
Getting Started with
M1750 Ada

Ada 95 Compilation System for Spacecraft
Microprocessors

www.xgc.com

Getting Started with
M1750 Ada
Ada 95 Compilation System for Spacecraft
Microprocessors

Order Number: M1750-ADA-GS-040730

XGC Technology

London
UK
Web: <www.xgc.com>

Getting Started with M1750 Ada: Ada 95 Compilation System for Spacecraft
Microprocessors

Publication date July 30, 2004
© 1998, 1999, 2000, 2001, 2002, 2003, 2004 XGC Technology

Acknowledgments

M1750 Ada is based on GCC-1750, which was developed under contract with the European Space Agency, contract number 11935/NL/JG and
on the front end of the GNAT Ada compiler developed at New York University. GCC-1750 includes software from the GNU C compiler,
debugger and binary utilities developed by and on behalf of the Free Software Foundation, Inc., Cambridge, Massachusetts.

Development of the mission-critical capability was funded by TRW Aerospace and the UK Ministry of Defence.

Contents

About this Guide xi
1 Audience xi
2 Related Documents xi
3 Reader's Comments xii
4 Documentation Conventions xii

Basic Techniques 1Chapter 1

1.1 Hello World 1
1.1.1 How to Prepare an Ada Program 2
1.1.2 How to Compile 2
1.1.3 How to Run a Program on the
Simulator 4

1.2 How to Recompile a Program 4
1.3 The Generated Code 5
1.4 What's in My Program? 8
1.5 Restrictions 9

iii

Advanced Techniques 11Chapter 2

2.1 How to Customize the Start File 12
2.2 Using a Custom Linker Script File 13
2.3 How to Get a Map File 13
2.4 Generating PROM Programming Files 14
2.5 Using the Debugger 15
2.6 Using Optimizations 18
2.7 Working with the Target 19

2.7.1 How to Down-load the Debug Monitor 20
2.7.2 Preparing a Program to Run under the
Monitor 21

2.8 Checking for Stack Overflow 22
2.9 Expanded Memory 23
2.10 System Calls 24

2.10.1 How to Use Text_IO Without System
Calls 25

Real-Time Programs 27Chapter 3

3.1 The Ravenscar Profile 28
3.1.1 The Main Task 29
3.1.2 Periodic Tasks 30
3.1.3 Form of a Periodic Task 31
3.1.4 Aperiodic Tasks 32

3.2 Additional Predefined Packages 35
3.3 Interrupts without Tasks 36

Expanded Memory 39Appendix A

A.1 Expanded Memory Solutions 39
A.1.1 The Single-Program Solution 40
A.1.2 The Multi-Program Solution 40

M1750 Compiler Options 43Appendix B

M1750 Assembler Options and Directives 45Appendix C

C.1 MIL-STD-1750 Options 45
C.2 Floating Point 46

iv

Getting Started with M1750 Ada

C.3 M1750 Machine Directives 47
C.4 Opcodes 48

C.4.1 Extended Floating Load Register
(ELFR) 48
C.4.2 Expanded Memory Support 48
C.4.3 Branch Improvement 49
C.4.4 XIO Commands 49
C.4.5 Special Characters 50

M1750 Simulator Options 51Appendix D

D.1 The Command Line 51
D.2 Command Line Switches 53
D.3 Examples of Simulator Use 54

D.3.1 Tracing Simulation 54
D.3.2 Tasking Reports 56
D.3.3 The RAM Tags Report 58

D.4 How to Customize the Simulator 60

The package Ada.Interrupts.Names 63Appendix E

The Host-Target Link 65Appendix F

F.1 RS-232 Information 65

Questions and Answers 69Appendix G

Index 73

v

Getting Started with M1750 Ada

vi

Tables
C.1 M1750 Pseudo Operations for Branches 49
F.1 The RS-232 Standard 66
F.2 Null Modem Wiring and Pin Connection 67

vii

viii

Examples
1.1 The Source File 2
1.2 The Compile Command 2
1.3 Binding and Linking 3
1.4 Using gnatmake to Compile 3
1.5 Using gnatmake to Recompile 4
1.6 Generating a Machine Code Listing 6
1.7 Output from Object Code Dump Program 7
1.8 Using the Size Program 7
1.9 Object Code Section Headers 8
2.1 Creating a Custom Start File 12
2.2 Making a Custom Linker Script File 13
2.3 Using the Custom Linker Script File 13
2.4 The Map File 14
2.5 Running under the Debugger 17
2.6 Dump of Debug Information 18
2.7 Remote Configuration File 20
2.8 Remote Debugging 22
2.9 Stack Overflow Check 23
2.10 Code to Support Write 26
3.1 Main Subprogram with Idle Loop 29
3.2 Idle Loop with Power-Down 30
3.3 A Periodic Task 32
3.4 An Interrupt-Driven Task 34
3.5 Example Interrupt Level Protected Object 37
C.1 XIO Command in Ada 50
D.1 Simulator Help 52
D.2 Tracing Simulation 55
D.3 Tracing Tasking 57
D.4 A RAM Tags Report 59

ix

x

About this Guide

1. Audience

This guide is written for the experienced programmer who is
already familiar with the Ada 95 programming language and with
embedded systems programming in general. We assume some
knowledge of the target computer architecture.

2. Related Documents

The XGC Ada User's Guide describes the commands, options and
scripts required to use the tool-set.

The XGC Ada Reference Manual Supplement documents the
implementation-defined aspects of the Ada 95 programming
language supported by the compiler.

The library functions, which are common to all XGC compilers,
are documented in The XGC Libraries.

xi

The M1750 Ada Technical Summary, which contains technical
and commercial information about the compiler.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other XGC user manuals.

You can send your comments in the following ways:

• Internet electronic mail: readers_comments@xgc.com

Please include the following information along with your
comments:

• The full title of the manual and the order number. (The order
number is printed on the title page of this manual.)

• The section numbers and page numbers of the information on
which you are commenting.

• The version of the software that you are using.

Technical support enquiries should be directed to the XGC Web
Site [http://www.xgc.com/] or by email to support@xgc.com.

4. Documentation Conventions

This guide uses the following typographic conventions:

%, $
A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

#

A number sign represents the superuser prompt.

$ vi hello.c

Boldface type in interactive examples indicates typed user
input.

xii

About this Guide

http://www.xgc.com/
http://www.xgc.com/
http://www.xgc.com/
support@xgc.com

file

Italic or slanted type indicates variable values, place-holders,
and function argument names.

[|], { | }
In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

...
In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated.

cat(1)
A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mb/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

xiii

Documentation Conventions

xiv

Basic TechniquesChapter 1

To start with we'll write a small program and run it on the
instruction set simulator. This will give you a general idea of how
things work. Later we will describe how to run a program on the
real target computer.

1.1. Hello World

The subject of this chapter is a small program called “hello”. Using
library functions and simulated input-output to do the printing, it
simply prints the message “Hello World” on the terminal. You will
find the source code in the directory /examples on the M1750 Ada
CD-ROM.

Three steps are needed to create an executable file from Ada source
files:

1. The source file(s) must first be compiled.

2. The file(s) then must be bound using the M1750 Ada binder.

1

3. All appropriate object files must be linked to produce an
executable file.

1.1.1. How to Prepare an Ada Program

Any editor may be used to prepare an Ada program. If emacs is
used, the optional Ada mode may be helpful in laying out the
program. The program text is a normal text file. We will suppose
in our initial example that you have used your editor to prepare the
following text file:

Example 1.1. The Source File

with Text_IO;
procedure Hello is
begin
 Text_IO.Put_Line ("Hello World");
end Hello;

The Ada compiler requires that each file contains a single
compilation unit whose file name corresponds to the unit name
with periods replaced by hyphens and whose extension is .ads for
a spec and .adb for a body. This example file should be named
hello.adb.

1.1.2. How to Compile

You can compile the file using the following command:

Example 1.2. The Compile Command

$ m1750-coff-gcc -c hello.adb

The command m1750-coff-gcc is used to run the compiler. This
command will accept programs in several languages including Ada
95, C, assembly language and object code. It determines you have
given it an Ada program by the filename extension (.ads or .adb),
and will call the Ada compiler to compile the specified file.

2

Chapter 1. Basic Techniques

The -c switch is always required. It tells gcc to stop after
compilation. (For C programs, gcc can also do linking, but this
capability is not used directly for Ada programs, so the -c switch
must always be present.)

This compile command generates the file hello.o which is the
object file corresponding to the source file hello.adb. It also
generates a file hello.ali, which contains additional information
used to check that an Ada program is consistent. To get an
executable file, we then use gnatbind to bind the program and
gnatlink to link the program.

Example 1.3. Binding and Linking

$ m1750-coff-gnatbind hello.ali
$ m1750-coff-gnatlink hello.ali

The result is an executable file called hello.

You may use the option -v to get more information about which
version of the tool was used and which files were read.

A simpler method of carrying out these steps is to use the gnatmake
command. gnatmake is a master program that invokes all of the
required compilation, binding and linking tools in the correct order.
In particular, it automatically recompiles any modified sources, or
sources that depend on modified sources, so that a consistent
compilation is ensured.

The following example shows how to use gnatmake to build the
program hello.

Example 1.4. Using gnatmake to Compile

$ m1750-coff-gnatmake hello
m1750-coff-gcc -c hello.adb
m1750-coff-gnatbind -x hello.ali
m1750-coff-gnatlink hello.ali

Again, the result is an executable file called hello.

3

How to Compile

1.1.3. How to Run a Program on the Simulator

The program that we just built can be run on the simulator using
the following command. If all has gone well, you will see the
message "Hello World".

$ m1750-coff-run hello
Hello World

1.2. How to Recompile a Program

As you work on a program, you keep track of which units you
modify and make sure you not only recompile these units, but also
any units that depend on units you have modified.

