation of rounding
errors, you may experience a gradual change in phase that may
invalidate the scheduling analysis you did earlier.

3.1.4. Aperiodic Tasks

Like periodic tasks, aperiodic tasks have an outer loop and asingle
statement to invoke the task body.

32

Aperiodic Tasks

In the following example, we declare atask that runs in response
to an interrupt. You can use this code with a main subprogram to
build a complete application that will run on the simulator.

The code for the package and its body is given in the following
example.

33

Chapter 3. Real-Time Programs

Example 3.4. An Interrupt-Driven Task

package Exanple is
task Task2 is
pragma Priority (1);
end Task2;
end Exanpl e;

with Ada. | nterrupts. Nanes;
with Interfaces;
with Text IQ

package body Exanple is
use Ada. | nterrupts. Nanes;
use Interfaces;
use Text IO

protected 10is
procedure Handl er;
pragma Attach_Handl er (Handler, SPARE2);

entry Get (C: out Character);
private

Rx_Ready : Bool ean : = Fal se;
end 10

protected body 10is
procedure Handler is
Status_Word : Unsigned_16;
begi n
Asm (Tenplate => "xio %), 0x8501",
Qutputs => (Unsigned_16" Asm Qutput ("=r", Status_Wrd)),
Vol atile => True);

Rx_Ready := (Status_Wrd and 16#0002#) /= 0;
end Handl er;
entry Get (C: out Character) when Rx_Ready is

Data Word : Unsigned_16;
begi n
Asm (Tenplate => "xio %), 0x8500",
Qutputs => (Unsigned_16"Asm Qutput ("=r", Data_Wrd)),
Vol atile => True);
C := Character'Val (Data_Wrd and 16#007f#);
Rx_Ready := Fal se;
end Get;

Additional Predefined Packages

end 10

task body Task2 is
C: Character;
begi n
| oop
10 Get (O);

Do sonmething with the character
Put ("C="");, Put (Q, Put ("'");
New Li ne;

end | oop;
end Task2;

end Exanpl e;

Points to note are as follows:

» The package Ada.Interrupts.Names declares the names of the
M 1750 interrupts.

» We use machine code statements to perform 10.

» Thetype Unsigned 16 permits bitwise operators such as ‘and'
and 'or'.

» Theinterrupt handler runsin supervisor mode with the mask
register set appropriately for the level of interrupt.

3.2. Additional Predefined Packages

Programsthat are not required to follow the Ravenscar Profile may
also use the predefined packagesAda. Asynchr onous_Task_Control ,
Ada. Dynanic_Priorities, Ada. Synchronous_Task_Control and
Ada. Task_| dentification.

The function Current _Task allows atask to get an identifier for
itself. Thisidentifier may then be used in callsthe the subprograms
inAda. Asynchronous_Task_Cont r ol , which alow atask to be placed

35

Chapter 3. Real-Time Programs

on hold, or to continue. Tasks that are on hold consume no CPU
time but do retain their state.

The packageAda. Task_| denti fi cati on allowsatask to be aborted.
In M1750 Adathis places the task in a state from which it may be
restarted using the subprograms in XGC. Taski ng. St ages.

The base priority of any task (including the current task) may be
requested or changed using the package Ada. Dynanic_Priorities.

3.3. Interrupts without Tasks

A protected operation that is attached to an interrupt must be a
parameterl ess protected procedure. Thisisenforced by the pragma
Attach Handler and by the type Parameterless Handler from
package Ada.lnterrupts. For interrupt handlers that have pragma
Interrupt_Handler and are not attached to an interrupt is it
convenient to alow both parameters and protected functions. The
XGC compiler supports this as alegal extension to the Ada
language.

In the special case where all the operations on a protected type are
interrupt level operations, the X GC compiler will generate run-time
system calls that avoid the use of the tasking system. Then only if
tasks are required will the tasking system be present. This saves
about 6K bytes of memory and reduces the amount of unreachable
(and untestable) code.

36

Interrupts without Tasks

Example 3.5. Example Interrupt Level Protected Object

with Ada. | nterrupts. Nanes;

package body Exanmple Pack is
use Ada. | nterrupts. Nanes;

protected UART Handler is
procedure Handl er;
pragma Attach_Handl er (Handler, UART_A Rx_TX);
-- Mst be a parameterless procedure

procedure Read (Buf : String; Last : Natural);
pragma | nterrupt_Handl er (Read);
-- Runs at interrupt level, may have parameters
function Count return Integer;
pragma | nterrupt Handl er (Count);
-- Runs at interrupt level, may be a function
end UART Handl er;
protected body UART Handler is
end UART Handl er;

end Exanpl e_Pack;

37

38

Appendix A Expanded |\/|emOI‘y

The M 1750 has a sixteen-bit word. In its simplest configuration,
the M 1750 can address up to 218 or 64K words of memory. With
atrivia hardware extension, this can be extended to 64K words of
instructions plus 64K words of operands. Thisisatotal of 256K
bytes. M 1750 Adasupports both of these configurations by defauilt.

