
Getting Started with
ERC32 Ada

Ada 95 Compilation System for the ERC32
Spacecraft Microprocessor

www.xgc.com

Getting Started with
ERC32 Ada
Ada 95 Compilation System for the ERC32
Spacecraft Microprocessor

Order Number: ERC32-ADA-GS-110101

XGC Technology

London
UK
Web: <www.xgc.com>

Getting Started with ERC32 Ada: Ada 95 Compilation System for the ERC32
Spacecraft Microprocessor

Publication date January 1, 2011
© 2008, 2011 XGC Technology

Acknowledgments

ERC32 Ada is based on Ada compiler technology developed by the GNAT team at New York University and includes software from the GNU
C compiler, debugger and binary utilities developed by and on behalf of the Free Software Foundation, Inc., Cambridge, Massachusetts.
Development of the mission-critical capability was funded by TRW Aerospace and the UK Ministry of Defence. Customization for the ERC32
was funded by XGC Technology.

Contents

About this Guide xi
1 Audience xi
2 Related Documents xi
3 Reader's Comments xii
4 Documentation Conventions xii

Basic Techniques 1Chapter 1

1.1 Hello World 1
1.1.1 How to Prepare an Ada Program 2
1.1.2 How to Compile an Ada Source File 2
1.1.3 A Much Better Way 3
1.1.4 How to Run a Program on the
Simulator 3

1.2 How to Recompile a Program 4
1.3 The Generated Code 5
1.4 What's in My Program? 8
1.5 Restrictions 9

Advanced Techniques 11Chapter 2

2.1 How to Customize the File art0.S 12
2.2 How to Customize the Linker Script File 13

iii

2.3 How to Get a Map File 14
2.4 Generating PROM Programming Files 15
2.5 Using the Debugger 16
2.6 Using Optimizations 18
2.7 Working with the Target 19

2.7.1 How to Down-load the Debug Monitor 19
2.7.2 Preparing a Program to Run under the
Monitor 21

2.8 Predefined Configurations 23
2.9 Working with the EDAC 24
2.10 System Calls 26

2.10.1 How to Use Text_IO Without System
Calls 27

2.11 Improving Worst-Case Performance 29

Real-Time Programs 31Chapter 3

3.1 The Ravenscar Profile 32
3.1.1 The Main Task 33
3.1.2 Time Types 34
3.1.3 Form of a Periodic Task 35
3.1.4 Aperiodic Tasks 36

3.2 Additional Predefined Packages 38
3.3 Interrupts without Tasks 39

ERC32 Compiler Options 41Appendix A

ERC32 Assembler Options and Directives 43Appendix B

B.1 ERC32 Options 43
B.2 Enforcing aligned data 43
B.3 Floating Point 44
B.4 ERC32 Machine Directives 44
B.5 Synthetic Instructions 45

The ERC32 Simulator 49Appendix C

C.1 The Run Tool 50
C.2 The Debugger 50
C.3 The Interactive Tool 51

ERC32 Simulator Run Mode 53Appendix D

D.1 The Command Line 53

iv

Getting Started with ERC32 Ada

D.2 Simulator Options 53
D.3 Examples of Simulator Use 55
D.4 Example of a Coverage Summary 57

The package Ada.Interrupts.Names 59Appendix E

The Host-Target Link 63Appendix F

F.1 How to Change the UART Speed 64
F.2 RS-232 Information 64

Questions and Answers 67Appendix G

Index 71

v

Getting Started with ERC32 Ada

vi

Tables
B.1 Mapping of Synthetic Instructions to ERC32
Instructions 46
E.1 Mapping of Interrupt Names to Priorities 60
F.1 Pre-Computed Values for the UART Scaler (For ubr =
1) 64
F.2 Errors in bit rate (For ubr = 1) 64
F.3 Null Modem Wiring and Pin Connection 65
F.4 The RS-232 Standard 65

vii

viii

Examples
1.1 The Source File 2
1.2 The Compile Command 2
1.3 Binding and Linking 3
1.4 Using gnatmake 3
1.5 Running on the Simulator 3
1.6 A Machine Code Listing 6
1.7 Output from objdump 7
1.8 Using the Size Command 7
1.9 Using the Object Code Dump Program 8
1.10 List of included object code files 9
2.1 Creating a Custom art0.o 12
2.2 Recompiling art0.S 12
2.3 Rebuilding with a Custom art0.S 13
2.4 Editing the Linker Script File 14
2.5 Using a Custom Linker Script File 14
2.6 How to Get a Map File 14
2.7 The Map File 14
2.8 Converting to Intel Hex 15
2.9 Generating a HEX File 15
2.10 Running an Intel Hex File 15
2.11 Running an S-Record File 16
2.12 Recompiling with the Debug Option 16
2.13 Running under the Debugger 17
2.14 Dump of Debug Information 18
2.15 Remote Configuration File 20
2.16 Output from the SPARC Monitor 21
2.17 Output from the Debug Monitor 21
2.18 Remote Debugging 22
2.19 Building to Run with the XGC Monitor 23
2.20 Running the simulator with the EDAC 26
2.21 Code to Support Write 28
2.22 Using Linker Sections 29
3.1 Main Subprogram with Idle Loop 33
3.2 Idle Loop with Power-Down 34
3.3 A Periodic Task 35
3.4 An Interrupt-Driven Task 37
3.5 Example Interrupt Level Protected Object 40

ix

x

About this Guide

1. Audience

This guide is written for the experienced programmer who is
already familiar with the Ada 95 programming language and with
embedded systems programming in general. We assume some
knowledge of the target computer architecture.

2. Related Documents

The ERC32 Ada Technical Summary, which summarises
information about the toolset and the implementation-dependent
features of the Ada 95 language.

The XGC Ada User's Guide describes the commands, options and
scripts required to use the tool-set.

The XGC Ada Reference Manual Supplement documents the
implementation-defined aspects of the Ada 95 programming
language supported by the compiler.

The library functions, which are common to all XGC compilers,
are documented in The XGC Libraries.

xi

Information on the ERC32 is available from Atmel Wireless and
Microcontrollers (formerly Temic Semiconductors),
http://www.atmel-wm.com/products/.

3. Reader's Comments

We welcome any comments and suggestions you have on this and
other ERC32 Ada user manuals.

You can send your comments in the following ways:

• Internet electronic mail: readers_comments@xgc.com

Please include the following information along with your
comments:

• The full title of the manual and the order number. (The order
number is printed on the title page of this manual.)

• The section numbers and page numbers of the information on
which you are commenting.

• The version of the software that you are using.

Technical support enquiries should be directed to the XGC Web
Site [http://www.xgc.com/] or by email to support@xgc.com.

4. Documentation Conventions

This guide uses the following typographic conventions:

%, $
A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bash shell.

#

A number sign represents the superuser prompt.

$ vi hello.adb

Boldface type in interactive examples indicates typed user
input.

xii

About this Guide

http://www.atmel-wm.com/products/
http://www.xgc.com/
http://www.xgc.com/
http://www.xgc.com/
support@xgc.com

file

Italic or slanted type indicates variable values, place-holders,
and function argument names.

[|], { | }
In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

...
In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated.

cat(1)
A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in Section
1 of the reference pages.

Mb/s
This symbol indicates megabits per second.

MB/s
This symbol indicates megabytes per second.

Ctrl+x
This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows. In
examples, this key combination is printed in bold type (for
example, Ctrl+C).

xiii

Documentation Conventions

xiv

Basic TechniquesChapter 1

To start with we'll write a small program and run it on the ERC32
simulator. This will give you a general idea of how things work.
Later we will describe how to run a program on the real target
computer.

1.1. Hello World

The subject of this section is a small program named “hello”. Using
library functions and simulated input-output to do the printing, our
program simply prints the message “Hello World” on the terminal.
You will find the source code in the directory examples on the
ERC32 Ada CD-ROM.