The binder, gnatbind, will warn you if you forget one of these
compilation steps, so it is never possible to generate an inconsistent
program as a result of forgetting to do a compilation, but it can be
annoying to keep track of the dependencies. One approach would
be to use a the UNIX make program, but the trouble with make
files is that the dependencies may change as you change the
program, and you must make sure that the make file is kept up to
date manually, an error-prone process.

The Ada make tool, gnatmake takes care of these details
automatically. In the following example we recompile and rebuild
the example program, which has been updated.

Example 1.5. Using gnatmake to Recompile

$ m1750-coff-gnatmake hello.adb
$ m1750-coff-gnatmake -v hello
GNATMAKE 1.7 Copyright 1995-2001 Free Software Foundation, Inc.
 "hello.ali" being checked ...
 -> "hello.adb" time stamp mismatch
m1750-coff-gcc -c hello.adb
End of compilation
m1750-coff-gnatbind -x hello.ali
m1750-coff-gnatlink hello.ali

4

Chapter 1. Basic Techniques

The argument is the file containing the main program or
alternatively the name of the main unit. gnatmake examines the
environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files,
generating the executable file, hello. In a large program, it can be
extremely helpful to use gnatmake, because working out by hand
what needs to be recompiled can be difficult.

Note that gnatmake takes into account all the intricate rules in
Ada 95 for determining dependencies. These include paying
attention to inlining dependencies and generic instantiation
dependencies. Unlike some other Ada make tools, gnatmake does
not rely on the dependencies that were found by the compiler on
a previous compilation, which may possibly be wrong due to source
changes. It works out the exact set of dependencies from scratch
each time it is run.

The linker is configured so that there are defaults for the start file
and the library libgcc, libc and libada. Other libraries, such as
the standard C math library libm.a, are not included by default,
and must be mentioned on the linker's command line.

1.3. The Generated Code

If you want to see the generated code, then use the compiler option
-Wa,-a. The first part (-Wa,) means pass the second part (-a) to the
assembler. To get a listing that includes interleaved source code,
use the options -g and -Wa,-ahld. See The XGC Ada Users Guide,
for more information on assembler options.

Here is an example where we generate a machine code listing.

5

The Generated Code

Example 1.6. Generating a Machine Code Listing

$ m1750-coff-gcc -c -O2 -Wa,-a hello.adb
 1 .file "hello.adb"
 2 gcc2_compiled.:
 3 __gnu_compiled_ada:
 4 .section .rdata,"r"
 5 .LC0:
 6 0000 0048 .word 72
 7 0002 0065 .word 101
 8 0004 006C .word 108
 9 0006 006C .word 108
 10 0008 006F .word 111
 11 000a 0020 .word 32
 12 000c 0057 .word 87
 13 000e 006F .word 111
 14 0010 0072 .word 114
 15 0012 006C .word 108
 16 0014 0064 .word 100
 17 .LC1:
 18 0016 0001 .word 1
 19 0018 000B .word 11
 20 .text
 21 .global _ada_hello
 22 _ada_hello:
 23 0000 9FEE pshm r14,r14
 24 0002 81EF lr r14,r15
 25 0004 81BF lr r11,r15
 26 0006 4AB9 8000 xorm r11,0x8000
 27 000a F0B0 0000 c r11,_stack_limit
 28 000e 7B02 bge .+4
 29 0010 7708 bex 8
 30 0012 8500 0000 lim r0,.LC0
 31 0016 8510 000B lim r1,.LC1
 32 001a 7EF0 0000 sjs r15,ada__text_io__put_line__2
 33 001e 81FE lr r15,r14
 34 0020 8FEE popm r14,r14
 35 0022 7FF0 urs r15
...

You could also use the object code dump utility
m1750-coff-objdump to disassemble the generated code. If you
compiled using the debug option -g then the disassembled
instructions will be annotated with symbolic references.

6

Chapter 1. Basic Techniques

Here is an example using the object code dump utility.

Example 1.7. Output from Object Code Dump Program

$ m1750-coff-objdump -d hello.o

hello.o: file format coff-m1750

Disassembly of section .text:

00000000 <_ada_hello>:
 0: 9f ee pshm r14,r14
 2: 81 ef lr r14,r15
 4: 81 bf lr r11,r15
 6: 4a b9 80 00 xorm r11,32768
 a: f0 b0 00 00 c r11,0 <_ada_hello>
 e: 7b 02 bge 2
 10: 77 08 bex 8
 12: 85 00 00 00 lim r0,0
 16: 85 10 00 0b lim r1,11
 1a: 7e f0 00 00 sjs r15,0 <_ada_hello>
 1e: 81 fe lr r15,r14
 20: 8f ee popm r14,r14
 22: 7f f0 urs r15

You can see how big your program is using the size command.
Note that the sizes are in 8-bit bytes and not 16-bit words.

Example 1.8. Using the Size Program

$ m1750-coff-size hello.o
 text data bss dec hex filename
 62 0 0 62 3e hello.o
$ m1750-coff-size hello
 text data bss dec hex filename
 9134 744 870 10748 29fc hello

To get more detail you can use the object code dump program, and
ask for headers. Once again the sizes are in bytes. The addresses
are byte addresses.

7

The Generated Code

Example 1.9. Object Code Section Headers

$ m1750-coff-objdump -h hello
hello: file format coff-m1750

Sections:
Idx Name Size VMA LMA File off Algn
 0 .init 00000036 00000000 00000000 00001000 2**1
 CONTENTS, ALLOC, LOAD, CODE
 1 .ivec 00000040 00000040 00000040 00001040 2**1
 CONTENTS, ALLOC, LOAD, READONLY
 2 .text 000021c2 00000100 00000100 00001100 2**1
 CONTENTS, ALLOC, LOAD, CODE
 3 .rdata 00000176 000022c2 000022c2 000032c2 2**1
 CONTENTS, ALLOC, LOAD, READONLY
 4 .data 000002e8 00010000 00002438 00004000 2**1
 CONTENTS, ALLOC, LOAD, DATA
 5 .bss 00000366 000102f0 000102f0 00000000 2**1
 ALLOC
 6 .stab 00004e60 00000000 00000000 000042e8 2**1
 CONTENTS, DEBUGGING, NEVER_LOAD
 7 .stabstr 00005f3c 00000000 00000000 00009148 2**0
 CONTENTS, DEBUGGING, NEVER_LOAD

1.4. What's in My Program?

You have written five lines of Ada, yet the size command says
your program is over 10K bytes. What happened?

Answer: Although we aim to minimize the size of the executable
image of your program, there are object code modules that are
needed to support the code you've written. Your program has been
linked with code from the M1750 Ada libraries. In addition to the
application code, the executable program contains the following:

• Program startup code (art0)

• Program elaboration code (adainit)

• Any Ada library packages mentioned in application code with
lists (libada)

8

Chapter 1. Basic Techniques

• Any System packages referenced by the compiler

• Object code from the library libgcc.a, as required

• Object code from other libraries given on the linker command
line.

The following command will give you a list of the object files that
have been linked into your program.

$ m1750-coff-gnatmake hello.adb -largs -t
m1750-coff-gcc -c hello.adb
m1750-coff-gnatbind -x hello.ali
m1750-coff-gnatlink -t hello.ali
/opt/m1750-ada-1.7/m1750-coff/bin/ld: mode coff_m1750
/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/art0.o
b~hello.o
./hello.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)a-except.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)a-textio.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)a-ioexce.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)x-malloc.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)s-stcosc.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)open.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)close.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)unlink.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)lseek.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)read.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)write.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)sbrk.o

In this example, the Text_IO file a-text_io.o is 8K bytes in size
and accounts for most of the program's 10K bytes.

1.5. Restrictions

Before you go much further, you should be aware of the built-in
restrictions. M1750 Ada does not support the full Ada 95 language:
it supports a restricted language that conforms to a formal Profile
designed for high integrity applications.

9

Restrictions

The built-in restrictions prohibit the use of non-deterministic Ada
features that would otherwise invalidate static program analysis.
For a complete list of the profiles and restrictions, see The XGC
Ada Reference Manual Supplement.

10

Chapter 1. Basic Techniques

Advanced TechniquesChapter 2

Once you have mastered writing and running a small program,
you'll want to check out some of the more advanced techniques
required to write and run real application programs. In this chapter,
we cover the following topics:

• Customizing the start file and linker script file

• Generating PROM programming files

• Using the debugger

• Using optimizations

• Working on the target

• Checking for stack overflow

• Expanded memory

11

2.1. How to Customize the Start File

On a real project you will almost certainly need to customize the
start file and the linker script file. These contain details of the target
hardware configuration and project options such as running in user
mode or supervisor mode.

The start file art0.S contains instructions to initialize the arithmetic
unit, floating point unit and system registers. The default start file
may be suitable for your requirements. You can see the source code
in file /opt/m1750-ada-1.7/m1750-coff/src/libc/art0.S. If this
is not suitable, make a copy in a working source directory, then
edit it as necessary.

Example 2.1. Creating a Custom Start File

$ mkdir src
$ cd src
$ cp /opt/m1750-ada-1.7/m1750-coff/src/libc/art0.S myart0.S
$ vi myart0.S

When you compile, you should cite the new start file on the
command line, as in the following example. We also ask the linker
to list all the files that were included in the link.

$ $ m1750-coff-gnatmake -f hello -largs -t -nostartfiles myart0.S
m1750-coff-gcc -c hello.adb
m1750-coff-gnatbind -x hello.ali
m1750-coff-gnatlink -t myart0.S -nostartfiles hello.ali
/opt/m1750-ada-1.7/m1750-coff/bin/ld: mode coff_m1750
b~hello.o
./hello.o
/tmp/ccYJNaCH1.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)a-except.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)a-textio.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)a-ioexce.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)x-malloc.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a)s-stcosc.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)open.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)close.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)unlink.o

12

Chapter 2. Advanced Techniques

(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)lseek.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)read.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)write.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a)sbrk.o

2.2. Using a Custom Linker Script File

The linker script file describes the layout of memory on the target
computer and includes instructions on how the linker is to place
object code modules in that memory. The default linker script file
is /opt/m1750-ada-1.7/m1750-coff/lib/ldscripts/coff_m1750.x.
You should copy this file to your local directory, and edit as
necessary. See the linker chapter in the XGC User Manual for a
description of the format of the file.