Where an application requires more address space than this, the
1750A's addressing range may be extended using a Memory
Management Unit (MMU). The MMU specified by 1750A offers
afurther four address bits and alows programs to be up to 1M
word in size. Thiskind of memory is known as “ expanded
memory”.

A.1. Expanded Memory Solutions

M 1750 Ada support two solutions for expanded memory:

» A single program solution using long forms the SJS and URS
instructions that switch address states

39

Appendix A. Expanded Memory

* A multi-program solution where up to 15 Ada programs may
time share the 1750 CPU under the control of aapplication code
in address state zero.

In addition, the programmer is always free to write assembly
language statements that either access memory directly, or modify
the memory management unit's registers.

A.1.1. The Single-Program Solution

For the single program solution, each application program unit is
compiled using the compiler option - nl ong- cal | s. This changes
the instructions used for subprogram call and subprogram return
to thelong forms of these instructions, and allocates two words on
the stack for the link address. The long forms are actually BEX
instructions and call the run-time system to switch address states
as necessary.

One the 1750A the maximum memory addressable using this
solution is 1M word of instructions with 64K words of data.

With this solution all callsarelong calls. In practice the additional
time required to make the calls is quite small. The Ackermann
benchmark program that consists almost entirely of callsincreases
in time from 1.18 seconds to 2.62 seconds when running with
expanded memory. This suggests that along call takes roughly
twice aslong asanormal call.

A.1.2. The Multi-Program Solution

Using the multi-program solution allows the full 1M word to be
addressed as instructions or operands. Up to 15 programs may be
loaded in parallel, each inits own address state and protected from
the others. Address state zero is reserved for asmall kernel that
supports hard interrupts and the system call interface.

No time-sharing kernel is provided as standard. We expect that
application codein address state zero will switch among theloaded
programs (according to mission phase for example) and call

40

The Multi-Program Solution

functionsfrom those programswith along call that switches address
state.

No special options are used when compiling for this solution as
each program executesin a64K + 64K virtual address space. Also
each program is linked asiif it were running on non-expanded
memory.

41

42

Appendix B M1750 Compiler Options

The compiler can generate code for several different members of
the MIL-STD-1750 family and to support expanded memory. The
default isthe MIL-STD-1750A without expanded memory. For
detailed information about the differences, see the draft military
standard MIL-STD-1750B, which covers both the 1750A and the
1750B, or see your 1750 vendor's literature.

-mlong-calls
Support expanded memory using the long form of SJS and
URS instructions.

-mno-long-calls
Do not support expanded memory. This is the default.

-mbl
Permit 1750B optional mathematical instructions.

-mb2
Permit 1750B optional long loads and stores.

43

Appendix B. M1750 Compiler Options

-mb3
Permit 1750B optional unsigned arithmetic and load and store
byte instructions.

-mno-bl
Reject 1750B optional mathematical instructions.

-mno-b2
Reject 1750B optional long loads and stores.

-mno-b3
Reject 1750B optional unsigned arithmetic and load and store
byte instructions.

Appendix C M 1750 Assembl el’
Options and Directives

This section describes features of the assembler that are specific
to the target computer.

C.1. MIL-STD-1750 Options

The assembler can assemble code for several different members
of the MIL-STD-1750 family. The default is to assemble code for
the MIL-STD-1750A. Thefollowing options options control which
instructions and addressing modes are permitted. For detailed
information about the differences, see the draft military standard
MIL-STD-1750B, which covers both the 1750A and the 1750B,
or see your 1750 vendor's literature.

-A1750a, -A1750A
Assemble for the 1750A with no expanded memory. Thisis
the default.

45

Appendix C. M1750 Assembler Options and Directives

-A1750Db, -A1750B
Assemble for the 1750B with all 1750B instruction options
but no expanded memory.

-Ama31750, -AMA31750
Assemble for the GEC-Plessey MA31750 in 1750B mode.

-Along-calls
Convert LSJSto long call. Convert LURS to long return.

-Ano-long-calls
Convert LSISto SJS. Convert LURS to URS.