Three steps are needed to create an executable file from Ada source
files:

1. The source file(s) must first be compiled.

2. The file(s) then must be bound using the ERC32 Ada binder.

3. All relevant object files must be linked to produce an executable
file.

1

1.1.1. How to Prepare an Ada Program

Any editor may be used to prepare an Ada program. If emacs is
used, the optional Ada mode may be helpful in laying out the
program. The program text is a normal text file. We will suppose
in our initial example that you have used your editor to prepare the
following text file:

Example 1.1. The Source File

with Text_IO;
procedure Hello is
begin
 Text_IO.Put_Line ("Hello World");
end Hello;

This file should be named hello.adb. 1

1.1.2. How to Compile an Ada Source File

You can compile the file using the command in the following
example:

Example 1.2. The Compile Command

$ erc-elf-gcc -c hello.adb

The command erc-elf-gcc is used to run the compiler. This
command will accept files in several languages including Ada 95,
C, assembly language and object code. It determines you have
given it an Ada program by the filename extension (.ads or .adb),
and will call the Ada compiler to compile the specified file.

The -c switch is always required when compiling an Ada source
file. It tells gcc to stop after compilation. (For C programs, gcc can
also do linking, but this capability is not used directly for Ada
programs, so the -c switch must always be present.)

This compile command generates the file hello.o which is the
object file corresponding to the source file hello.adb. It also
generates a file hello.ali, which contains additional information

1ERC32 Ada requires that each file contains a single compilation unit whose file name corresponds to the

unit name with periods replaced by hyphens and whose extension is .ads for a spec and .adb for a body.

2

Chapter 1. Basic Techniques

used to check that an Ada program is consistent. To get an
executable file, we then use gnatbind to bind the program and
gnatlink to link the program.

Example 1.3. Binding and Linking

$ erc-elf-gnatbind hello.ali
$ erc-elf-gnatlink hello.ali

You may use the option -v to get more information about which
version of the tool was used and which files were read.

1.1.3. A Much Better Way

A better (simpler, quicker) method of carrying out these steps is
to use the gnatmake command. gnatmake is a master program
that invokes all of the required compilation, binding and linking
tools in the correct order. In particular, it automatically recompiles
any modified sources, or sources that depend on modified sources,
so that a consistent compilation is ensured.

The following example shows how to use gnatmake to build the
program hello.

Example 1.4. Using gnatmake

$ erc-elf-gnatmake hello
erc-elf-gcc -c hello.adb
erc-elf-gnatbind -x hello.ali
erc-elf-gnatlink hello.ali

The result is an executable file named hello.

1.1.4. How to Run a Program on the Simulator

The program that we just built can be run on the simulator using
the following command. If all has gone well, you will see the
message "Hello World".

Example 1.5. Running on the Simulator

$ erc-elf-run hello
Hello World

3

A Much Better Way

1.2. How to Recompile a Program

As you work on a program, you keep track of which units you
modify and make sure you not only recompile these units, but also
any units that depend on units you have modified.

gnatbind will warn you if you forget one of these compilation
steps, so it is never possible to generate an inconsistent program
as a result of forgetting to do a compilation, but it can be annoying
to keep track of the dependencies. One approach would be to use
a the UNIX make program, but the trouble with make files is that
the dependencies may change as you change the program, and you
must make sure that the make file is kept up to date manually, an
error-prone process.

The Ada make tool, gnatmake takes care of these details
automatically. In the following example we recompile and rebuild
the example program, which has been updated.

$ erc-elf-gnatmake -v hello
GNATMAKE 1.8 Copyright 1995-2001 Free Software Foundation, Inc.
 -> "hello" final executable
 "hello.ali" being checked ...
 -> "hello.adb" time stamp mismatch
erc-elf-gcc -c hello.adb
End of compilation
erc-elf-gnatbind -x hello.ali
erc-elf-gnatlink hello.ali

The argument is the file containing the main program or
alternatively the name of the main unit. gnatmake examines the
environment, automatically recompiles any files that need
recompiling, and binds and links the resulting set of object files,
generating the executable file, hello. In a large program, it can be
extremely helpful to use gnatmake, because working out by hand
what needs to be recompiled can be difficult.

Note that gnatmake takes into account all the intricate rules in
Ada 95 for determining dependencies. These include paying
attention to inlining dependencies and generic instantiation
dependencies. Unlike some other Ada make tools, gnatmake does
not rely on the dependencies that were found by the compiler on
a previous compilation, which may possibly be wrong due to source

4

Chapter 1. Basic Techniques

changes. It works out the exact set of dependencies from scratch
each time it is run.

The linker is configured so that there are defaults for the start file
and the libraries libgcc, libc and libada. Other libraries, such as
the standard C math library libm.a, are not included by default,
and must be mentioned on the linker's command line.

1.3. The Generated Code

If you want to see the generated code, then use the compiler option
-Wa,-a. The first part (-Wa,) means pass the second part (-a) to the
assembler. To get a listing that includes interleaved source code,
use the options -g and -Wa,-ahld. See The ERC32 Ada Users Guide,
for more information on assembler options.

Here is an example where we generate a machine code listing.

5

The Generated Code

Example 1.6. A Machine Code Listing

$ erc-elf-gcc -c -Wa,-a hello.adb
 1 .file "hello.adb"
 2 gcc2_compiled.:
 3 __gnu_compiled_ada:
 4 .section .rodata
 5 .align 8
 6 .LC0:
 7 0000 48656C6C .ascii "Hello world"
 7 6F20776F
 7 726C64
 8 000b 00 .align 4
 9 .LC1:
 10 000c 00000001 .long 1
 11 0010 0000000B .long 11
 12 0014 00000000 .section ".text._ada_hello",#execinstr
 13 .align 4
 14 .global _ada_hello
 15 .proc 020
 16 _ada_hello:
 17 0000 9DE3BF90 save %sp,-112,%sp
 18 0004 15000000 sethi %hi(.LC0),%o2
 19 0008 9012A000 or %o2,%lo(.LC0),%o0
 20 000c 15000000 sethi %hi(.LC1),%o2
 21 0010 9212A000 or %o2,%lo(.LC1),%o1
 22 0014 D03FBFF0 std %o0,[%fp-16]
 23 0018 40000000 call ada__text_io__put_line$2,0
 24 001c 9007BFF0 add %fp,-16,%o0
 25 0020 81C7E008 ret
 26 0024 81E80000 restore
...

You could also use the object code dump utility erc-elf-objdump
to disassemble the generated code. If you compiled using the debug
option -g then the disassembled instructions will be annotated with
symbolic references.

Here is an example using the object code dump utility.

6

Chapter 1. Basic Techniques

Example 1.7. Output from objdump

$ erc-elf-objdump -d hello.o

hello.o: file format elf-erc

Disassembly of section .text:

00000000 <_ada_hello>:
 0: 9d e3 bf 90 save %sp, -112, %sp
 4: 15 00 00 00 sethi %hi(0), %o2
 8: 90 12 a0 00 mov %o2, %o0 ! 0 <_ada_hello>
 c: 15 00 00 00 sethi %hi(0), %o2
 10: 92 12 a0 00 mov %o2, %o1 ! 0 <_ada_hello>
 14: d0 3f bf f0 std %o0, [%fp + -16]
 18: 40 00 00 00 call 18 <_ada_hello+0x18>
 1c: 90 07 bf f0 add %fp, -16, %o0
 20: 81 c7 e0 08 ret
 24: 81 e8 00 00 restore

You can see how big your program is using the size command.
The sizes are in bytes. Note that the UNIX command ls -s gives
you the size of the file rather than the size of the executable
program.

Example 1.8. Using the Size Command

$ erc-elf-size hello.o
 text data bss dec hex filename
 64 0 0 64 40 hello.o
$ erc-elf-size hello
 text data bss dec hex filename
 7204 392 640 8236 202c hello

To get more detail you can use the object code dump program, and
ask for headers.

7

The Generated Code

Example 1.9. Using the Object Code Dump Program

$ erc-elf-objdump -h hello

hello: file format elf-erc

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 00000000 00000000 00000000 00000034 2**0
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .data 00000000 00000000 00000000 00000034 2**0
 CONTENTS, ALLOC, LOAD, DATA
 2 .bss 00000000 00000000 00000000 00000034 2**0
 ALLOC
 3 .rodata 00000018 00000000 00000000 00000038 2**3
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 .text._ada_hello 00000028 00000000 00000000 00000050 2**2
 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE
$

1.4. What's in My Program?

You have written five lines of Ada, yet the size command says
your program is over 7K bytes. What happened?

Answer: Your program has been linked with code from the ERC32
libraries. In addition to the application code, the executable program
contains the following:

• The XGC real-time kernel (art0)

• Program startup code (art1)

• Program elaboration code (adainit)

• Any Ada library packages mentioned in the context clauses of
the source (libada)

• Any System packages needed by the compiler (also from libada)

• Object code from the compiler support library (libgcc)

• Object code from other libraries given on the linker command
line (such as libm)

8

Chapter 1. Basic Techniques

The following command will give you a list of the object files that
have been linked into your program.