Example 2.2. Making a Custom Linker Script File

$ cp /opt/m1750-ada-1.7/m1750-coff/lib/ldscripts/coff_m1750.x .
$ mv coff_m1750.x myboard.ld
$ vi myboard.ld
... make any changes ...

You can then build a program using your custom linker script rather
than the default as follows:

Example 2.3. Using the Custom Linker Script File

$ m1750-coff-gnatmake -f hello -largs -T myboard.ld

You can add the line “STARTUP(myart0.o)” to your custom linker
script file. This will pick up your custom start file object code
without having to mention its name of the make command line.

2.3. How to Get a Map File

If all you need is a link map, then you can ask the linker for one.
This is a little more subtle than you may expect, because the option

13

Using a Custom Linker Script File

must be passed to the program m1750-coff-ld rather than the Ada
linker. Here is an example that generates a map called hello.map.

$ m1750-coff-gnatmake hello -largs -Wl,-Map=hello.map

Example 2.4. The Map File

$ more hello.map
...
LOAD /opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/art0.o
LOAD b~hello.o
LOAD ./hello.o
LOAD /opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libada.a
LOAD /opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libgcc.a
LOAD /opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libc.a
LOAD /opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/libgcc.a
 0x00002000 _STACK_SIZE=0x2000
 0x00001000 _ISTACK_SIZE=0x1000
 0x00010000 _PROM_SIZE=0x10000
 0x00010000 _RAM_SIZE=0x10000
 0x00010000 _RAM_START=0x10000
 0x00000000 _PROM_START=0x0
 0x00020000 _RAM_END=(_RAM_START+_RAM_SIZE)
 0x0001fffe _eistack=(_RAM_END-0x2)
 0x0001f000 _sistack=(_RAM_END-_ISTACK_SIZE)
 0x0001effe _estack=(_sistack-0x2)
 0x0001d000 _sstack=(_sistack-_STACK_SIZE)
 0x0001cffe _eheap=(_sstack-0x2)
...lots of output...

2.4. Generating PROM Programming Files

By default, the executable file is in Common Object File Format
(COFF). Using the object code utility program
m1750-coff-objcopy, COFF files may be converted into several
other industry-standard formats, such as ELF, Intel Hex, and
Motorola S Records.

The following example shows how we convert a COFF file to Intel
Hex format.

14

Chapter 2. Advanced Techniques

$ m1750-coff-objcopy --output-target=ihex hello hello.ihex

If you don't need the COFF file, then you can get the linker to
generate the Intel Hex file directly. Note that the Intel Hex file
contains no debug information, so if you expect to use the debugger,
you should generate the COFF file too.

$ m1750-coff-gnatmake -f hello -largs -Wl,-oformat=ihex
$ more hello
:1000000085108000853005268520806AB1219313F4
:100010008530806A910300008513000185208112DC
:10002000B123931385F0F7FFE5EE8500680090009B
...lots of output...

We can run the Intel Hex file, as in the following example:

$ m1750-coff-run hello
Hello world

Or we can generate Motorola S Records, and run from there. Note
that we use the option -f to force a rebuild.

$ m1750-coff-gnatmake -f hello.adb -largs -Wl,-oformat=srec
$ more hello
S008000068656C6C6FE3
S113000085108000853005268520806AB1219313F0
S11300108530806A910300008513000185208112D8
S1130020B123931385F0F7FFE5EE85006800900097
S113003080AE70F001CC0000000000000000000061
S1130040806A8000806E80038072800680768009DA
S1130050807A800C807E800F80828021808680243C
...lots of output...
$ m1750-coff-run hello
Hello world

2.5. Using the Debugger

Before we can make full use of the debugger, we must recompile
hello.adb using the debug option. This option tells the compiler

15

Using the Debugger

to include information about the source code, and the mapping of
source code to generated code. Then the debugger can operate at
source code level rather than at machine code level.

The debug information does not alter the generated code in any
way but it does make object code files much bigger. Normally this
is not a problem, but if you wish to remove the debug information
from a file, then use the object code utility m1750-coff-strip.

This is how we recompile hello.adb with the -g option. There are
other debug options too. See the M1750 Ada User's Guide for more
information on debug options.

bash$ m1750-coff-gnatmake -f -g hello
m1750-coff-gcc -c -g hello.adb
m1750-coff-gnatbind -x hello.ali
m1750-coff-gnatlink -g hello.ali

The debugger is m1750-coff-gdb. By default the debugger will
run a M1750 program on the M1750 simulator. If you prefer to
run and debug on a real M1750 then you must arrange for your
target to communicate with the host using the debugger's remote
debug protocol. This is described in Section 2.7, “Working with
the Target” [19].

16

Chapter 2. Advanced Techniques

Example 2.5. Running under the Debugger

$ m1750-coff-gdb hello
XGC m1750-ada Version 1.7.6 (debugger)
Copyright (c) 1996, 2005, XGC Software.
Based on gdb version 5.1.1
Copyright (c) 1998 Free Software Foundation.
(gdb)break main
Breakpoint 1 at 0x408: file b~hello.adb, line 29.
(gdb)run
Starting program: /home/nettleto/xgc/m1750-ada/examples/hello
Connected to the simulator.
Loading sections:
Idx Name Size VMA LMA File off Algn
 0 .init 000003fa 00000000 00000000 00001000 2**1
 CONTENTS, ALLOC, LOAD, CODE
 1 .text 000005e6 000003fa 000003fa 000013fa 2**1
 CONTENTS, ALLOC, LOAD, CODE
 2 .rdata 0000006c 000009e0 000009e0 000019e0 2**1
 CONTENTS, ALLOC, LOAD, READONLY
 3 .data 000000d4 00010000 00000a4c 00002000 2**1
 CONTENTS, ALLOC, LOAD, DATA
Start address 0x0
Transfer rate: 22784 bits in <1 sec.

Breakpoint 1, main () at b~hello.adb:29
29 adainit;
(gdb)continue
Continuing.
Hello World

Program exited normally.
(gdb)quit

You can view the debug information using the object dump utility,
as follows:

17

Using the Debugger

Example 2.6. Dump of Debug Information

bash$ m1750-coff-objdump -G hello

hello: file format coff-m1750

Contents of .stab section:

Symnum n_type n_othr n_desc n_value n_strx String

-1 HdrSym 0 700 00001508 1
0 SO 0 0 00000438 14 /home/opt/m1750-ada-1.7/m1750-coff/src/libada/rts/
1 SO 0 0 00000438 1 x-textio.adb
2 LSYM 0 0 00000000 66 long int:t1=r1;-32768;32767;
3 LSYM 0 0 00000000 95 unsigned char:t2=r2;0;65535;
4 LSYM 0 0 00000000 124 long integer:t3=r1;0020000000000;0017777777777;
...

2.6. Using Optimizations

Optimization makes your program smaller and faster. In most cases
it also makes the generated code easier to understand. So think of
the option -O2 as the norm, and only use other levels of optimization
when you want to get something special.

The extent to which optimization makes a whole program smaller
and faster depends on many things. In the case of hello.adb there
will be little benefit since most of the code in the executable file
is in the library functions, and these are already optimized.

The following example is more representative and shows the
Whetstone benchmark program reduced to 49% of its size, and
running nearly twice as fast. You can find Whetstone in the
CD-ROM directory benchmarks/.

Here are the results when compiling with no optimization.

$ m1750-coff-gcc -c -O0 whetstone.adb
$ m1750-coff-size whetstone.o
 text data bss dec hex filename

18

Chapter 2. Advanced Techniques

 18424 0 0 18424 47f8 whetstone.o
$ m1750-coff-gnatmake -f -O0 whetstone
$ m1750-coff-run whetstone
,.,. Whetstone GTS Version 0.1
---- Floating point benchmark.
Time taken = 2215 mSec
Whetstone rating = 451 KWIPS

Here are the results when compiling with optimization level 2. This
is the default.

$ m1750-coff-gcc -c -O2 whetstone.adb
$ m1750-coff-size whetstone.o
 text data bss dec hex filename
 9540 0 0 9540 2544 whetstone.o
$ m1750-coff-gnatmake -f -O2 whetstone
$ m1750-coff-run whetstone
,.,. Whetstone GTS Version 0.1
---- Floating point benchmark.
Time taken = 1211 mSec
Whetstone rating = 825 KWIPS

At optimization level 3, the compiler will automatically in-line
calls of small functions. This may increase the size of the generated
code, and the code will run faster. However the code motion due
to inlining may make the generated code difficult to read and debug.

2.7. Working with the Target

M1750 Ada also supports debugging on the target computer. Before
you can do this, you must connect the target board to the host
computer using two serial cables that include a null modem. One
cable connects the board's serial connector A to the host, and is
used to down-load the monitor and for application program input
and output. The other cable connects to the board's serial connector
B, and is used by the debugger to load programs, and to perform
debugging operations.

19

Working with the Target

Note Note that the monitor is written for a specific target
computer and will require customization to work with
other target computers.

2.7.1. How to Down-load the Debug Monitor

Before we can use the debugger to down-load and debug programs
running on the target, we must down-load the M1750 Ada debug
monitor. This is a small program that resides in upper RAM, and
communicates with the debugger over a serial interface. You will
find the source code in the directory
/opt/m1750-ada-1.7/m1750-coff/src/monitor/.