-Abl
Permit 1750B optional mathematical instructions.

-Ab2
Permit 1750B optional long loads and stores.

-Ab3
Permit 1750B optional unsigned arithmetic, load, and store
byte instructions.

-Ano-bl
Reject 1750B optional mathematical instructions.

-Ano-b2
Reject 1750B optional long loads and stores.

-Ano-b3
Reject 1750B optional unsigned arithmetic, load, and store
byte instructions.

C.2. Floating Point

The floating directives are as follows:
float

Si ngl e precision floating point constants (See MIL-STD-1750A
section 4.1.7).

46

M1750 Machine Directives

.double

Doubl e precision floating point constants (See MI1L-STD-1750A
section 4.1.6).

C.3. M1750 Machine Directives

The following directives are supported in addition to the common
ones listed in the assembler documentation.

.SKip nunber
.Skip isidentical to the .space directive.
.rdata subsecti on

.rdatatellsthe assembler to assemble the following statements
onto the end of the read-only data subsection humbered
subsect i on (which is an absolute expression). If subsecti on
is omitted, it defaults to zero.

.rodata subsecti on
-rodataisidentical to the .rdata directive.
.Sbam f | onuns

.sham expects one or more flonums, separated by commas. It
assembles Single precision binary angular measurement (See
draft MIL-STD-1750B section 4.1.11).

.dbam f | onuns

.dbam expects one or more flonums, separated by commas. It
assembles Double precision binary angular measurement (See
draft MIL-STD-1750B section 4.1.12).

47

Appendix C. M1750 Assembler Options and Directives

C.4. Opcodes

In addition to the opcodes specified in the M1750 Standard, the
assembler supports several new ones. These are called pseudo
opcodes.

C.4.1. Extended Floating L oad Register (ELFR)

The 1750 does not have the important load register instruction for
extended precision floating point. The reason is we can copy a
three-word extended floating point value from one triple register
to another using a single load register and a double load register.
However, if the source triple and destination triples overlap, then
it isimportant to get the single and doubleload in the correct order
otherwise the source will be overwritten before it is completely
copied.

The opcode EFLR istrandlated by the assembler into either asingle
load followed by a double load, or adouble load followed by a
single load, depending on which registers are used, and guarantees
correct operation.

Note that the condition codes will not be correctly set by EFLR.
To set the condition codes you should do an extended compare
with zero. Of courseto check whether a number is negative or not,
no matter whether it isa 16 bit, 32 bit or 48 hit, fixed or floating,
you only have to test the sign bit of the first word.

C.4.2. Expanded Memory Support

There are two macro-like instructions, LSJS and LURS, for
supporting subprogram call and return across address states.
Normally these will be trandated by the assembler into SIS and
URS instructions, but if the assembler is run with the expanded
memory option -Along-callsthen LSISisexpended into asegquence
of instructions that makes a call to a subprogram that may bein a
different address state and uses the BEX 0 instruction. The LURS
instruction is converted into aBEX 2 instruction.

48

Branch Improvement

Theinstruction LLIM isused to load along (24-bit) byte address
into apair of registers. The address can then be used in the 1750B
long load and store instructions, such asLSL and LSS.

C.4.3. Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They
expand to the shortest branch instruction that can reach the target
address. Generally these mnemonics are made by substituting “j
for “b” at the start of a standard 1750 mnemonic.

Thefollowing table summarizesthe pseudo-operationsfor branches.

Table C.1. M 1750 Pseudo Operations for Branches

Pseudo Op 16-bit instruction 32-bit instruction
j labe br label jc uc, label
jez labd bez label jc eq, label
jnz label bnz label jc ne, label
jgt labe bgt label jc gt, label
jlt label bt label jc It,label
jge labe bge label jc ge, label
jle labe bl e label jc le, label

C.4.4. XI1O Commands

All theMIL-STD-1750A and 1750B X 10 commands are supported.
They may be used in both X10 and V10O instructions.