Example 1.10. List of included object code files

$ erc-elf-gnatmake hello.adb -largs -t
erc-elf-gnatbind -x hello.ali
erc-elf-gnatlink -t hello.ali
/opt/erc32-ada-1.8.1/erc-elf/bin/ld: mode erc32_ram
art0.o (/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/art0.o)
b~hello.o
./hello.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libada.a)a-textio.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libada.a)a-ioexce.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libgnat.a)x-except.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libgnat.a)x-malloc.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)_disable_preemption.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)_enable_preemption.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)memcpy.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)close.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)errno.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)lseek.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)open.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)read.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)sbrk.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)unlink.o
(/opt/erc32-ada-1.8.1/lib/gcc-lib/erc-elf/2.8.1/libc.a)write.o
(/opt/erc32-ada-1.8/lib/gcc-lib/erc-elf/2.8.1/libc.a)sbrk.o

In the example, the kernel, art0.o, accounts for most of the size.

1.5. Restrictions

Before you go much further, you should be aware of the built-in
restrictions. ERC32 Ada does not support the full Ada 95 language:
it supports a restricted language that conforms to a formal Profile
designed for high integrity applications.

The built-in restrictions prohibit the use of non-deterministic Ada
features that would otherwise invalidate static program analysis.
For a complete list of the default restrictions, see The ERC32 Ada
Reference Manual Supplement or The ERC32 Ada Technical
Summary.

9

Restrictions

10

Advanced TechniquesChapter 2

Once you have mastered writing and running a small program,
you'll want to check out some of the more advanced techniques
required to write and run real application programs. In this chapter,
we cover the following topics:

• Customizing art0 and the linker script file

• Checking for stack overflow

• Generating PROM programming files

• Using the debugger

• Using optimizations

• Working on the target

• The boot PROM

• System calls

• The EDAC

• Improving Worst-Case Performance

11

2.1. How to Customize the File art0.S

On a real project you will almost certainly need to customize the
run-time system and the linker script file. These contain details of
the target hardware configuration and project options such as
running in user mode or supervisor mode.

The file art0.S contains instructions to initialize the arithmetic
unit and floating point unit. The default file might be suitable for
your requirements. The initial values of the system registers are
defined in the file config.h. You can see the source code in
directory /opt/erc32-ada-1.8/erc-elf/src/kernel/. If it is not
suitable, make a copy in a working directory, then edit it as
necessary.

Example 2.1. Creating a Custom art0.o

$ mkdir work
$ cd work
$ cp -a /opt/erc32-ada-1.8/erc-elf/src/kernel .
$ vi art/config.h

One of the configuration parameters you may wish to change is
the clock speed. The default speed is 20 MHz. If your clock runs
at (say) 10 MHz, then you should modify the statement in config.h
that defines the clock frequency.

Once you have completed the changes, you must compile art0.S
to generate an object code file named art0.o. This is the file that
the default linker script will look for. Note that the compiler will
select Atmel TSC695 by default. If your target is a TSC695, then
you should use the compile-time option -m695.

The following example gives the command you need:

Example 2.2. Recompiling art0.S

$ erc-elf-gcc -c art/art0.S

If you now rebuild your application program, the local file art0.0
will be used in preference to the library file. In the following
example we use the linker's -t option to list the files that are
included in the link.

12

Chapter 2. Advanced Techniques

Example 2.3. Rebuilding with a Custom art0.S

$ erc-elf-gnatmake -f hello -largs -Wl,-t
erc-elf-gcc -c hello.adb
erc-elf-gnatbind -x hello.ali
erc-elf-gnatlink -Wl,-t hello.ali
/opt/erc32-ada-1.8/erc-elf/bin/ld: mode erc_sram
art0.o
b~hello.o
./hello.o
... and more files ...

You can check that the system registers are initialized with the
correct values by running your program on the simulator with the
option -a "-tr". For example:

$ erc-elf-run hello -a "-tr"
Memory Configuration Register (mcnfr) : 000a5000
-----------+----------------------------------+---------+---------
 eex Enable Exchange Memory . 0
 eec Exchange Memory EDAC Protected . 0
 epa Exchange Memory Parity Protected . 0
 esiz Exchange Memory Size . 0 8 Kbyte
 psiz Boot PROM Size . 2 32 Kbyte
 p8 PROM 8-bit wide . 1 yes
 pwr PROM Write Function . 0 no
 rec RAM EDAC Protected . 1 yes
 rpa RAM Parity Protected . 0 no
 rsiz RAM Size . 4 128 Kbyte
 rbr1 Redundant RAM Block-1 Replace . 0 no
 rbs1 Redundant RAM Block-1 Selected . 0 no
 rbr0 Redundant RAM Block-0 Replace . 0 no
 rbs0 Redundant RAM Block-0 Selected . 0 no
 rbcs Number of RAM Block Chip Selects . 0 no
...

Note If you run a program built for 10 MHz on the simulator,
be sure to specify a clock frequency of 10 MHz. The
default is 20 MHz.

2.2. How to Customize the Linker Script File

The linker script file describes the layout of memory on the target
computer and includes instructions on how the linker is to place

13

How to Customize the Linker Script File

object code modules in that memory. The default linker script file
is /opt/erc32-ada-1.8/erc-elf/lib/ldscripts/erc32_ram.x. You
should copy this file to your local directory, and edit as necessary.

Example 2.4. Editing the Linker Script File

$ cp /opt/erc32-ada-1.8/erc-elf/lib/ldscripts/erc32_ram.x myboard.ld
$ vi myboard.ld

You can then build a program using your custom linker script rather
than the default, as follows:

Example 2.5. Using a Custom Linker Script File

$ erc-elf-gnatmake -f hello -largs -T myboard.ld

2.3. How to Get a Map File

If all you need is a link map, then you can ask the linker for one.
This is a little more subtle than you may expect, because the option
must be passed to the program erc-elf-ld rather than the ada linker.
Here is an example that generates a map named hello.map.

Example 2.6. How to Get a Map File

$ erc-elf-gnatmake hello -largs -Wl,-Map=hello.map

Example 2.7. The Map File

$ more hello.map
...
 0x40000000 _stext=.
*(.text)
 .text 0x40000000 0x1570 /opt/erc32-ada-1.8/lib/gcc-lib/erc-elf/2.8.1/art0.o
 0x40001408 _restart_timer
 0x40001380 _exit
 0x40001354 _clock
 0x40000d34 _window_underflow
 0x40000a00 _warm_start
...lots of output...

14

Chapter 2. Advanced Techniques

2.4. Generating PROM Programming Files

By default, the executable file is in Executable Linking Format
(ELF). Using the object code utility program erc-elf-objcopy, ELF
files may be converted into several other industry-standard formats,
such as COFF, Intel Hex, and Motorola S Records.

The following example shows how we convert a ELF file to Intel
Hex format.

Example 2.8. Converting to Intel Hex

$ erc-elf-objcopy --output-target=ihex hello hello.ihex

If you don't need the ELF file, then you can get the linker to
generate the Intel Hex file directly. Note that the Intel Hex file
contains no debug information, so if you expect to use the debugger,
you should generate the ELF file too.

Example 2.9. Generating a HEX File

$ erc-elf-gnatmake hello -largs -Wl,-oformat=ihex
$ more hello.ihex
:020000044000BA
:1000000010800280010000000100000001000000DB
:10001000A14800002910000381C522ACA610201DB4
:10002000A14800002910000381C522ACA610201BA6
:10003000A14800002910000381C522ACA610201B96
:10004000A14800002910000381C522ACA610201B86
:10005000A14800002910000381C520D8A610200562
:10006000A14800002910000381C52134A6102006F4
:10007000A14800002910000381C522ACA610201D54
:10008000A14800002910000381C52250A6102000BD
:10009000A14800002910000381C522ACA610201D34
...lots of output...
$

We can run the Intel Hex file, as in the following example:

Example 2.10. Running an Intel Hex File

$ erc-elf-run hello
Hello world

15

Generating PROM Programming Files

Or we can generate Motorola S Records, and run from there. Note
that we use the option -f to force a rebuild.