$ ls /opt/m1750-ada-1.7/m1750-coff/src/monitor/
art1.S Makefile remcom.c xgcmon.c xgcmon.M
install.sh README t1.c xgcmon.ld

In this guide we use the program tip to work as a terminal. This
program is generally available on Solaris platforms, but is seldom
seen on Linux or Windows. If you don't have tip then there are
other programs (such as Kermit) that will do as well.

We configured tip to use the serial interface connected to the target
at 19200 bps in the file dem32. On Solaris, the configuration
statement is in the file /etc/remote. The following example shows
the configuration line used to generate the rest of this text. Note
there is no entry for the output EOF string. This is not required.

The configuration line we use is as follows:

Example 2.7. Remote Configuration File

$ cat /etc/remote
...
dem32:\
 :dv=/dev/term/b:br#19200:el=^C^S^Q^U^D:ie=%$:
...

20

Chapter 2. Advanced Techniques

The debug monitor is called xgcmon. This file is formatted in
Motorola S-Records ready for down-loading in response to the
load command.

The monitor is now running and ready to communicate over the
other serial interface. To leave tip type ~..

2.7.2. Preparing a Program to Run under the Monitor

Because the debug monitor is a complete supervisor-mode
application program it is not appropriate to down-load the programs
we built in the previous section. We must rebuild the program using
the start file art1.

The module art1 consists of the code from art0 to do with
initializing the high-level language environment. It omits the trap
vector and trap handling code. You can get the source from
/opt/m1750-ada-1.7/m1750-coff/src/monitor/art1.S.

The following code shows how to compile the Ackermann
benchmark program using a custom linker script, the module art1.

$ m1750-coff-gcc -O ackermann.c -o ackermann -T xgcmon.ld art1.o

The file xgcmon.ld may be found on the CD-ROM in the run-time
source directory.

The following example shows the Ackermann benchmark running
under the control of the debugger. You should substitute your serial
device name for ttyS0.

21

Preparing a Program to Run under the Monitor

Example 2.8. Remote Debugging

$ m1750-coff-gdb ackermann
XGC m1750-ada Version 1.7.6 (debugger)
Copyright (c) 1996, 2005, XGC Software.
Based on gdb version 5.1.1
Copyright (c) 1998 Free Software Foundation.
(gdb) set remote speed 19200
(gdb) tar rem /dev/ttyS0
Remote debugging using /dev/ttyS0
0x21f965c in ?? ()
(gdb) load
Loading section .text, size 0x1948 lma 0x2000000
Loading section .rdata, size 0x3d8 lma 0x2001948
Loading section .data, size 0x50 lma 0x2001d20
Start address 0x2000110
Transfer rate: 6698 bits/sec.
(gdb) run
Starting program: /hdb3/xgc/benchmarks/ackermann
,.,. ackermann GTS Version 0.1
---- ackermann Function call benchmark, A (3, 6).
 - ackermann time taken = 1.130e+00 Seconds.
**** ackermann PASSED ============================.
Program exited normally.
(gdb) quit

2.8. Checking for Stack Overflow

In Version 1.7, stack checks are included by default. To suppress
all checks use the compiler option -gnatp. The stack limit, which
is the lowest address in the stack, is held in global _stack_limit.
Here is an example that overflows the 8K byte main program stack:

22

Chapter 2. Advanced Techniques

Example 2.9. Stack Overflow Check

$ more biggy.adb
procedure Biggy is
 S : String (1 .. 10_000);
begin
 null;
end Biggy;
$ m1750-coff-gnatmake -g biggy
biggy.adb:2:04: warning: "S" is never assigned a value
m1750-coff-gnatbind -x biggy.ali
m1750-coff-gnatlink -g biggy.ali
$ m1750-coff-run biggy
Unhandled exception at AS=0 IC=02E2 (000005c4): Storage_Error
_ada_biggy():
.../examples/biggy.adb:2

The global variable _stack_limit is initialized in the run-time system
module art0.S. The value is computed from the stack bounds
declared in the linker script file, and stored with the most significant
bit inverted. This is to save instructions when making an unsigned
comparison between the limit and the stack pointer.

Note that _stack_limit is set correctly for the main program, for
interrupt handlers which use the interrupt stack, and for any Ada
tasks, which have their own stacks.

2.9. Expanded Memory

You may distribute the instructions of your program over several
address states up to a maximum of 1M word on the 1750A. Calls
between compilation units may then need to switch address states.
The option for calls that switch address states is -mlong-calls, and
you must give the option to the compiler, binder and linker. If you
are using gnatmake then the option -mlong-calls must be given
after -cargs and -largs.

$ m1750-coff-gnatmake -mlong-calls -f -g hello
m1750-coff-gcc -c -mlong-calls -g hello.adb

23

Expanded Memory

m1750-coff-gnatbind -x hello.ali
m1750-coff-gnatlink -mlong-calls -g hello.ali

You can confirm that the expanded memory variants of the library
files have been included using the linker's option -t, as follows:

$ m1750-coff-gnatmake -mlong-calls -f -g hello -largs -Wl,-t
m1750-coff-gcc -c -mlong-calls -g hello.adb
m1750-coff-gnatbind -x hello.ali
m1750-coff-gnatlink -mlong-calls -g -t hello.ali
/opt/m1750-ada-1.7/m1750-coff/bin/ld: mode coff_m1750_expanded
/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/art0.o
b~hello.o
./hello.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libada.a)a-except.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libada.a)a-textio.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libada.a)a-ioexce.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libada.a)x-malloc.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libada.a)s-stcosc.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libc.a)open.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libc.a)close.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libc.a)unlink.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libc.a)lseek.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libc.a)read.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libc.a)write.o
(/opt/m1750-ada-1.7/lib/gcc-lib/m1750-coff/2.8.1/mlong-calls/libc.a)sbrk.o

2.10. System Calls

A system call is the means by which application programs call an
operating system. System calls are mostly used for input-output.
The predefined Ada package Ada.Text_IO and the smaller package
XGC.Text_IO map all input and output operations onto the system
calls such as read and write. The C language input-output functions
declared in <stdio.h> use the same system calls.

With XGC Ada, we have no operating system as such, just the
run-time system module art0. However, we support the system call
mechanism using the BEX instruction and when running on the
simulator we map system calls to host system calls so that

24

Chapter 2. Advanced Techniques

application programs can access host computer files. This is
especially useful during program development.

When running on the the target, any system call will bring your
program to an abnormal termination because the required system
call handler is absent in the default configuration. The default
system call handler is located in the library libc and supports an
appropriate subset of calls. For example, read and write are directed
to UARTA and may be used in a console dialog. You may wish to
customise the default handler so that calls that would otherwise be
non-operational could do something useful. For example, the call
to get the time could be implemented to read the time from some
external clock.

This can be done quite easily and an example system call handler
is included with the source files in
/opt/m1750-ada-1.7/m1750-coff/src/libc/sys/schandler.c. The
handler is attached to the system call trap in the same fashion as
other interrupts are attached to their handlers. In the example, a C
function is provided to do the attaching.

2.10.1. How to Use Text_IO Without System Calls

Another way to support Text_IO is to replace the various system
calls with calls to application code. For example, if all you need is
the Put functionality in Text_IO, you can create your own version
of write and have it do whatever you want. When your program
is linked, the linker will use your version of write in place of the
library version.

25

How to Use Text_IO Without System Calls

Example 2.10. Code to Support Write

 protected UART is
 procedure Write (Ch : Character);
 pragma Interrupt_Handler (Write);
 end UART;

 protected body UART is
 procedure Write (Ch : Character) is
 begin
 -- Code to write one character
 end Write;
 end UART;

 -- Export pragmas required for compatibility with C

 procedure Write (
 Result : out Integer;
 Fd : in Natural;
 Buf : in System.Address;
 Count : in Natural);
 pragma Export (C, Write, "write");
 pragma Export_Valued_Procedure (Write, "write");

 procedure Write (
 Result : out Integer;
 Fd : in Natural;
 Buf : in System.Address;
 Count : in Natural)
 is
 Ada_Buf : String (1 .. Count);
 for Ada_Buf'Address use Buf;
 begin
 for I in 1 .. Count loop
 UART.Write (Ada_Buf (I));
 end loop;

 Result := Count;
 end Write;

26

Chapter 2. Advanced Techniques

Real-Time ProgramsChapter 3

M1750 Ada is highly suitable for hard real-time applications that
require accurate timing and a fast and predictable response to
interrupts from peripheral devices. This is achieved with the
following features:

• Ravenscar profile

• The package Ada.Real_Time and a high-resolution real-time clock
(a precision of one microsecond)

• Preemptive priority scheduling with ceiling locking (120
microsecond task switch1)

• Low interrupt latency (15 microseconds)

• The packages Ada.Dynamic_Priorities,
Ada.Synchronous_Task_Control and Ada.Task_Identification

1Simulated generic M1750 at 10 MHz

27

• Support for periodic tasks and task deadlines, as required by
ARINC 653

M1750 Ada also offers reduced program size by:

• Optimized code generation

• Use of trap instructions to raise exceptions

• Small run-time system size

• Optimizations that permit interrupt handling without tasking

This chapter describes how to use Ada tasks, and the associated
language features, in example real-time programs.

3.1. The Ravenscar Profile

In support of safety-critical applications, Ada 95 offers various
restrictions that can be invoked by the programmer to prevent the
use of language features that are thought to be unsafe. Restrictions
can be set individually, or can be set collectively in what is called
a profile. XGC Ada supports all the Ada 95 restrictions and supports
the implementation-defined pragma Profile. To get the compiler
to work to the Ravenscar profile, you should place the following
line at the top of each compilation unit.

pragma Profile (Ravenscar);

By default, M1750 Ada supports a limited form of tasking that is
a superset of what is supported by the Ravenscar profile. The
built-in restrictions allow for statically declared tasks to
communicate using protected types, the Ada 83 rendezvous or the
predefined package Ada.Synchronous_Task_Control.