BIT
CC

Cl
CLC
CLIR
CO
DMAD
DMAE

ITGI
LMP
LOS
LXMP
MPEN
OD
OTA
OTAR

RDOW
RFMK
RFR
RIC1
RIC2
RIPR
RLP
RMFA

RPS
RSwW
RXMP
SFMK
SFR
SMK
SPI
TAH

49

Appendix C. M1750 Assembler Options and Directives

DSBL OoTB RMFP TAS
DSUR OTBR RMFS TBH
ENBL OTGR RMK TBS
ESUR Pl RMP TPIO
GO PO RNS WIPR
ICW RCFR ROPR WOPR
ITA RCS ROS WPBS
ITAR RCW RPBS wSsw
ITB RDI RPI

ITBR RDOR RPIR

You may write X10 instructions in Ada using the predefined
package Machine_Code, asin the following example:

Example C.1. XIO Command in Ada

wi th Machi ne_Code;
procedure Enable_Interrupts is
use Machine_Code;
begi n
Asm ("xio r0, ENBL");
end Enabl e_Interrupts;

C.4.5. Special Characters

There are two special characters used to indicate the start of a
comment. Theseare'!" and' # . The line-comment character is
I. If a# appears at the beginning of aline, it istreated asacomment
unlessitlookslike# |ine file,inwhichcaseitistreated normally.

50

Appendix D M1750 Smulator Options

D.1. The Command Line

The simulator command line has the form:

$ mL750-coff-run switches files

You can get a summary of the options using the help option, as

shown in the following example:

51

Appendix D. M1750 Simulator Options

Example D.1. Simulator Help

$ mL750-coff-run -h
age: mL750-coff-run [options] [file...]

Options

-a "ARCS', --args "ARCS'

Pass ARGS to sinulator

Print branch coverage report

Print branch coverage summary

Print coverage report

Print coverage sumary

Delay trace for T uSec

Report coverage for this source file only
Print this nessage

Trigger trace on pending interrupt
Trigger trace on interrupt |evel

Time linmt T uSec

Trace data menory cycles

Trace data and instruction menory cycles
Print performance sunmary

Trigger trace on pc = PC (use Ox for hex)
Print RAMtags report with |arge bl ocks
Print RAMtags report with small bl ocks
Print execution statistics

Trace instructions using 70 col ums
Trace instructions using wde format

Set task trace resolution to U uSec
Print additional information

Print version nunber

Wden a trace or report

Don't pass systemcalls to host

Print task switching report

-tasking-report-wide Print task switching report wde format

Set clock frequency to F Mz (default 10 Mz)
Stop on fault (default)
Don't stop on fault, call handler

-B, --branch-report
-b, --branch-summary
-C, --coverage-report
-c, --coverage-sunmmary
-d T, --delay T
-f MDD, --file FILE
-h, --help
-i I, --pending
-1 I, --interrupt |
LT, --limt T
-m --trace-menory
-M --trace-nenory-wide
-p, --perf
-P PC, --pc PC
-r, --ramtags-report
-R --RAM t ags-report
-s, --stats
-t, --trace
-T, --trace-wide
-u U, --resolution U
-v, --verbose
-V, --version
-w, --wide
-y, --nosys
-z, --tasking-report
-Z, -

Sinul ator options are:
-freq F
- sof
- nosof
-cpu 1750a
-cpu na31750
-cpu nmas281
-Cpu pace
-cpu 9450
-Cpu gvsc

IO library options are:

-uartl DEV

Connect seria

Sinulate Generic 1750A (defaul t)
Simul ate Dynex MA31750

Sinul at e Dynex MAS281

Sinulate Pace 1750

Sinulate Fairchild F9450
Sinul at e Honeywel | GVSC

interface 1 to DEV

52

Command Line Switches

-uart2 DBV Connect serial interface 2 to DEV

-sl ow

Run uarts at 9600 bps (default UN X speed)

70 col trace format is:
142.000 cpzn 0 0 1 0000 0000 0000 023456: | ri1,2,rl4

| | | - Disassenbled insn

| | “- Programcounter (hyte)
| “- Pending Interrupt Register

“- Interrupt Mask

“- Fault register

“- Address state (hex)

“- Processor state (hex)

- Page bank (17508B)

*- Condition codes

“- CPU tinme in mcroseconds
(status reported before execution)

Report probl

ens to <support @gc. conp

D.2. Command Line Switches

The simulator includes command line switches that are common
to all versions, and switches that are specific to the target
microprocessor. The more commonly used options are described
here.

-V
Verbose Mode. In normal mode the simulator only generates
information in the case of an error. In verbose mode, useful
information is generated as the simulation proceeds.

When simulation terminates, generates a report that includes
execution time, number of clock cycles, and so on.

Trace mode. Use this option to get a continuous listing of
instructions as they are processed. The listing includes the
execution time so far, the program counter, the instruction
processed. If you compiled with the debug option, then the
listing will also include source file line numbers.

53

Appendix D. M1750 Simulator Options

-dD
Delays the start of tracing by D microseconds. Use this option
to skip unwanted lines of trace outpuit.

-a" -option -option ...
Introduces further target-specific options:

D.3. Examples of Smulator Use

This section contains several example of using the target
Microprocessor simulator.