Example 2.11. Running an S-Record File

$ erc-elf-gnatmake -f hello.adb -largs -Wl,-oformat=srec
$ more hello
S008000068656C6C6FE3
S315400000001080028001000000010000000100000095
S31540000010A14800002910000381C5229CA610201D7E
S31540000020A14800002910000381C5229CA610201B70
S31540000030A14800002910000381C5229CA610201B60
S31540000040A14800002910000381C5229CA610201B50
S31540000050A14800002910000381C520C8A61020052C
S31540000060A14800002910000381C52124A6102006BE
S31540000070A14800002910000381C5229CA610201D1E
...lots of output...
$ erc-elf-run hello
Hello world
$

2.5. Using the Debugger

Before we can make full use of the debugger, we must recompile
hello.adb using the compiler's debug option. This option tells the
compiler to include information about the source code, and the
mapping of source code to generated code. Then the debugger can
operate at source code level rather than at machine code level.

The debug information does not alter the generated code in any
way but it does make object code files much bigger. Normally this
is not a problem, but if you wish to remove the debug information
from a file, then use the object code utility erc-elf-strip.

This is how we recompile hello.adb with the -g option. There are
other debug options too. See the ERC32 Ada User's Guide for more
information on debug options.

Example 2.12. Recompiling with the Debug Option

$ erc-elf-gnatmake -f -g hello
erc-elf-gcc -c -g hello.adb
erc-elf-gnatbind -x hello.ali
erc-elf-gnatlink -g hello.ali

16

Chapter 2. Advanced Techniques

The debugger is erc-elf-gdb. By default the debugger will run a
ERC32 program on the ERC32 simulator. If you prefer to run and
debug on a real ERC32 then you must arrange for your target to
communicate with the host using the debugger's remote debug
protocol. This is described in Section 2.7, “Working with the
Target” [19].

Example 2.13. Running under the Debugger

$ erc-elf-gdb hello
GNU gdb (XGC erc32-ada 1.8.1) 7.1
Copyright (C) 2010 Free Software Foundation, Inc.
This GDB was configured as "--host=i686-pc-linux-gnu --target=erc-elf".
For bug reporting instructions, please see:
<http://www.xgc.com/support/support.html>.
(gdb) br main
Breakpoint 1 at 0x20010b4: file b_hello.adb, line 17.
(gdb)run
Starting program: .../examples/hello
Connected to the simulator.

Breakpoint 1, main () at b~hello.adb:34
34 adainit;
(gdb)c
Continuing.
Hello world

Program exited normally.
(gdb)quit

You can view the debug information using the object dump utility,
as follows:

17

Using the Debugger

Example 2.14. Dump of Debug Information

bash$ erc-elf-objdump -G hello

hello: file format elf-erc

Contents of .stab section:

Symnum n_type n_othr n_desc n_value n_strx String

-1 HdrSym 0 77 00000776 1
0 SO 0 0 40001570 13
/home/user/xgc/src/erc-ada/examples/
1 SO 0 0 40001570 55 b~hello.adb
2 LSYM 0 0 00000000 67 long
int:t1=r1;-2147483648;2147483647;
...

2.6. Using Optimizations

Optimization makes your program smaller and faster. In most cases
it also makes the generated code easier to understand. So think of
the option -O2 as the norm, and only use other levels of optimization
when you want to get something special.

Important We strongly recommend that you do not use any
compiler options that change the generated code. Use
the defaults.

The extent to which optimization makes a whole program smaller
and faster depends on many things. In the case of hello.adb there
will be little benefit since most of the code in the executable file
is in the library functions, and these are already optimized.

The following example is more representative and shows the
Whetstone benchmark program reduced to 49% of its size, and
running nearly twice as fast. You can find Whetstone in the
CD-ROM directory benchmarks/.

Here are the results when compiling with no optimization.

$ erc-elf-gcc -c -O0 whetstone.adb
$ erc-elf-size whetstone.o
 text data bss dec hex filename

18

Chapter 2. Advanced Techniques

 22312 0 0 22312 5728 whetstone.o
$ erc-elf-gnatmake -f -O0 whetstone
$ erc-elf-run whetstone
,.,. Whetstone GTS Version 0.1
---- Floating point benchmark.
Time taken = 325 mSec
Whetstone rating = 3077 KWIPS

Here are the results when compiling with optimization level 2.

$ erc-elf-gcc -c -O2 whetstone.adb
$ erc-elf-size whetstone.o
 text data bss dec hex filename
 10976 0 0 10976 2ae0 whetstone.o
$ erc-elf-gnatmake -f -O2 whetstone
$ erc-elf-run whetstone
,.,. Whetstone GTS Version 0.1
---- Floating point benchmark.
Time taken = 184 mSec
Whetstone rating = 5431 KWIPS

At optimization level 3, the compiler will automatically in-line
calls of small functions. This may increase the size of the generated
code, and the code will run faster. However the code motion due
to inlining may make the generated code difficult to read and debug.

2.7. Working with the Target

ERC32 Ada also supports debugging on the target computer. Before
you can do this, you must connect the target board to the host
computer using two serial cables that include a null modem. One
cable connects the board's serial connector A to the host, and is
used to down-load the monitor and for application program input
and output. The other cable connects to the board's serial connector
B, and is used by the debugger to load programs, and to perform
debugging operations.

2.7.1. How to Down-load the Debug Monitor

Before we can use the debugger to down-load and debug programs
running on the target, we must down-load the ERC32 Ada debug
monitor. This is a small program that resides in the upper 32K

19

Working with the Target

bytes of RAM, and communicates with the ERC32 debugger over
the serial interface B. You will find the source code in the directory
/opt/erc32-ada-1.8/erc-elf/src/monitor/.

$ ls /opt/erc32-ada-1.8/erc-elf/src/monitor/
CVS Makefile README art1.S install.sh remcom.c t1.c t2.adb t2.c
t6 t6.c xgcmon.M xgcmon.c xgcmon.ld

The ready-to-load (S-Record) version is
/opt/erc32-ada-1.8/erc-elf/lib/xgcmon.

We assume the target board is fitted with the Saab Ericsson Space
monitor. This monitor is based on Sun's SPARC Monitor, and is
specially adapted for the Temic board. At the time of writing, the
monitor is labeled “RDBmon V1.0”. An alternative would be to
fit the ERC32 Ada monitor, in which case the following load
instructions may be skipped.

In this guide we use the program tip to work as a terminal. This
program is generally available on Solaris platforms, but is seldom
seen on Linux or Windows. If you don't have tip then there are
other programs (such as Kermit) that will do as well.

We configured tip to use the serial interface connected to the target
at 19200 bps in the file dem32. On Solaris, the configuration
statement is in the file /etc/remote. The following example shows
the configuration line used to generate the rest of this text. Note
there is no entry for the output EOF string. This is not required.

The configuration line we use is as follows:

Example 2.15. Remote Configuration File

$ cat /etc/remote
...
dem32:\
 :dv=/dev/term/b:br#19200:el=^C^S^Q^U^D:ie=%$:
...

The debug monitor is named xgcmon. This file is formatted in
Motorola S-Records ready for down-loading in response to the
load command, as shown in the following example.

20

Chapter 2. Advanced Techniques

Example 2.16. Output from the SPARC Monitor

#RP

 ERC32 SEU test monitor 1.0

 0 - Start Sparcmon
 1 - Start IU regfile test
 2 - Start FPU regfile test
 3 - Start paranoia
 4 - Start RTEMS test case

#M

Select Sparcmon by pressing 0. The character is not echoed.

Example 2.17. Output from the Debug Monitor

0

 ERC32 SPARC Monitor V1.0.
monitor> load c s
load: s-record down-load
~>Local file name? xgcmon
1056 lines transferred in 15 seconds
!
monitor> run
$Id: xgcmon.c,v 1.1.1.1 1999/02/23 12:23:42 cvs Exp $

The monitor is now running and ready to communicate over the
other serial interface. To leave tip type ~..

2.7.2. Preparing a Program to Run under the Monitor

Because the debug monitor is a complete supervisor-mode
application program it is not appropriate to down-load the programs
we built in the previous section. We must rebuild the program using
the start file art1.

The module art1 consists of the code from art0 to do with
initializing the high-level language environment. It omits the trap

21

Preparing a Program to Run under the Monitor

vector and trap handling code. You can get the source from
/opt/erc32-ada-1.8/erc-elf/src/monitor/art1.S.