The Ravenscar profile prohibits the rendezvous and several other
unsafe features. When using this profile, application programs are
guaranteed to be deterministic and may be analyzed using static
analysis tools.

The relevant Ada language features are as follows:

28

Chapter 3. Real-Time Programs

• The pragma Priority

• Task specs and bodies

• Protected objects

• Interrupt handlers

• The delay until statement

• The package Ada.Real_Time

3.1.1. The Main Task

The main subprogram, which contains the entry point, and which
is at the root of the compilation unit graph, runs as task number 1.
The TCB for this task is created in the run-time system, and the
stack is the main stack declared in the linker script file. Other tasks
are numbered from 2 in the order in which they are elaborated.

For other than a trivial program, the environment task should
probably be regarded as the idle task or background task. You can
make sure that it runs at the lowest priority by the use of the pragma
Priority in the declarative part of the main subprogram. Note that
the default priority for the main program and for any tasks is 63.

Example 3.1. Main Subprogram with Idle Loop

procedure T1 is
 pragma Priority (0);
begin
 loop
 null;
 end loop;
end T1;

You might want the background task to continuously run some
built-in tests, or you may wish to switch the CPU into low power
mode until the next interrupt is raised.

29

The Main Task

Here is an example main subprogram that goes into low-power
mode when there is nothing else to do. Note that the function
__xgc_set_pwdn is included in the standard library libc. Note that
lower power mode requires support from art0.S and may not be
supportable on your target computer.

Example 3.2. Idle Loop with Power-Down

with Built_In_Tests;
procedure T1 is
 pragma Priority (0);
 procedure Power_Down;
 pragma Import (C, Power_Down, "__xgc_set_pwdn");
begin
 loop
 Built_In_Tests.Run;
 Power_Down;
 end loop;
end T1;

The rest of the program comprises periodic and aperiodic tasks
that are declared in packages, that are with-ed from the main
subprogram.

Important In M1750 Ada, there is no default idle task. If all of
your application tasks become blocked, then the program
will fail with Program_Error.

3.1.2. Periodic Tasks

The package Ada.Real_Time declares types and subprograms for
use by real-time application programs. In M1750 Ada, this package
is implemented to offer maximum timing precision with minimum
overhead.

The resolution of the time-related types is one microsecond. With
a 32-bit word size, the range is approximately +/- 35 minutes. This
is far greater than the maximum delay period likely to be needed
in practice. For a 10 MHz processor, the lateness of a delay is
approximately 55 microseconds. That means that given a delay
statement that expires at time T, and given that the delayed task

30

Chapter 3. Real-Time Programs

has a higher priority than any ready task, then the delayed task will
restart at T + 55 microseconds. This lateness is independent of the
duration of the delay, and represents the time for a context switch
plus the overhead of executing the delay mechanism.

It is therefore possible to run tasks at quite high frequencies, without
an excessive overhead. On one 10 MHz 1750, you can run a task
at 1000Hz, with an overhead (in terms of CPU time) of
approximately 20 percent, leaving 80 percent for the application
program.

Note A delay statement that gives a time that is already passed
has missed its deadline, and will raise a soft deadline
fault. The default system call handler logs deadline fault
to the console. You may wish to modify this code to log
the fault in non-volatile memory.

3.1.3. Form of a Periodic Task

The general form of a periodic task is given in the following
example. You should note that tasks and protected objects must be
declared in a library package, and not in a subprogram.

In the following example, the task's three scheduling parameters
are declared as constants, giving a frequency of 100 Hz, and a
phase lag of 3 milliseconds, and a priority of 3. You will have
computed these parameters by hand, or using a commercial
scheduling tool.

31

Form of a Periodic Task

Example 3.3. A Periodic Task

package body Example is
 T0 : constant Time := Clock;
 -- Gets set at elaboration time

 Task1_Priority : constant System.Priority := 3;
 Task1_Period : constant Time_Span := To_Time_Span (0.010);
 Task1_Offset : constant Time_Span := To_Time_Span (0.003);

 task Task1 is
 pragma Priority (Task1_Priority);
 end Task1;

 task body Task1 is
 Next_Time : Time := T0 + Task1_Offset;
 begin
 loop
 -- Do something

 Next_Time := Next_Time + Task1_Period;
 delay until Next_Time;
 end loop;
 end Task1;
end Example;

The task must have an outer loop that runs for ever. The periodic
running of the task is controlled by the delay statement, which
gives the task a time slot defined by Offset, Period, and the
execution time of the rest of the body.

The value of Task1_Period should be a whole number of
microseconds, otherwise, through the accumulation of rounding
errors, you may experience a gradual change in phase that may
invalidate the scheduling analysis you did earlier.

3.1.4. Aperiodic Tasks

Like periodic tasks, aperiodic tasks have an outer loop and a single
statement to invoke the task body.

32

Chapter 3. Real-Time Programs

In the following example, we declare a task that runs in response
to an interrupt. You can use this code with a main subprogram to
build a complete application that will run on the simulator.

The code for the package and its body is given in the following
example.

33

Aperiodic Tasks

Example 3.4. An Interrupt-Driven Task

package Example is
 task Task2 is
 pragma Priority (1);
 end Task2;
end Example;

with Ada.Interrupts.Names;
with Interfaces;
with Text_IO;

package body Example is
 use Ada.Interrupts.Names;
 use Interfaces;
 use Text_IO;

 protected IO is
 procedure Handler;
 pragma Attach_Handler (Handler, SPARE2);
 entry Get (C : out Character);
 private
 Rx_Ready : Boolean := False;
 end IO;

 protected body IO is
 procedure Handler is
 Status_Word : Unsigned_16;
 begin
 Asm (Template => "xio %0,0x8501",
 Outputs => (Unsigned_16'Asm_Output ("=r", Status_Word)),
 Volatile => True);
 Rx_Ready := (Status_Word and 16#0002#) /= 0;
 end Handler;

 entry Get (C : out Character) when Rx_Ready is
 Data_Word : Unsigned_16;
 begin
 Asm (Template => "xio %0,0x8500",
 Outputs => (Unsigned_16'Asm_Output ("=r", Data_Word)),
 Volatile => True);
 C := Character'Val (Data_Word and 16#007f#);
 Rx_Ready := False;
 end Get;

34

Chapter 3. Real-Time Programs

 end IO;

 task body Task2 is
 C : Character;
 begin
 loop
 IO.Get (C);

 -- Do something with the character
 Put ("C = '"); Put (C); Put (''');
 New_Line;

 end loop;
 end Task2;

end Example;

Points to note are as follows:

• The package Ada.Interrupts.Names declares the names of the
M1750 interrupts.

• We use machine code statements to perform IO.

• The type Unsigned_16 permits bitwise operators such as 'and'
and 'or'.

• The interrupt handler runs in supervisor mode with the mask
register set appropriately for the level of interrupt.

3.2. Additional Predefined Packages

Programs that are not required to follow the Ravenscar Profile may
also use the predefined packages Ada.Asynchronous_Task_Control,
Ada.Dynamic_Priorities, Ada.Synchronous_Task_Control and
Ada.Task_Identification.

The function Current_Task allows a task to get an identifier for
itself. This identifier may then be used in calls the the subprograms
in Ada.Asynchronous_Task_Control, which allow a task to be placed

35

Additional Predefined Packages

on hold, or to continue. Tasks that are on hold consume no CPU
time but do retain their state.

The package Ada.Task_Identification allows a task to be aborted.
In M1750 Ada this places the task in a state from which it may be
restarted using the subprograms in XGC.Tasking.Stages.

The base priority of any task (including the current task) may be
requested or changed using the package Ada.Dynamic_Priorities.

3.3. Interrupts without Tasks

A protected operation that is attached to an interrupt must be a
parameterless protected procedure. This is enforced by the pragma
Attach_Handler and by the type Parameterless_Handler from
package Ada.Interrupts. For interrupt handlers that have pragma
Interrupt_Handler and are not attached to an interrupt is it
convenient to allow both parameters and protected functions. The
XGC compiler supports this as a legal extension to the Ada
language.

In the special case where all the operations on a protected type are
interrupt level operations, the XGC compiler will generate run-time
system calls that avoid the use of the tasking system. Then only if
tasks are required will the tasking system be present. This saves
about 6K bytes of memory and reduces the amount of unreachable
(and untestable) code.

36

Chapter 3. Real-Time Programs

Example 3.5. Example Interrupt Level Protected Object

with Ada.Interrupts.Names;

package body Example_Pack is
 use Ada.Interrupts.Names;

 protected UART_Handler is
 procedure Handler;
 pragma Attach_Handler (Handler, UART_A_Rx_Tx);
 -- Must be a parameterless procedure

 procedure Read (Buf : String; Last : Natural);
 pragma Interrupt_Handler (Read);
 -- Runs at interrupt level, may have parameters

 function Count return Integer;
 pragma Interrupt_Handler (Count);
 -- Runs at interrupt level, may be a function
 end UART_Handler;

 protected body UART_Handler is
 ...
 end UART_Handler;

end Example_Pack;

37

Interrupts without Tasks

38

Expanded MemoryAppendix A

The M1750 has a sixteen-bit word. In its simplest configuration,
the M1750 can address up to 216 or 64K words of memory. With
a trivial hardware extension, this can be extended to 64K words of
instructions plus 64K words of operands. This is a total of 256K
bytes. M1750 Ada supports both of these configurations by default.

Where an application requires more address space than this, the
1750A's addressing range may be extended using a Memory
Management Unit (MMU). The MMU specified by 1750A offers
a further four address bits and allows programs to be up to 1M
word in size. This kind of memory is known as “expanded
memory”.

A.1. Expanded Memory Solutions

M1750 Ada support two solutions for expanded memory:

• A single program solution using long forms the SJS and URS
instructions that switch address states

39

• A multi-program solution where up to 15 Ada programs may
time share the 1750 CPU under the control of a application code
in address state zero.