$ ml750-coff-run hello
Hel lo world

$ ml750-coff-run -s hello
Hel lo world

CPU type: CGeneric 1750A

C ock frequency: 10.0 MHz

Menory al | ocat ed: 16384 16-bit words
Instructions executed: 2049

C ock cycles: 7968

Execution time: 796. 800 uSec

Average clocks per insn 3.89
ML750 execution speed 2.57 MPS

D.3.1. Tracing Simulation

The simulator supports several options including the trace option
(-t) and the statistics option (- s). Use the option - - hel p for more
information.

Tracing Simulation

Example D.2. Tracing Simulation

The trace options allow you to get atrace of program execution.
In most cases the - w option will more information in awider of
longer format. Tracing istriggered either immediately or according
to several trigger options. You can trigger on program counter
value, after a given number of microseconds, on an interrupt.

$ mL750-coff-run -t hello

Tracing starts at 0. 000

m croseconds cpznpbpsas ft nk pi

000000:
000004:
000008:

------------ e g
0. 000 0 0 0 0000 0000 0000
0. 300 n 00 0 0000 0000 0000
0.600 p 0 0 O 0000 0000 0000
0000

000 0000 0000
...lots of output...
mai n()

/'hone/ nett | et o/ xgc/ pl ay/ b~hel | 0. adb: 36
<mai n>

436.700 z 0 0 0 0000 5140 0000
437.000 z 0 0 0 0000 5140 0000
437. 200 n 00 0 0000 5140 0000
437. 400 n 00 0 0000 5140 0000
437.700 p 0 0 0 0000 5140 0000
438.100 p 0 0 0 0000 5140 0000
I hone/ nett | et o/ xgc/ pl ay/ b~hel | 0. adb: 42
438.300 p 0 0 0 0000 5140 0000
adainit():

[hone/ nett | et o/ xgc/ pl ay/ b~hel | 0. adb: 8
<adai ni t>

438.700 p 0 0 O 0000 5140 0000
439.000 p 0 0 O 0000 5140 0000
439. 200 n 00 0 0000 5140 0000
439. 400 n 00 0 0000 5140 0000
439.700 p 0 0 O 0000 5140 0000
440.100 p 0 0 O 0000 5140 0000

00000c:

000596:
000598:
00059a:
00059c:
0005a0:
0005a4:

0005a8:

00056¢:
00056e:
000570:
000572:
000576:
00057a:

pshm
Ir

Ir
xorm
bge

S| s

pshm
Ir

xorm

bge

ri, 32768
r3,4728
r2,33188
r2,rl

ri4, r14

ri4, r15
ri1,r15

ril, 32768

ri11, 0x000103dc
2

r15, 0x0000056¢

ri4, r14

ri4, r15
ri1,r15

ril, 32768

ri11, 0x000103dc
2

55

Appendix D. M1750 Simulator Options

...lots of output...

D.3.2. Tasking Reports

Inthe following examplewe can clearly see how thetasking system
switched among the 12 tasks that ran during the report's time
window. Thetop lineistheidle task and tasks 4 to 12 wait in the
ready queue until it'stheir turn. The second part of the report shows
the locking level of the current task in its current protected object.

The following example shows the report for the real-time
demonstration program (in directory deno) on the M1750 Ada
CD-ROM.

56

Tasking Reports

Example D.3. Tracing Tasking

$ mL750-coff-run -z deno -u 500

p' PIL set here

Masked pending interrupt

"I' Pending interrupt

"*'" Both of the above

." Interrupt unmasked

"0" The current task with no | ocks
"1" The current task with one |ock
Power down is a blank col um

Sinul ation ended at 1218635.800 uSec

There are no interrupt records
Tasks, y-axis is task nunber

"t'" Current task
".' Task in ready queue
"' Task bl ocked

ttetttttttttttttttttttttttttttttttttttt. ttettttttetttttettttttet] 1
| 2
ttt | 3
Ctt | 4
Ctt | 5
ot | 6
tt | 7
ot | 8
tt | 9
..... t | 10
..... tt | 11
..... tt | 12
Fommm e - R R R Fomme e - Fommm e - - R 0

- 35000 - 30000 - 25000 -20000 -15000 -10000 -5000
uSec before end tine

Locks and active priority for current task (above), y-axis is priority

57

Appendix D. M1750 Simulator Options

Note: blank rows omitted

"b" No locks, therefore base priority
"1'" One lock, active priority inherited

111111 | 127

bbbbbbbbb | 10

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbb| 0
Fommeaas N ocmmaeas ocaaa Fommaaas N oemmaaas 0

-35000 - 30000 - 25000 -20000 -15000 -10000 -5000
uSec before end tine

D.3.3. The RAM Tags Report

For each 16-bit word of simulated memory the simulator keeps a
tag word that has flags to indicate if the word has been written to,
read from, executed and so on. At the end of smulation the
simulator can print areport on the tag words. The following
example showsthe report for the real -time demonstration program
(in directory denp) on the M1750 Ada CD-ROM.