The following code shows how to compile the Ackermann
benchmark program using a custom linker script, the module art1.

$ erc-elf-gcc -O ackermann.c -o ackermann -T xgcmon.ld art1.o

The file xgcmon.ld may be found on the CD-ROM in the run-time
source directory.

The following example shows the Ackermann benchmark running
under the control of the debugger. You should substitute your serial
device name for ttyS0.

Example 2.18. Remote Debugging

$ erc-elf-gdb ackermann
XGC erc-ada Version 1.8 (debugger)
Copyright (c) 1996, 2002, XGC Technology.
Based on gdb version 5.1.1
Copyright (c) 1998 Free Software Foundation.
(gdb) set remote speed 19200
(gdb) tar rem /dev/ttyS0
Remote debugging using /dev/ttyS0
0x21f965c in ?? ()
(gdb) load
Loading section .text, size 0x1948 lma 0x2000000
Loading section .rdata, size 0x3d8 lma 0x2001948
Loading section .data, size 0x50 lma 0x2001d20
Start address 0x2000110
Transfer rate: 6698 bits/sec.
(gdb) run
Starting program: /hdb3/xgc/benchmarks/ackermann
,.,. ackermann GTS Version 0.1
---- ackermann Function call benchmark, A (3, 6).
 - ackermann time taken = 1.130e+00 Seconds.
**** ackermann PASSED ============================.
Program exited normally.
(gdb) quit
$

A better way to build a program to run with the XGC Monitor is
to use the linker emulation introduced with ERC32 Ada Version
1.8. The emulation knows the memory layout required and selects
art1 in place of art0. Here's an example:

22

Chapter 2. Advanced Techniques

Example 2.19. Building to Run with the XGC Monitor

$ erc-elf-gnatmake -g ackermann -largs -Wl,-merc_xgcmon

The emulation, erc_xgcmon is given to the linker uising the -m
option. If you try to run this program with the simulator, you will
find that it fails almost immediately because the system registers
have not been set up. When using the monitor, the system registers
are set up in the monitor before the application program is loaded.

2.8. Predefined Configurations

You may build your program to run from RAM, or as a program
that executes directly from PROM or as a program that is loaded
from PROM and executes from RAM. These choices are known
as linker emulations and are offered as predefined configurations.

You can ask the linker what emulations are supported, as follows:

$ erc-elf-ld -V
XGC erc-ada Version 1.8 (linker)
Based on GNU ld version 2.10.1 (with BFD 2.10.1)
 Supported emulations:
 erc_ram
 erc_boot
 erc_prom
 erc_xgcmon

The emulation erc_ram (the default)
The emulation erc_ram. All sections are located in RAM
starting at address 0x20000000. The program's warm start entry
point is 0x20000000.

The emulation erc_boot
The emulation erc_boot builds a memory image that has an
entry point at address 0x00000000, and in which the program
sections that contain instructions or data reside in the boot
PROM. The start file includes additional code that copies these
program sections into their proper locations in RAM before
branching to the entry point (at address 0x20000000.

This emulation is intended to replace the program mkprom.
Unlike the output of mkprom, the memory image contains full

23

Predefined Configurations

debug information for the application program, which may be
debugged on the simulator in the usual way.

The emulation erc_prom
The emulation erc_prom builds a memory image that has an
entry point at address 0x00000000 and with the data in RAM.

The emulation erc_monitor
The emulation erc_monitor builds a program that is suitable
for downloading to the target computer and running with the
XGC monitor. This means linking with the linker script file
xgcmon.ld and using the start file art1.S in place of art0.S.

Programs built with this emulation rely on the trap handlers in
the monitor and all system calls are handled by the monitor.

To specifiy an emulation on the command line, use the linker option
-m as follows:

$ erc-elf-gnatmake hello.adb -largs -Wl,-merc_prom

This command will build an executable image that contains
instructions starting at address zero that copy the main part of the
image (i.e. the sections .text, .rodata and .idata) from an area of
PROM into the main RAM starting at address 16#20000000#.

2.9. Working with the EDAC

Using memory that is 40 bits wide, the ERC32's EDAC can correct
single-bit errors in any 32-bit word, and can detect any double-bit
error. The version 1.8 simulator contains a simulation of the EDAC
and by default, this is switched off. In this state, the additional 8
bits of information are generated on each write to an
EDAC-protected area of memory, but are not tested on memory
reads.

The ERC32 offers EDAC protection for RAM and for the boot
PROM, provided the PROM is the 40-bit wide kind. The 8-bit
PROM has no EDAC protection, and no parity protection either.
When EDAC simulation is switched on, then depending on further
options set in the system registers, the EDAC may be used to correct
and detect errors in memory. This raises several issues, some of

24

Chapter 2. Advanced Techniques

which are very important from the point of view of running the
odd test program.

• If you are simulating the 40-bit boot PROM, then the PROM
must contain the extra 8 bits for each 32 bits of data. Normally
you will use a tool to generate these bits and program them into
the PROM or PROMs along with the rest of the data. To make
life easier, the simulator's load function generates these extra
bits for you. This means you can load a normal 32-bit wide
program.

Similarly if the simulator loads your program directly into RAM,
which is the case for prgorams built using the default options,
it generates the checkbits. Of course, on the real target, this
would happen without any special intervention because the loader
would simply write your program to RAM with the EDAC
generating the checkbits.

• For a data item that is 32 bits in size, the first memory write will
write both the data and the extra check bits required by the
EDAC. For byte size and half-word size items, the ERC32 will
do a read-modify-write memory cycle with EDAC checking on
the read and checkbit generation on the write. This means that
byte size and half-word size items cannot be initialized
individually; the initial memory write must be a whole word
write otherwise the EDAC will report a failure when it reads the
uninitialized memory word.

One solution to this is to initialize the whole of RAM before the
application program runs. This may take some time, possibly
up to 20 seconds for a large memory.

In version 1.8, the cold-start emulation includes code that writes
zero to each location in RAM. The size of memory is known to
art0 and this will need to be customized if your memory is not
the same size.

For application programs that do not include the cold start code,
and this will be the majority of test programs, benchmarks and
so on, we have the same EDAC problem. We therefore
recommend running such programs with the EDAC switched
off, and have set the simulator's EDAC option to off by default.

• If you wish to test your EDAC code, then one way to test at least
part of it is to use the EDAC test feature offered by the ERC32

25

Working with the EDAC

(and by the simulator). This allows you to specify the seven
check bits on memory writes, and thereby introduce single-bit
errors. You cannot introduce single-bit errors into the 32-bits of
data because the EDAC write circuitary will always generate a
correct parity bit and thwart any attemp to write data with bad
parity (which indicates a single bit error).

You can of course read the contents of a memory location and
write it back with one or more of the bits changed. If you do this
keeping the checkbits for the original contents then you will
always get an uncorrctable error on the next read of that location.

Version 1.8 also includes a generator for random single-bit errors
that can be written to a random memory location at a given
frequency, say one error per second, or maybe faster for times
when you are keen to see you error recovery code working hard.

In the following example we run a program that requires the EDAC.
We introduce random SEU errors into RAM at a rate of 100000
per MB per day, which for a 8MB RAM is aproximately 9 per
second.

Example 2.20. Running the simulator with the EDAC

$ erc-elf-run my_program -a "-edac -mer 100000 -trace-edac"
Setting memory error rate to 100000 per MB per day
Tracing EDAC errors
17280000: SEU before: addr 0035c5a0 bit 15, p 0, cb 00, data 00000000
17280000: ... after: p 0, cb 00, data 01000000
34560000: SEU before: addr 00321e4c bit 31, p 0, cb 00, data 00000000
34560000: ... after: p 0, cb 00, data 00000100
...

2.10. System Calls

A system call is the means by which application programs call an
operating system. System calls are mostly used for input-output.
The predefined Ada package Ada.Text_IO and the smaller package
XGC.Text_IO map all input and output operations onto system calls,
using open, close, read and write. The C language input-output
functions declared in <stdio.h> use the same system calls.

For the convenience of the Ada programmer, XGC Ada includes
the package XGC.POSIX, which declares the calls needed by

26

Chapter 2. Advanced Techniques

Ada.Text_IO as Ada procedures each with an interface pragma.
Note that the names of the procedures and the calls are the POSIX
names, as used by most operating systems, and also by the XGC
run-time system.