In addition, the programmer is always free to write assembly
language statements that either access memory directly, or modify
the memory management unit's registers.

A.1.1. The Single-Program Solution

For the single program solution, each application program unit is
compiled using the compiler option -mlong-calls. This changes
the instructions used for subprogram call and subprogram return
to the long forms of these instructions, and allocates two words on
the stack for the link address. The long forms are actually BEX
instructions and call the run-time system to switch address states
as necessary.

One the 1750A the maximum memory addressable using this
solution is 1M word of instructions with 64K words of data.

With this solution all calls are long calls. In practice the additional
time required to make the calls is quite small. The Ackermann
benchmark program that consists almost entirely of calls increases
in time from 1.18 seconds to 2.62 seconds when running with
expanded memory. This suggests that a long call takes roughly
twice as long as a normal call.

A.1.2. The Multi-Program Solution

Using the multi-program solution allows the full 1M word to be
addressed as instructions or operands. Up to 15 programs may be
loaded in parallel, each in its own address state and protected from
the others. Address state zero is reserved for a small kernel that
supports hard interrupts and the system call interface.

No time-sharing kernel is provided as standard. We expect that
application code in address state zero will switch among the loaded
programs (according to mission phase for example) and call

40

Appendix A. Expanded Memory

functions from those programs with a long call that switches address
state.

No special options are used when compiling for this solution as
each program executes in a 64K + 64K virtual address space. Also
each program is linked as if it were running on non-expanded
memory.

41

The Multi-Program Solution

42

M1750 Compiler OptionsAppendix B

The compiler can generate code for several different members of
the MIL-STD-1750 family and to support expanded memory. The
default is the MIL-STD-1750A without expanded memory. For
detailed information about the differences, see the draft military
standard MIL-STD-1750B, which covers both the 1750A and the
1750B, or see your 1750 vendor's literature.

-mlong-calls
Support expanded memory using the long form of SJS and
URS instructions.

-mno-long-calls
Do not support expanded memory. This is the default.

-mb1
Permit 1750B optional mathematical instructions.

-mb2
Permit 1750B optional long loads and stores.

43

-mb3
Permit 1750B optional unsigned arithmetic and load and store
byte instructions.

-mno-b1
Reject 1750B optional mathematical instructions.

-mno-b2
Reject 1750B optional long loads and stores.

-mno-b3
Reject 1750B optional unsigned arithmetic and load and store
byte instructions.

44

Appendix B. M1750 Compiler Options

M1750 Assembler
Options and Directives

Appendix C

This section describes features of the assembler that are specific
to the target computer.

C.1. MIL-STD-1750 Options

The assembler can assemble code for several different members
of the MIL-STD-1750 family. The default is to assemble code for
the MIL-STD-1750A. The following options options control which
instructions and addressing modes are permitted. For detailed
information about the differences, see the draft military standard
MIL-STD-1750B, which covers both the 1750A and the 1750B,
or see your 1750 vendor's literature.

-A1750a, -A1750A
Assemble for the 1750A with no expanded memory. This is
the default.

45

-A1750b, -A1750B
Assemble for the 1750B with all 1750B instruction options
but no expanded memory.

-Ama31750, -AMA31750
Assemble for the GEC-Plessey MA31750 in 1750B mode.

-Along-calls
Convert LSJS to long call. Convert LURS to long return.

-Ano-long-calls
Convert LSJS to SJS. Convert LURS to URS.

-Ab1
Permit 1750B optional mathematical instructions.

-Ab2
Permit 1750B optional long loads and stores.

-Ab3
Permit 1750B optional unsigned arithmetic, load, and store
byte instructions.

-Ano-b1
Reject 1750B optional mathematical instructions.

-Ano-b2
Reject 1750B optional long loads and stores.

-Ano-b3
Reject 1750B optional unsigned arithmetic, load, and store
byte instructions.

C.2. Floating Point

The floating directives are as follows:

.float

Single precision floating point constants (See MIL-STD-1750A
section 4.1.7).

46

Appendix C. M1750 Assembler Options and Directives

.double

Double precision floating point constants (See MIL-STD-1750A
section 4.1.6).

C.3. M1750 Machine Directives

The following directives are supported in addition to the common
ones listed in the assembler documentation.

.skip number

.skip is identical to the .space directive.

.rdata subsection

.rdata tells the assembler to assemble the following statements
onto the end of the read-only data subsection numbered
subsection (which is an absolute expression). If subsection

is omitted, it defaults to zero.

.rodata subsection

.rodata is identical to the .rdata directive.

.sbam flonums

.sbam expects one or more flonums, separated by commas. It
assembles Single precision binary angular measurement (See
draft MIL-STD-1750B section 4.1.11).

.dbam flonums

.dbam expects one or more flonums, separated by commas. It
assembles Double precision binary angular measurement (See
draft MIL-STD-1750B section 4.1.12).

47

M1750 Machine Directives

C.4. Opcodes

In addition to the opcodes specified in the M1750 Standard, the
assembler supports several new ones. These are called pseudo
opcodes.

C.4.1. Extended Floating Load Register (ELFR)

The 1750 does not have the important load register instruction for
extended precision floating point. The reason is we can copy a
three-word extended floating point value from one triple register
to another using a single load register and a double load register.
However, if the source triple and destination triples overlap, then
it is important to get the single and double load in the correct order
otherwise the source will be overwritten before it is completely
copied.

The opcode EFLR is translated by the assembler into either a single
load followed by a double load, or a double load followed by a
single load, depending on which registers are used, and guarantees
correct operation.

Note that the condition codes will not be correctly set by EFLR.
To set the condition codes you should do an extended compare
with zero. Of course to check whether a number is negative or not,
no matter whether it is a 16 bit, 32 bit or 48 bit, fixed or floating,
you only have to test the sign bit of the first word.

C.4.2. Expanded Memory Support

There are two macro-like instructions, LSJS and LURS, for
supporting subprogram call and return across address states.
Normally these will be translated by the assembler into SJS and
URS instructions, but if the assembler is run with the expanded
memory option -Along-calls then LSJS is expended into a sequence
of instructions that makes a call to a subprogram that may be in a
different address state and uses the BEX 0 instruction. The LURS
instruction is converted into a BEX 2 instruction.

48

Appendix C. M1750 Assembler Options and Directives

The instruction LLIM is used to load a long (24-bit) byte address
into a pair of registers. The address can then be used in the 1750B
long load and store instructions, such as LSL and LSS.

C.4.3. Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They
expand to the shortest branch instruction that can reach the target
address. Generally these mnemonics are made by substituting “j”
for “b” at the start of a standard 1750 mnemonic.

The following table summarizes the pseudo-operations for branches.

Table C.1. M1750 Pseudo Operations for Branches

32-bit instruction16-bit instructionPseudo Op

jc uc,labelbr labelj label

jc eq,labelbez labeljez label

jc ne,labelbnz labeljnz label

jc gt,labelbgt labeljgt label

jc lt,labelblt labeljlt label

jc ge,labelbge labeljge label

jc le,labelble labeljle label

C.4.4. XIO Commands

All the MIL-STD-1750A and 1750B XIO commands are supported.
They may be used in both XIO and VIO instructions.

RPSRDOWITGIBIT
RSWRFMKLMPCC
RXMPRFRLOSCI
SFMKRIC1LXMPCLC
SFRRIC2MPENCLIR
SMKRIPRODCO
SPIRLPOTADMAD
TAHRMFAOTARDMAE

49

Branch Improvement

TASRMFPOTBDSBL
TBHRMFSOTBRDSUR
TBSRMKOTGRENBL
TPIORMPPIESUR
WIPRRNSPOGO
WOPRROPRRCFRICW
WPBSROSRCSITA
WSWRPBSRCWITAR

RPIRDIITB
RPIRRDORITBR

You may write XIO instructions in Ada using the predefined
package Machine_Code, as in the following example:

Example C.1. XIO Command in Ada

with Machine_Code;
procedure Enable_Interrupts is
 use Machine_Code;
begin
 Asm ("xio r0, ENBL");
end Enable_Interrupts;

C.4.5. Special Characters

There are two special characters used to indicate the start of a
comment. These are '!' and '#'. The line-comment character is
!. If a # appears at the beginning of a line, it is treated as a comment
unless it looks like # line file, in which case it is treated normally.