58

The RAM Tags Report

Example D.4. A RAM Tags Report

S stack pointer in this block, and block witten to
s' stack pointer in this block
"X executed code in the block
"x' executable code in the block
R read-only data block, has been read
r' read-only data bl ock
"W block witten to
"." block unused

This is address state 0

Byte | Each line represents 4096 bytes

Address | Each character represents a 64 byte bl ock

________ o e m e mm e e —— ..
00000000 XR. . XXXx XXXXXX XX XXXXXRXIXHKXKK X XXX XIKKXKK XXKX X XXX XXX
00001000 XXXXXXXXKXXIXK XXX XKXKX X XX XX XX XKXKXX XXX XX XXKOOOKKXXXX
00002000 XXX XXXXXXX XXX XXX XXX XOXXKXKKKX XXX XX XXX XX XXXX XXX XX
00003000 XXXXXXXXXXXXX XXX XXX XX X XHXXKXKXX XK XX XXX X XXX X XHXXXXX
00004000 XXX XXX X XXXXXXK X XXX XK XXXX XXXRRRRRRRRRRRRR RRRRRRRRRrrrrrrR
00005000 rRrrrrrr RIIIr R . o e

00010000 \ARAANAANAANANY VWARAAAANAAANANY WA
00011000 ..SSSW......... ..., o SSWL L
00012000 SSWV . ..o SSSW. ...
00013000 SSW. ... SSW...
00014000 SSW.. o SSW. .
00015000 SSSW. . SSSW..............
00016000 SSW.. .. SSW............
00017000 SSWL L LSSWVL L
00018000 L SSSWL L SSW.......
00019000, SSW. ... SSSS.... L.

0001000ot e SS
0001F 000 ..ot e e SS

59

Appendix D. M1750 Simulator Options

The main stack, interrupt stack and task stacks are clearly visible
and we can see how little they are used.

D.4. How to Customize the Smulator

The simulator's support for the X10 programmed input and output
instructionsis linked as a sharable library that can be replaced by
a compatible user-written library. A template file is provided on
the CD-ROM and this can be customized to allow the simulator to
interact with other parts of your system, including software
simulations of special spacecraft peripheral devices.

You will find the templateint enpl at es/ | i bxi 0. c. The CD-ROM
filetenpl at es/ Makefi | e will compile the library using the GNU
toolset. If you have some other toolset, or are using GCC with a
native linker, consult your manual pages for the appropriate
commands and options.

To use the custom library in place of the default one, you must
make sure that the directory where you place the custom library is
on the library path, and is ahead of the directory that contains the
default library. Thisis easily done by the following statement,
which you can placein your login command file.

export LD_LI BRARY PATH=ny-directory: $LD_LI BRARY PATH

You can check that the correct library is used in two ways:

 Enter the command Idd and check the paths.

$ Idd /opt/ml750-ada- 1. 7/ bi n/ mL750- cof f - run
libncurses.so.5 => /lib/libncurses.so.5 (0x40026000)
[ibmso.6 => /lib/libmso.6 (0x4006a000)
[ibxio.so => libxio.so (0x40088000)
libc.so.6 => /lib/libc.so.6 (0x4008b000)
[1ib/ld-Tinux.so.2 => /lib/ld-1inux.so.2 (0x40000000)

* Ask the run command for version information. The library will
print one line with its version.

60

How to Customize the Simulator

$ m750-coff-run -V

XGC ml750-ada Version 1.7 (sinulator)
Copyright (c) 1996, 2001, XGC Software.
XGC libxio Version 1.0 (libxio)
Copyright (c) 1996, 2001, XGC Software.
Using BFD version 2.8.3

Copyright (c) 1999 Free Software Foundati on.