With XGC Ada, we have no operating system as such, just the
run-time system module art0. However, we support the system call
mechanism using trap 80 (the SPARC standard) and when running
on the simulator we map system calls to host system calls so that
application programs can access host computer files during program
development. This mapping can be disabled with a simulator option.

When running on the target, any system call will bring your
program to an abnormal termination because the required system
call handler is absent in the default configuration. The default
system call handler is located in libc and supports an appropriate
subset of calls. For example, read and write are directed to UARTA
and may be used in a console dialog. You may wish to customise
the default handler so that calls that would otherwise be
non-operational could do something useful. For example, the call
to get the time could be implemented to read the time from some
external clock.

This can be done quite easily and an example system call handler
is included with the source files in
/opt/erc32-ada-1.8/erc-elf/src/libc/sys/schandler.c. The
handler is attached to the system call trap in the same fashion as
other interrupts are attached to their handlers. In the example, a C
function is provided to do the attaching.

2.10.1. How to Use Text_IO Without System Calls

Another way to support Text_IO is to replace the various system
calls with calls to application code. For example, if all you need is
the Put functionality in Text_IO, you can create your own version
of write and have it do whatever you want. When your program
is linked, the linker will use your version of write in place of the
library version.

27

How to Use Text_IO Without System Calls

Example 2.21. Code to Support Write

 -- UART registers. See TSC695F, Table 4-38 and Table 4-40.

 UARTAR : Unsigned_32;
 for UARTAR'Address use 16#01F800E0#;

 UARTSR : Unsigned_32;
 for UARTSR'Address use 16#01F800E8#;

 -- Protected object required to access system registers

 protected UART is
 procedure Write (Ch : Character);
 pragma Interrupt_Handler (Write);
 end UART;

 protected body UART is
 procedure Write (Ch : Character) is
 begin
 while (UARTSR and 16#00000004#) = 0 loop
 null;
 end loop;

 UARTAR := Character'Pos (Ch);
 end Write;
 end UART;

 -- Export pragmas required for comatibility with C

 procedure Write (
 Result : out Integer;
 Fd : in Natural;
 Buf : in System.Address;
 Count : in Natural);
 pragma Export (C, Write, "write");
 pragma Export_Valued_Procedure (Write, "write");

 procedure Write (
 Result : out Integer;
 Fd : in Natural;
 Buf : in System.Address;
 Count : in Natural)
 is
 Ada_Buf : String (1 .. Count);
 for Ada_Buf'Address use Buf;
 begin
 for I in 1 .. Count loop

28

Chapter 2. Advanced Techniques

 UART.Write (Ada_Buf (I));
 end loop;

 Result := Count;
 end Write;

2.11. Improving Worst-Case Performance

The instruction cache, the data cache, the register cache all tend to
reduce the average time taken for a section of code to execute.
However they offer little improvement in the worst-case time. One
solution is to use a block of fast RAM that has no cache and which
completes memory cycles with minimum wait states.

Of course, this fast RAM is usually much smaller than required to
the whole application, so it is necessary to partition the code and
data into subprograms an objects that ought to go into fast ram,
and the rest.

We can do this using the pragma Linker_Section. For example, to
locate a subprogram in the linker section .fastram, while the rest
of the code is located in the default section .text:

Example 2.22. Using Linker Sections

package Fast_RAM_Example is

 procedure P;
 pragma Linker_Section (P, ".fastram");

end Fast_RAM_Example;

Of course, you must customize the linker script file to specify where
.fastram is located.

29

Improving Worst-Case Performance

30

Real-Time ProgramsChapter 3

ERC32 Ada is highly suitable for hard real-time applications that
require accurate timing and a fast and predictable response to
interrupts from peripheral devices. This is achieved with the
following features:

• The Ravenscar profile

• The package Ada.Real_Time and a real-time clock with a
resolution if one microsecond

• Preemptive priority scheduling with ceiling locking (120
microsecond task switch1)

• Low interrupt latency (15 microseconds)

• The packages Ada.Dynamic_Priorities,
Ada.Synchronous_Task_Control and Ada.Task_Identification

• Support for periodic tasks and task deadlines, as required by
ARINC 653 (APEX)

ERC32 Ada also offers reduced program size by:

1Simulated TSC695 at 20 MHz

31

• Optimized code generation

• Use of trap instructions to raise exceptions

• Small run-time system size

• Optimizations that permit interrupt handling without tasking

This chapter describes how to use Ada tasks, and the associated
language features, in an example real-time program.

3.1. The Ravenscar Profile

In support of safety-critcal applications, Ada 95 offers various
restrictions that can be invoked by the programmer to prevent the
use of language features that are known to be unsafe. Restrictions
can be set individually, or can be set collectively in what is called
a profile. XGC Ada supports all the Ada 95 restrictions and supports
the implementation-defined pragma Profile. To get the compiler
to work with the Ravenscar profile, you should place the following
line at the top of each compilation unit.

pragma Profile (Ravenscar);

By default, ERC32 Ada supports a limited form of tasking that is
a superset of what is supported by the Ravenscar profile. The
built-in restrictions allow for statically declared tasks to
communicate using protected types, the Ada 83 rendezvous or the
predefined package Ada.Synchronous_Task_Control.

The Ravenscar profile prohibits the rendezvous and several other
unsafe features. When using this profile, application programs are
guaranteed to be deterministic and may be analyzed using static
analysis tools.

The relevant Ada language features are as follows:

• The main task

• The pragma Priority

• Task specs and bodies

• Protected objects

32

Chapter 3. Real-Time Programs

• Interrupt handlers

• The delay until statement

• The package Ada.Real_Time

3.1.1. The Main Task

For a program that contains tasks, the main subprogram, which is
at the root of the compilation unit graph, runs as task number 1.
This is known as the main task. The TCB2 for this task is declared
in the run-time system, and its stack is the main stack declared in
the linker script file. Other tasks are numbered from 2 in the order
in which they are elaborated.

For other than a trivial program, the main task should probably be
regarded as the idle task or background task. You can make sure
that it runs at the lowest priority by the use of the pragma Priority
in the declarative part of the main subprogram.

Example 3.1. Main Subprogram with Idle Loop

procedure T1 is
 pragma Priority (0);
begin
 loop
 null;
 end loop;
end T1;

You might want the background task to continuously run some
built-in tests, or you may wish to switch the CPU into low power
mode until the next interrupt is raised.

Here is an example main subprogram that goes into low-power
mode when there is nothing else to do. Note that the function
__xgc_set_pwdn is included in the standard library libc.

2Task Control Block, which holds the task state

33

The Main Task

Example 3.2. Idle Loop with Power-Down

pragma Profile (Ravenscar);

procedure T1 is
 pragma Priority (0);
 procedure Power_Down;
 pragma Import (C, Power_Down, "__xgc_power_down");
begin
 loop
 Power_Down;
 end loop;
end T1;

The rest of the program comprises periodic and aperiodic tasks
that are declared in packages mentioned in the with list of the main
subprogram.

Important In ERC32 Ada, there is no default idle task. If all of
your application tasks become blocked, then the program
will fail with Program_Error.

3.1.2. Time Types

The package Ada.Real_Time declares types and subprograms for
use by real-time application programs. In ERC32 Ada, this package
is implemented to offer maximum timing precision with minimum
overhead.

The resolution of the time-related types is one microsecond. With
a 32-bit word size, the range is approximately +/- 35 minutes. This
is far greater than the maximum delay period likely to be needed
in practice. For a 20 MHz processor, the lateness of a delay is
approximately 10 microseconds. That means that given a delay
statement that expires at time T, and given that the delayed task
has a higher priority than any ready task, then the delayed task will
restart at T + 10 microseconds. This lateness is independent of the
duration of the delay, and represents the time for a context switch
plus the overhead of executing the delay mechanism.

It is therefore possible to run tasks at quite high frequencies, without
an excessive overhead. On a 20 MHz ERC32, you can run a task
at 1000Hz, with an overhead (in terms of CPU time) of

34

Chapter 3. Real-Time Programs

approximately 2.5 percent, leaving 97.5 percent for the application
program.

3.1.3. Form of a Periodic Task

The general form of a periodic task is given in the following
example. You should note that tasks and protected objects must be
declared in a library package, and not in a subprogram.

In this example, the task's three scheduling parameters are declared
as constants, giving the example task a frequency of 100 Hz, and
a phase lag of 3 milliseconds, and a priority of 3. You will have
computed these parameters by hand, or using a third-party
scheduling tool.