50

Appendix C. M1750 Assembler Options and Directives

M1750 Simulator OptionsAppendix D

D.1. The Command Line

The simulator command line has the form:

$ m1750-coff-run switches files

You can get a summary of the options using the help option, as
shown in the following example:

51

Example D.1. Simulator Help

$ m1750-coff-run -h
age: m1750-coff-run [options] [file...]
Options:
 -a "ARGS", --args "ARGS" Pass ARGS to simulator
 -B, --branch-report Print branch coverage report
 -b, --branch-summary Print branch coverage summary
 -C, --coverage-report Print coverage report
 -c, --coverage-summary Print coverage summary
 -d T, --delay T Delay trace for T uSec
 -f MOD, --file FILE Report coverage for this source file only
 -h, --help Print this message
 -i I, --pending I Trigger trace on pending interrupt I
 -I I, --interrupt I Trigger trace on interrupt level I
 -l T, --limit T Time limit T uSec
 -m, --trace-memory Trace data memory cycles
 -M, --trace-memory-wide Trace data and instruction memory cycles
 -p, --perf Print performance summary
 -P PC, --pc PC Trigger trace on pc = PC (use 0x for hex)
 -r, --ram-tags-report Print RAM tags report with large blocks
 -R, --RAM-tags-report Print RAM tags report with small blocks
 -s, --stats Print execution statistics
 -t, --trace Trace instructions using 70 columns
 -T, --trace-wide Trace instructions using wide format
 -u U, --resolution U Set task trace resolution to U uSec
 -v, --verbose Print additional information
 -V, --version Print version number
 -w, --wide Widen a trace or report
 -y, --nosys Don't pass system calls to host
 -z, --tasking-report Print task switching report
 -Z, --tasking-report-wide Print task switching report wide format
Simulator options are:
 -freq F Set clock frequency to F MHz (default 10 MHz)
 -sof Stop on fault (default)
 -nosof Don't stop on fault, call handler
 -cpu 1750a Simulate Generic 1750A (default)
 -cpu ma31750 Simulate Dynex MA31750
 -cpu mas281 Simulate Dynex MAS281
 -cpu pace Simulate Pace 1750
 -cpu f9450 Simulate Fairchild F9450
 -cpu gvsc Simulate Honeywell GVSC
IO library options are:
 -uart1 DEV Connect serial interface 1 to DEV

52

Appendix D. M1750 Simulator Options

 -uart2 DEV Connect serial interface 2 to DEV
 -slow Run uarts at 9600 bps (default UNIX speed)
70 col trace format is:
 142.000 cpzn 0 0 1 0000 0000 0000 023456: l r1,2,r14
 | | | | | | | | | |
 | | | | | | | | | `- Disassembled insn
 | | | | | | | | `- Program counter (byte)
 | | | | | | | `- Pending Interrupt Register
 | | | | | | `- Interrupt Mask
 | | | | | `- Fault register
 | | | | `- Address state (hex)
 | | | `- Processor state (hex)
 | | `- Page bank (1750B)
 | `- Condition codes
 `- CPU time in microseconds
 (status reported before execution)

Report problems to <support@xgc.com>

D.2. Command Line Switches

The simulator includes command line switches that are common
to all versions, and switches that are specific to the target
microprocessor. The more commonly used options are described
here.

-v
Verbose Mode. In normal mode the simulator only generates
information in the case of an error. In verbose mode, useful
information is generated as the simulation proceeds.

-s
When simulation terminates, generates a report that includes
execution time, number of clock cycles, and so on.

-t
Trace mode. Use this option to get a continuous listing of
instructions as they are processed. The listing includes the
execution time so far, the program counter, the instruction
processed. If you compiled with the debug option, then the
listing will also include source file line numbers.

53

Command Line Switches

-d D
Delays the start of tracing by D microseconds. Use this option
to skip unwanted lines of trace output.

-a " -option -option ... "
Introduces further target-specific options:

D.3. Examples of Simulator Use

This section contains several example of using the target
Microprocessor simulator.

$ m1750-coff-run hello
Hello world

$ m1750-coff-run -s hello
Hello world

Statistics Report

CPU type: Generic 1750A
Clock frequency: 10.0 MHz
Memory allocated: 16384 16-bit words
Instructions executed: 2049
Clock cycles: 7968
Execution time: 796.800 uSec
Average clocks per insn 3.89
M1750 execution speed 2.57 MIPS

D.3.1. Tracing Simulation

The simulator supports several options including the trace option
(-t) and the statistics option (-s). Use the option --help for more
information.

54

Appendix D. M1750 Simulator Options

Example D.2. Tracing Simulation

The trace options allow you to get a trace of program execution.
In most cases the -w option will more information in a wider of
longer format. Tracing is triggered either immediately or according
to several trigger options. You can trigger on program counter
value, after a given number of microseconds, on an interrupt.

$ m1750-coff-run -t hello

-- Instruction trace --

Tracing starts at 0.000

microseconds cpznpbpsas ft mk pi ic insn
------------+----------+----+----+----+------:-----
 0.000 0 0 0 0000 0000 0000 000000: lim r1,32768
 0.300 n 0 0 0 0000 0000 0000 000004: lim r3,4728
 0.600 p 0 0 0 0000 0000 0000 000008: lim r2,33188
 0.900 n 0 0 0 0000 0000 0000 00000c: sr r2,r1

...lots of output...

main():
/home/nettleto/xgc/play/b~hello.adb:36
 <main>
 436.700 z 0 0 0 0000 5140 0000 000596: pshm r14,r14
 437.000 z 0 0 0 0000 5140 0000 000598: lr r14,r15
 437.200 n 0 0 0 0000 5140 0000 00059a: lr r11,r15
 437.400 n 0 0 0 0000 5140 0000 00059c: xorm r11,32768
 437.700 p 0 0 0 0000 5140 0000 0005a0: c r11,0x000103dc
 438.100 p 0 0 0 0000 5140 0000 0005a4: bge 2
/home/nettleto/xgc/play/b~hello.adb:42
 438.300 p 0 0 0 0000 5140 0000 0005a8: sjs r15,0x0000056c
adainit():
/home/nettleto/xgc/play/b~hello.adb:8
 <adainit>
 438.700 p 0 0 0 0000 5140 0000 00056c: pshm r14,r14
 439.000 p 0 0 0 0000 5140 0000 00056e: lr r14,r15
 439.200 n 0 0 0 0000 5140 0000 000570: lr r11,r15
 439.400 n 0 0 0 0000 5140 0000 000572: xorm r11,32768
 439.700 p 0 0 0 0000 5140 0000 000576: c r11,0x000103dc
 440.100 p 0 0 0 0000 5140 0000 00057a: bge 2

55

Tracing Simulation

...lots of output...

D.3.2. Tasking Reports

In the following example we can clearly see how the tasking system
switched among the 12 tasks that ran during the report's time
window. The top line is the idle task and tasks 4 to 12 wait in the
ready queue until it's their turn. The second part of the report shows
the locking level of the current task in its current protected object.

The following example shows the report for the real-time
demonstration program (in directory demo) on the M1750 Ada
CD-ROM.

56

Appendix D. M1750 Simulator Options

Example D.3. Tracing Tasking

$ m1750-coff-run -z demo -u 500
...

Tasking Report

 'p' PIL set here
 'i' Masked pending interrupt
 'I' Pending interrupt
 '*' Both of the above
 '.' Interrupt unmasked
 '0' The current task with no locks
 '1' The current task with one lock
 ' ' Power down is a blank column

Simulation ended at 1218635.800 uSec

There are no interrupt records
Tasks, y-axis is task number

 't' Current task
 '.' Task in ready queue
 ' ' Task blocked

ttttttttttttttttttttttttttttttttttttttt.......tttttttttttttttttttttttt| 1
 | 2
 ttt | 3
 ..tt | 4
 ...tt | 5
 t | 6
 tt | 7
 t | 8
 tt | 9
 t | 10
 tt | 11
 tt | 12
+---------+---------+---------+---------+---------+---------+---------0
-35000 -30000 -25000 -20000 -15000 -10000 -5000
 uSec before end time

Locks and active priority for current task (above), y-axis is priority

57

Tasking Reports

Note: blank rows omitted

 'b' No locks, therefore base priority
 '1' One lock, active priority inherited

 111111 | 127
 bbbbbbbbb | 10
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbb| 0
+---------+---------+---------+---------+---------+---------+---------0
-35000 -30000 -25000 -20000 -15000 -10000 -5000
 uSec before end time

D.3.3. The RAM Tags Report

For each 16-bit word of simulated memory the simulator keeps a
tag word that has flags to indicate if the word has been written to,
read from, executed and so on. At the end of simulation the
simulator can print a report on the tag words. The following
example shows the report for the real-time demonstration program
(in directory demo) on the M1750 Ada CD-ROM.

58

Appendix D. M1750 Simulator Options

Example D.4. A RAM Tags Report

RAM Tags Report

 'S' stack pointer in this block, and block written to
 's' stack pointer in this block
 'X' executed code in the block
 'x' executable code in the block
 'R' read-only data block, has been read
 'r' read-only data block
 'W' block written to
 '.' block unused

This is address state 0

Byte | Each line represents 4096 bytes
Address | Each character represents a 64 byte block
--------+---
00000000 XR..XXXxXXXXXxxx XXXXXXXXXXXxxXXX XXXXXXxXXXxxXXXX XXXXXXXXXXXXXXXX
00001000 XXXXXXXXXXXXXXXX XXXXXXXXXxXXXxxx xxxxxxXXXXxxxxxx xxXXXXXXXXXXXXXX
00002000 XXXXXXXXxXXXxxxx xxxxxxXXXXXXXXXX XXXxXXXXXXXXxxxx xxxxxxxXXXxxxxxx
00003000 xxxxxxXXXxxxxxxx XXXXxxxxXXXXXXXX XXXXXXXXXXXXXxXx xxxxXXXxxXXXXXXX
00004000 XXXXXxXxxxXXXXXX xXXXxXXXXXXxXXXX XXXRRRRRRRRRRRRR RRRRRRRRRrrrrrrR
00005000 rRrrrrrrRrrrrR..

00010000 WWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWW WWWWW...........
00011000 ..SSSW..........SSW.........
00012000SSWW.......SSSW......
00013000SSW.....SSW....
00014000SSW...SSW..
00015000SSSWSSS W...............
00016000S SW.............. SSW.............
00017000SSW............SSWW..........
00018000SSSW.........SSW........
00019000SSW.......SSSS.......

0001e000SS
0001f000SS

--------+---

59

The RAM Tags Report

The main stack, interrupt stack and task stacks are clearly visible
and we can see how little they are used.

D.4. How to Customize the Simulator

The simulator's support for the XIO programmed input and output
instructions is linked as a sharable library that can be replaced by
a compatible user-written library. A template file is provided on
the CD-ROM and this can be customized to allow the simulator to
interact with other parts of your system, including software
simulations of special spacecraft peripheral devices.

You will find the template in templates/libxio.c. The CD-ROM
file templates/Makefile will compile the library using the GNU
toolset. If you have some other toolset, or are using GCC with a
native linker, consult your manual pages for the appropriate
commands and options.