61

62

Appendix E The package
Ada.lnterrupts.Names

The predefined package Ada. | nt errupt s. Nanes contains
declarations for the M1750 as follows:

PWRDVN
MACHERR
SPARE1
FLVFLOW
FXVFLOW
BEX
FLUFLOW
TI MERA
SPARE2
TI MERB
SPARE3
SPARE4
LEVEL1
SPARES

package Ada.Interrupts.Names is

Hardware interrupts, see ML-STD 1750A for details

is handled in art0

is handled in art0

is available to applications
maps to Constraint_Error

is always ignored

is handled in art0

is always ignored

is shared by applications and art0
is available to applications

is handled in the tasking system
is available to applications

is available to applications

is available to applications

is available to applications

63

Appendix E.The package Ada.Interrupts.Names

-- LEVEL2 is available to applications
-- SPARE6 is available to applications
PWRDVN : constant Interrupt_ID := 0;
MACHERR : constant Interrupt_ID:=1;
SPAREL : constant Interrupt_ID:= 2;
FLVFLOWN . constant Interrupt_ID:= 3;
FXVFLOW . constant Interrupt_ID := 4
BEX : constant Interrupt_ID :=5;
FLUFLOW : constant Interrupt_ID := 6;
TI MERA . constant Interrupt_ID:= 7,
SPARE2 : constant Interrupt_ID:= 8;
TI MERB : constant Interrupt_ID:=9;
SPARE3 : constant Interrupt_ID := 10;
SPARE4 : constant Interrupt_ID := 11,
LEVEL1 : constant Interrupt_ID := 12;
SPARES : constant Interrupt_ID := 13;
LEVEL2 : constant Interrupt_ID := 14,
SPAREG : constant Interrupt_ID := 15;
-- Events. Al reserved for the run-tine system
System Cal | : constant Interrupt_ID := 16;
Br eakpoi nt : constant Interrupt_ID:= 17,
Suspend : constant Interrupt_ID := 18;
Program Exi t : constant Interrupt_ID := 19;
Ada_Exception : constant Interrupt_ID := 20;
| O _Event : constant Interrupt_ID := 21,
Timer _I nterrupt : constant Interrupt_ID := 22;
Int_23 : constant Interrupt_ID := 23;
-- Faults. Available for application health managenent
Deadl i ne_Error : constant Interrupt_ID := 24;
Application_Error : constant Interrupt_ID := 25;
Nureric_Error : constant Interrupt_ID := 26;
[l egal Request : constant Interrupt_ID:= 27,
Stack_Overfl ow : constant Interrupt_ID:= 28;
Menory_Viol ation : constant Interrupt_ID := 29;
Har dwar e_Faul t : constant Interrupt_ID := 30;
Power Fai | : constant Interrupt_ID:= 31;
end Ada.Interrupts. Names;

Appendix F The Host-Target Link

The host-target link allows the debugger to communicate with the
debug monitor running on the target computer. The link uses an
RS-232C interface connected to a serial port on the host computer,
and connected to a compatible serial port on the target computer.

The connecting cable must include anull modem. Thisis because
both the host serial port and target serial port are configured to be
connected to aterminal. The null modemis simply a cross over
that wires the outputs from one port to the inputs of the other.
Details of the wiring are given in Section F.1, “RS-232
Information” [65].

F.1. RS232 Information

The RS-232 standard is givenin Table F.1, “The RS-232
Standard” [66].

65

Appendix F. The Host-Target Link

TableF.1. The RS-232 Standard

DB-25 DCE DB-9
AA |x Protective Ground

2 TXD 3 BA |l Transmitted Data

3 RXD 2 BB |O |Received Data

4 RTS 7 CA |l Request To Send

5 CTS 8 CB |O |Clear To Send

6 DSR 6 CC |O |Data Set Ready

7 GND 5 AB |x Signal Ground

8 CD 1 CF |O |ReceivedLine Signa
Detector

9 - X Reserved for data set testing

10 - X Reserved for data set testing

11 X Unassigned

12 SCF O |Secndry Revd Line Signl
Detctr

13 SCB O |Secondary Clear to Send

14 SBA I Secondary Transmitted Data

15 DB O |Transmisn Signl Elemnt
Timng

16 SBB O |Secondary Received Data

17 DD O |Receiver Signa Element
Timing

18 X Unassigned

19 SCA I Secondary Request to Send

20 DTR 4 CD |l Data Terminal Ready

21 CG O |Signa Quality Detector

22 9 CE |O |Ring Indicator

23 CH/CI I/O |DataSignal Rate Selector

24 DA I Transmit Signal Element
Timing

66

RS-232 Information

DB-25 DCE DB-9

25 X Unassigned

The wiring of anull modem cableisgiven in Table F.2, “Null
Modem Wiring and Pin Connection” [67].