Example 3.3. A Periodic Task

package Eg is
 T0 : constant Time := Clock;
 -- Gets set at elaboration time

 Task1_Priority : constant System.Priority := 3;
 Task1_Period : constant Time_Span := To_Time_Span (0.010);
 Task1_Offset : constant Time_Span := To_Time_Span (0.003);

 task Task1 is
 pragma Priority (Task1_Priority);
 end Task1;
end Eg;

package body Eg is
 task body Task1 is
 Next_Time : Time := T0 + Task1_Offset;
 begin
 loop
 -- Do something
 Next_Time := Next_Time + Task1_Period;
 delay until Next_Time;
 end loop;
 end Task1;
end Eg;

The task must have an outer loop that runs for ever. The periodic
running of the task is controlled by the delay statement, which

35

Form of a Periodic Task

gives the task a time slot defined by Offset, Period, and the
execution time of the rest of the body.

The value of Task1_Period should be a whole number of
microseconds, otherwise, through the accumulation of rounding
errors, you may experience a gradual change in phase that may
invalidate the scheduling analysis you did earlier.

3.1.4. Aperiodic Tasks

Like periodic tasks, aperiodic tasks have an outer loop and a single
statement to invoke the task body.

In the following example, we declare a task that runs in response
to an interrupt. You can use this code with a main subprogram to
build a complete application that will run on the ERC32 simulator.

Here is the code for the package and its body:

36

Chapter 3. Real-Time Programs

Example 3.4. An Interrupt-Driven Task

package EG4_Pack is
 task Task2 is
 pragma Priority (1);
 end Task2;
end EG4_Pack;

with Ada.Interrupts.Names;
with Interfaces;
with Text_IO;

package body EG4_Pack is
 use Ada.Interrupts.Names;
 use Interfaces;
 use Text_IO;

 protected IO is
 procedure Handler;
 pragma Attach_Handler (Handler, UART_A_RX_TX);
 entry Get (C : out Character);
 private
 Rx_Ready : Boolean := False;
 end IO;

 protected body IO is
 procedure Handler is
 Status_Word : Unsigned_32;
 for Status_Word'Address use 16#01F800E8#;
 begin
 Rx_Ready := (Status_Word and 16#00000001#) /= 0;
 end Handler;

 entry Get (C : out Character) when Rx_Ready is
 Data_Word : Unsigned_32;
 for Data_Word'Address use 16#01F800E0#;
 begin
 C := Character'Val (Data_Word and 16#0000007f#);
 Rx_Ready := False;
 end Get;
 end IO;

 task body Task2 is
 C : Character;
 begin
 loop
 IO.Get (C);

37

Aperiodic Tasks

 -- Do something with the character
 Put ("C = '"); Put (C); Put (''');
 New_Line;

 end loop;
 end Task2;

end EG4_Pack;

Points to note are as follows:

• The package Ada.Interrupts.Names declares the names of the
15 ERC32 interrupts. Note the assiciate priorities are listed in
Table E.1, “Mapping of Interrupt Names to Priorities” [60].

• We use address clauses to declare memory-mapped IO locations.

• The type Unsigned_32 permits bitwise operators such as 'and'
and 'or'.

• The interrupt handler runs in supervisor mode with the Processor
Interrupt Level (PIL) set to the level of the interrupt.

3.2. Additional Predefined Packages

Programs that are not restricted to the Ravenscar Profile may also
use the predefined packages Ada.Asynchronous_Task_Control,
Ada.Dynamic_Priorities, Ada.Synchronous_Task_Control and
Ada.Task_Identification.

The function Current_Task allows a task to get an identifier for
itself. This identifier may then be used in calls the the subprograms
in Ada.Asynchronous_Task_Control, which allow a task to be placed
on hold, or to continue. Tasks that are on hold consume no CPU
time but do retain their state.

The package Ada.Task_Identification allows a task to be aborted.
In ERC32 Ada this places the task in a state from which it may be
restarted using the subprograms in XGC.Tasking.Stages.

The base priority of any task (including the current task) may be
requested or changed using the package Ada.Dynamic_Priorities.
Note that if you change the priority of the current task within a
protected operation then it is the base priority that changes: the

38

Chapter 3. Real-Time Programs

active priority inherited from the protect object does not change.
When the active priority is set back to the base priority is when the
change takes effect.

3.3. Interrupts without Tasks

A protected operation that is attached to an interrupt must be a
parameterless protected procedure. This is enforced by the pragma
Attach_Handler and by the type Parameterless_Handler from
package Ada.Interrupts. For interrupt handlers that have pragma
Interrupt_Handler and are not attached to an interrupt is it
convenient to allow both parameters and protected functions. The
XGC compiler supports this as a legal extension to the Ada
language.

In the special case where all the operations on a protected type are
interrupt level operations, the XGC compiler will generate run-time
system calls that avoid the use of the tasking system. Then only if
tasks are required will the tasking system be present. This saves
about 6K bytes of memory and reduces the amount of unreachable
(and untestable) code.

39

Interrupts without Tasks

Example 3.5. Example Interrupt Level Protected Object

with Ada.Interrupts.Names;

package body Example_Pack is
 use Ada.Interrupts.Names;

 protected UART_Handler is
 procedure Handler;
 pragma Attach_Handler (Handler, UART_A_Rx_Tx);
 -- Must be a parameterless procedure

 procedure Read (Buf : String; Last : Natural);
 pragma Interrupt_Handler (Read);
 -- Runs at interrupt level, may have parameters

 function Count return Integer;
 pragma Interrupt_Handler (Count);
 -- Runs at interrupt level, may be a function
 end UART_Handler;

 protected body UART_Handler is
 ...
 end UART_Handler;

end Example_Pack;

40

Chapter 3. Real-Time Programs

ERC32 Compiler OptionsAppendix A

These -m switches are supported on the ERC32:

-mno-app-regs, -mapp-regs
Specify -mapp-regs to generate output using the global
registers 2 through 4, which the SPARC SVR4 ABI reserves
for applications. This is the default.

To be fully SVR4 ABI compliant at the cost of some
performance loss, specify -mno-app-regs. You should compile
libraries and system software with this option.

-mfpu, -mhard-float
Generate output containing floating-point instructions. This is
the default.

-mno-fpu, -msoft-float
Generate output containing library calls for floating point.

-msoft-float changes the calling convention in the output file;
therefore, it is only useful if you compile all of a program with
this option.

-mv7
Select a SPARC V7 chipset.

41

-mv8
Select a SPARC V8 chipset.

-mcpu= cpu

Generate code for cpu, where cpu is either TSC695, v7, v8.

42

Appendix A. ERC32 Compiler Options

ERC32 Assembler
Options and Directives

Appendix B

B.1. ERC32 Options

-TSC695
This is the default. It selects The Atmel TSC695.

-AV7
This selects standard SPARC V7.

-AV8
This selects standard SPARC V8.

-TSC695
This selects standard Atmel TSC695.

B.2. Enforcing aligned data

The assembler normally permits data to be misaligned. For example,
it permits the .long directive to be used on a byte boundary.
However, the native Sun-OS and Solaris assemblers issue an error
when they see misaligned data.

43

You can use the --enforce-aligned-data option to make The
assembler also issue an error about misaligned data, just as the
Sun-OS and Solaris assemblers do.

The --enforce-aligned-data option is not the default because the
compiler issues misaligned data directives when it initializes certain
packed data structures (structures defined using the packed
attribute). You may have to assemble with The assembler in order
to initialize packed data structures in your own code.

B.3. Floating Point

The ERC32 uses IEEE floating-point numbers. The relevant
directives are:

.float

On the ERC32, the .float directive produces a 32-bit IEEE
floating point value.

.double

On the ERC32, the .double directive produces a 64-bit IEEE
floating point value.

B.4. ERC32 Machine Directives

The assembler supports the following additional machine directives:

.common name, size, "bss", alignment
.common declares a named common area in the bss section.
Normally the linker reserves memory addresses for it during
linking, so no partial program defines the location of the
symbol. Use .common to tell the linker that it must be at least
length bytes long. The linker allocates space for each .common
symbol that is at least as long as the longest .common request
in any of the partial programs linked. length is an absolute
expression.

alignment gives the required linker alignment as a number of
bytes.

44

Appendix B. ERC32 Assembler Options and Directives

.half
This is functionally identical to .short.