To use the custom library in place of the default one, you must
make sure that the directory where you place the custom library is
on the library path, and is ahead of the directory that contains the
default library. This is easily done by the following statement,
which you can place in your login command file.

export LD_LIBRARY_PATH=my-directory:$LD_LIBRARY_PATH

You can check that the correct library is used in two ways:

• Enter the command ldd and check the paths.

$ ldd /opt/m1750-ada-1.7/bin/m1750-coff-run
 libncurses.so.5 => /lib/libncurses.so.5 (0x40026000)
 libm.so.6 => /lib/libm.so.6 (0x4006a000)
 libxio.so => libxio.so (0x40088000)
 libc.so.6 => /lib/libc.so.6 (0x4008b000)
 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

• Ask the run command for version information. The library will
print one line with its version.

60

Appendix D. M1750 Simulator Options

$ m1750-coff-run -V
XGC m1750-ada Version 1.7 (simulator)
Copyright (c) 1996, 2001, XGC Software.
XGC libxio Version 1.0 (libxio)
Copyright (c) 1996, 2001, XGC Software.
Using BFD version 2.8.3
Copyright (c) 1999 Free Software Foundation.

61

How to Customize the Simulator

62

The package
Ada.Interrupts.Names

Appendix E

The predefined package Ada.Interrupts.Names contains
declarations for the M1750 as follows:

package Ada.Interrupts.Names is

 -- Hardware interrupts, see MIL-STD-1750A for details

 -- PWRDWN is handled in art0
 -- MACHERR is handled in art0
 -- SPARE1 is available to applications
 -- FLVFLOW maps to Constraint_Error
 -- FXVFLOW is always ignored
 -- BEX is handled in art0
 -- FLUFLOW is always ignored
 -- TIMERA is shared by applications and art0
 -- SPARE2 is available to applications
 -- TIMERB is handled in the tasking system
 -- SPARE3 is available to applications
 -- SPARE4 is available to applications
 -- LEVEL1 is available to applications
 -- SPARE5 is available to applications

63

 -- LEVEL2 is available to applications
 -- SPARE6 is available to applications

 PWRDWN : constant Interrupt_ID := 0;
 MACHERR : constant Interrupt_ID := 1;
 SPARE1 : constant Interrupt_ID := 2;
 FLVFLOW : constant Interrupt_ID := 3;
 FXVFLOW : constant Interrupt_ID := 4;
 BEX : constant Interrupt_ID := 5;
 FLUFLOW : constant Interrupt_ID := 6;
 TIMERA : constant Interrupt_ID := 7;
 SPARE2 : constant Interrupt_ID := 8;
 TIMERB : constant Interrupt_ID := 9;
 SPARE3 : constant Interrupt_ID := 10;
 SPARE4 : constant Interrupt_ID := 11;
 LEVEL1 : constant Interrupt_ID := 12;
 SPARE5 : constant Interrupt_ID := 13;
 LEVEL2 : constant Interrupt_ID := 14;
 SPARE6 : constant Interrupt_ID := 15;

 -- Events. All reserved for the run-time system

 System_Call : constant Interrupt_ID := 16;
 Breakpoint : constant Interrupt_ID := 17;
 Suspend : constant Interrupt_ID := 18;
 Program_Exit : constant Interrupt_ID := 19;
 Ada_Exception : constant Interrupt_ID := 20;
 IO_Event : constant Interrupt_ID := 21;
 Timer_Interrupt : constant Interrupt_ID := 22;
 Int_23 : constant Interrupt_ID := 23;

 -- Faults. Available for application health management

 Deadline_Error : constant Interrupt_ID := 24;
 Application_Error : constant Interrupt_ID := 25;
 Numeric_Error : constant Interrupt_ID := 26;
 Illegal_Request : constant Interrupt_ID := 27;
 Stack_Overflow : constant Interrupt_ID := 28;
 Memory_Violation : constant Interrupt_ID := 29;
 Hardware_Fault : constant Interrupt_ID := 30;
 Power_Fail : constant Interrupt_ID := 31;

end Ada.Interrupts.Names;

64

Appendix E. The package Ada.Interrupts.Names

The Host-Target LinkAppendix F

The host-target link allows the debugger to communicate with the
debug monitor running on the target computer. The link uses an
RS-232C interface connected to a serial port on the host computer,
and connected to a compatible serial port on the target computer.

The connecting cable must include a null modem. This is because
both the host serial port and target serial port are configured to be
connected to a terminal. The null modem is simply a cross over
that wires the outputs from one port to the inputs of the other.
Details of the wiring are given in Section F.1, “RS-232
Information” [65].

F.1. RS-232 Information

The RS-232 standard is given in Table F.1, “The RS-232
Standard” [66].

65

Table F.1. The RS-232 Standard

 DB-9DCEDB-25

Protective GroundxAA 1

Transmitted DataIBA3TXD2

Received DataOBB2RXD3

Request To SendICA7RTS4

Clear To SendOCB8CTS5

Data Set ReadyOCC6DSR6

Signal GroundxAB5GND7

Received Line Signal
Detector

OCF1CD8

Reserved for data set testingx-- 9

Reserved for data set testingx-- 10

Unassignedx 11

Secndry Rcvd Line Signl
Detctr

O SCF12

Secondary Clear to SendO SCB13

Secondary Transmitted DataI SBA14

Transmisn Signl Elemnt
Timng

O DB15

Secondary Received DataO SBB16

Receiver Signal Element
Timing

O DD17

Unassignedx 18

Secondary Request to SendI SCA19

Data Terminal ReadyICD4DTR20

Signal Quality DetectorO CG21

Ring IndicatorOCE9 22

Data Signal Rate SelectorI/O CH/CI23

Transmit Signal Element
Timing

I DA24

66

Appendix F. The Host-Target Link

 DB-9DCEDB-25

Unassignedx 25

The wiring of a null modem cable is given in Table F.2, “Null
Modem Wiring and Pin Connection” [67].

Table F.2. Null Modem Wiring and Pin Connection

 25
Pin

9 Pin 9 Pin25
Pin

FG1N/A<---------->N/A1FG (Frame Ground)

RD32<---------->32TD (Transmit Data)

TD23<---------->23RD (Receive Data)

CTS58<---------->74RTS (Request To Send)

RTS47<---------->85CTS (Clear To Send)

SG75<---------->57SG (Signal Ground)

DTR204<---------->66DSR (Data Set Ready)

DSR66<---------->420DTR (Data Terminal
Ready)

67

RS-232 Information

68

Questions and AnswersAppendix G

Here is a list of questions and answers.

Q: How do I change the installation directory? 69
Q: How do I un-install M1750 Ada? 69
Q: Can I do mixed language programming? 70
Q: What is linked into my program over and above my Ada

units? .. 70
Q: Can I build a program with separate code and data

areas? .. 70
Q: Which text editor should I use? .. 70
Q: Which UNIX shell should I use? 71
Q: Are programs restart-able? .. 71

Q: How do I change the installation directory?

A: On Solaris and Linux you can install the files in a directory
of your choice then create a symbolic link from
/opt/m1750-ada-1.7/ to that directory.

Q: How do I un-install M1750 Ada?

69

A: On GNU/Linux, simply delete the directory
/opt/m1750-ada-1.7/ and its contents.

On Solaris, you should use the pkgrm command. For
example, M1750 Ada Version 1.7 may be removed as
follows:

pkgrm XGCm1ad17

Q: Can I do mixed language programming?

A: Yes. You can write a program using both C and Ada 95
programming languages. In particular you can call the C
libraries from code written in Ada.

Q: What is linked into my program over and above my Ada
units?

A: When you build a program, the linker will include any
run-time system modules that are necessary. The start file
art0.o is always necessary. Other files such as object code
for predefined Ada library units will be included only if they
are referenced.

Q: Can I build a program with separate code and data areas?

A: Yes. Each object code module contains separate sections for
instructions, read-only data, variable data and zeroized data.
During the linking step, sections are collected together under
the direction of the linker script file. The default is to collect
each kind of section separately and to generate an executable
file with separate code and data.

Q: Which text editor should I use?

A: M1750 Ada requires no special editing features and will
work with your favorite text editor. If you use the emacs
editor, then you will be able to run the compiler from the
editor, and then relate any error messages to the source files.
If you have no favorite editor, then we recommend the
universal UNIX editor vi.

70

Appendix G. Questions and Answers

Q: Which UNIX shell should I use?

A: We recommend the GNU Bash shell. It offers a much better
user interface than other shells, and is kept up to date.

Q: Are programs restart-able?

A: Yes. The file art0.S contains code to initialize all variables
in the .data section from a copy in read-only memory.

71

72

Symbols
-A1750a and related options, 45
-l option

M1750, 43, 45
-m1750a and related options, 43

A
architecture options

M1750, 43, 45

B
branch improvement

M1750, 49

C
comments

M1750, 50

D
dbam directive, 47

directives
M1750, 47

double directive
M1750, 47

E
EFLR, 48
expanded memory

M1750, 48

F
fixed point numbers (double), 47
fixed point numbers (single), 47
float directive

M1750, 46
floating point

M1750, 46

I
immediate character

Index

73

M1750, 50
instruction set

M1750, 48

L
line comment character

M1750, 50
LLIM, 48
LSJS, 48
LURS, 48

M
M1750

directives, 47
opcodes, 48

M1750 architecture options, 43, 45
M1750 branch improvement, 49
M1750 expanded memory, 48
M1750 floating point, 46
M1750 immediate character, 50
M1750 line comment character, 50
M1750 opcodes, 48
M1750 options, 43, 45
M1750 pseudo-opcodes, 48, 49
MIL-STD-1750 support, 45

O
opcodes

M1750, 48
options

M1750, 43, 45

P
pseudo-opcodes

M1750, 48, 49

R
rdata directive, 47
rodata directive, 47

S
sbam directive, 47
skip directive, 47
special characters

M1750, 50
string literals, 47

X
XIO commands, 49

74

Index