Table F.2. Null Modem Wiring and Pin Connection

25 9Pin 9Pin 25

Pin Pin
FG (Frame Ground) 1 N/A <o > NA 1 FG
TD (Transmit Data) 2 3 D S > 2 3 RD
RD (Receive Data) 3 2 <-mmmmemee- > 3 2 TD
RTS (Request To Send) 4 7 Commmmmenn > 8 5 CTS
CTS(Clear ToSend) 5 8 R > 7 4 RTS
SG (Signal Ground) 7 5 <-mmmmemee- > 5 7 SG
DSR (Data Set Ready) 6 6 S > 4 20 DTR
DTR (Data Termina 20 4 D S > 6 6 DSR

Ready)

67

68

Appendix G Questions and Answer's

Hereisalist of questions and answers.

Q: How do | change the installation directory?c.c....... 69
Q: How do | un-install M1750 Ada?cccccvvvvvveviiiiinenenenn, 69
Q: Can | do mixed language programming?cccccevveeeeennn. 70
Q: What islinked into my program over and above my Ada

UNITS? ot e e e 70
Q: Can | build a program with separate code and data

AMEAS? e 70
Q: Which text editor should | USE?ccoevvvvviviiiiiiiiiiiieeeee, 70
Q: Which UNIX shell should 1 USE?ovviieeiieiiiiiiieeee, 71
Q: Are programs restart-abl€?cccee e, 71

Q: How do | changethe ingtallation directory?

A: On Solarisand Linux you can install the filesin adirectory
of your choice then create a symbolic link from
/ opt/ mL750- ada- 1. 7/ to that directory.

Q: Howdo I un-install M1750 Ada?

69

Appendix G. Questions and Answers

A: On GNU/Linux, smply delete the directory
[opt / ml750- ada- 1. 7/ and its contents.

On Solaris, you should use the pkgrm command. For
example, M1750 Ada Version 1.7 may be removed as
follows:

pkgrm XGCmlad17

Can | do mixed language programming?

A: Yes. You can write a program using both C and Ada 95
programming languages. In particular you can call the C
libraries from code written in Ada.

Q: Whatislinked into my program over and above my Ada
units?

A: When you build a program, the linker will include any
run-time system modules that are necessary. The start file
art 0. o is always necessary. Other files such as object code
for predefined Adalibrary unitswill beincluded only if they
are referenced.

Can | build a program with separate code and data areas?

A: Yes. Each object code module contains separate sectionsfor
instructions, read-only data, variable data and zeroized data.
During thelinking step, sections are coll ected together under
the direction of thelinker script file. The default isto collect
each kind of section separately and to generate an executable
file with separate code and data.

Which text editor should | use?

A: M1750 Adarequires no specia editing features and will
work with your favorite text editor. If you use the emacs
editor, then you will be able to run the compiler from the
editor, and then relate any error messagesto the sourcefiles.
If you have no favorite editor, then we recommend the
universal UNIX editor vi.

70

Which UNIX shell should | use?

We recommend the GNU Bash shell. It offersa much better
user interface than other shells, and is kept up to date.

Are programs restart-able?

Yes. Thefileart 0. S contains code to initialize al variables
inthe . dat a section from a copy in read-only memory.

71

72

| ndex

Symbols
-A1750a and related options, 45
-l option
M1750, 43, 45
-m1750a and related options, 43

A

architecture options
M1750, 43, 45

B
branch improvement
M 1750, 49

C

comments
M1750, 50

D

dbam directive, 47

directives
M1750, 47

double directive
M1750, 47

E

EFLR, 48

expanded memory
M1750, 48

F
fixed point numbers (double), 47
fixed point numbers (single), 47
float directive

M 1750, 46
floating point

M 1750, 46

I
immediate character

73

Index

M1750, 50
instruction set
M1750, 48

L

line comment character
M 1750, 50

LLIM, 48

LSJS, 48

LURS, 48

M
M1750

directives, 47

opcodes, 48
M 1750 architecture options, 43, 45
M 1750 branch improvement, 49
M1750 expanded memory, 48
M1750 floating point, 46
M 1750 immediate character, 50
M 1750 line comment character, 50
M1750 opcodes, 48
M1750 options, 43, 45
M 1750 pseudo-opcodes, 48, 49
MIL-STD-1750 support, 45

O

opcodes

M1750, 48
options

M1750, 43, 45

P
pseudo-opcodes
M1750, 48, 49

R

rdata directive, 47
rodata directive, 47

S

sbam directive, 47

skip directive, 47

specia characters
M 1750, 50

string literals, 47

X

X10 commands, 49

74