.proc
This directive is ignored. Any text following it on the same
line is also ignored.

.reserve symbol, length, ".bss", alignment

This must be followed by a symbol name, a positive number,
and "bss" (or ".bss"). This behaves somewhat like .lcomm,
but the syntax is different.

alignment gives the required linker alignment as a number of
bytes.

.seg

This must be followed by "text", "data", or "data1". It behaves
like .text, .data, or .data 1.

.skip

This is functionally identical to the .space directive.

.word

On the ERC32, the .word directive produces 32 bit values,
instead of the 16 bit values it produces on many other machines.

.xword

On the ERC32 processor, the .xword directive produces 64
bit values.

B.5. Synthetic Instructions

Table B.1, “Mapping of Synthetic Instructions to ERC32
Instructions” [46] describes the mapping of a set of synthetic (or
"pseudo") instructions to actual ERC32 instructions. These synthetic
instructions are provided by the ERC32 assembler for the
convenience of assembly language programmers.

Note that synthetic instructions should not be confused with
pseudo-ops,which typically provide information to the assembler

45

Synthetic Instructions

but do not generate instructions. Synthetic instructions always
generate instructions; they provide a more mnemonic syntax for
standard ERC32 instructions.

The data in this table is based on Appendix A of The SPARC
Architecture Manual, published by SPARC International, Inc.

Table B.1. Mapping of Synthetic Instructions to ERC32 Instructions

CommentERC32 Instruction(s)Synthetic Instruction

comparesubcc

regrs1,reg_or_imm,%g0

cmp regrs1,reg_or_imm

jmpl address,%g0jmp address

jmpl address,%o7call address

testorcc %g0,regrs2,%g0tst regrs2

return from
subroutine

jmpl %i7+8,%g0ret

return from leaf
subroutine

jmpl %o7+8,%g0retl

trivial restorerestore %g0,%g0,%g0restore

trivial save
(Warning: trivial

save %g0,%g0,%g0save

save should only be
used in kernel code!
)

(when ((value &
0x1fff) == 0))

sethi %hi(value,regrdset value,regrd

 or

(when -4096 <=
value <= 4095)

or %g0,value,regrd

 or

(otherwise)sethi %hi(value,regrd;

 or regrd,%lo(value),regrd

one's complementxnor regrs1,%g0,regrdnot regrs1,regrd

one's complementxnor regrd,%g0,regrdnot regrd

two's complementsub %g0,regrs2, regrdneg regrs2,regrd

two's complementsub %g0,regrd,regrdneg regrd

increment by 1add regrd,1,regrdinc regrd

46

Appendix B. ERC32 Assembler Options and Directives

CommentERC32 Instruction(s)Synthetic Instruction

increment by const13add regrd,const13 ,regrdinc const13,regrd

increment by 1 and
set icc

addcc regrd,1,regrdinccc regrd

increment by const13
and set icc

addcc regrd,const13,regrdinccc const13,regrd

decrement by 1sub reg,1,regrddec regrd

decrement by const13sub reg,const13,regrddec const13,regrd

decrement by 1 and
set icc

subcc reg,1,regrddeccc regrd

decrement by const13
and set icc

subcc regrd,const13,regrddeccc const13,regrd

bit testandcc

regrs1,reg_or_imm,%g0

btst reg_or_imm,regrs1

bit setor regrd,reg_or_imm,regrdbset reg_or_imm,regrd

bit clearandn regrd,reg_or_imm,regrdbclr reg_or_imm,regrd

bit togglexor regrd,reg_or_imm,regrdbtog reg_or_imm,regrd

clear(zero) registeror %g0,%g0,regrdclr regrd

clear bytestb %g0,[address]clrb [address]

clear halfwordsth %g0,[address]clrh [address]

clear wordst %g0,[address]clr [address]

rd %g0,reg_or_imm,regrdmov reg_or_imm,regrd

rd %y,regrdmov %y,regrd

rd %asrn,regrdmov %asrn,regrd

rd %psr,regrdmov %psr,regrd

rd %wim,regrdmov %wim,regrd

rd %tbr,regrdmov %tbr,regrd

wr %g0,reg_or_imm,%ymov reg_or_imm,%y

wr %g0,reg_or_imm,%asrnmov reg_or_imm,%asrn

wr %g0,reg_or_imm,%psrmov reg_or_imm,%psr

wr %g0,reg_or_imm,%wimmov reg_or_imm,%wim

wr %g0,reg_or_imm,%tbrmov reg_or_imm,%tbr

47

Synthetic Instructions

48

The ERC32 SimulatorAppendix C

In the absense of a a real target computer equiped with some kind
of debug interface, the only way to execute an ERC32 program is
to use an ERC32 simulator.

The XGC ERC32 simulator runs on the host computer. It is written
to be "demonstrably correct" and conforms to the relevant
specifications. It simulates the SPARC V7 instructions set, with
Atmel TSC695 errata, and with the peripheral registers and devices
specified in the TSC695 document.

The ERC32 IO functions are supported by shared libraries, which
have a default skeleton version, and which can be replaced by
custom versions.

The simulator is built into several tools, as follows:

• the run tool, erc-elf-run

• the debugger, erc-elf-gdb

• the interactive simulator, erc-elf-sim

The simulator is a near-complete implementation of the TSC695,
and includes the following features:

49

• the Integer Unit (IU)

• the Floating Point Unit (FPU)

• the Debug Communications Link (DCL)

• the UARTS

• the interrupt mechanism

• the Parallel IO Interface (PIO)

• the PCI Interface (PCI)

• the Memory Interface

• PROM

• RAM

• the EDAC

• the Timers and Watch Dog

The following features are missing:

• the Instruction Cache

• the Data Cache

• the JTAG unit

C.1. The Run Tool

The run tool, erc-elf-run, executes the given program, with any
UART output on the terminal, and using any custom IO sharable
libraries.

C.2. The Debugger

The simulator is also built into the gdb debugger. Using the target
'sim' you can execure a program on the simulator while having a
full set of debugger commands.

50

Appendix C. The ERC32 Simulator

C.3. The Interactive Tool

Fianlly, the interactive tool, which is based on the ERC32 Ada
simulator erc-elf-sim.

51

The Interactive Tool

52

ERC32 Simulator Run
Mode

Appendix D

D.1. The Command Line

The simulator command line has the form:

$ erc-elf-run switches files

D.2. Simulator Options

The simulator supports several options including the trace option
(-t) and the statistics option (-s). Use the option --help for more
information.

The first set of options are given to the run command along with
the name of the execurtable file.

General options:
 -a "ARGS", --args "ARGS" Pass ARGS to simulator
 -B, --branch-report Print branch coverage report
 -b, --branch-summary Print branch coverage summary
 -C, --coverage-report Print coverage report

53

 -c, --coverage-summary Print coverage summary
 -d T, --delay T Delay trace for T uSec
 -e, --call-time-report Print calls CPU-time report (CPU time)
 -E, --call-time-report2 Print calls real-time report (elapsed time)
 -f MOD, --file FILE Report coverage for this source file only
 -h, --help Print this message
 -I I, --interrupt I Trigger trace on interrupt level I
 -i I, --pending I Trigger trace on pending interrupt I
 -j, --trace-traps Trace traps
 -k, --trap-time-report Print trap time report (CPU time)
 -l T, --limit T Time limit T uSec
 -m, --trace-memory Trace data memory cycles
 -M, --trace-memory-wide Trace data and instruction memory cycles
 -n, --interrupt-report Print interrupt report
 -N, --interrupt-report-wide Print interrupt report wide format
 -P PC, --pc PC Trigger trace on pc = PC (use 0x for hex)
 -p, --perf Print performance summary
 -r, --ram-tags-report Print RAM tags report with large blocks
 -R, --RAM-tags-report Print RAM tags report with small blocks
 -s, --stats Print execution statistics
 -S, --stop-on-fault Stop simulation on fault trap
 -t, --trace Trace instructions using 70 columns
 -T, --trace-wide Trace instructions using wide format
 -u U, --resolution U Set task trace resolution to U uSec
 -V, --verbose Print additional information
 -v, --version Print version number
 -W, --wider Widen a trace or report
 -w, --wide Widen a trace or report
 -x, --trace-calls Trace subprogram calls
 -y, --nosys Don't pass system calls to host
 -z, --tasking-report Print task switching report
 -Z, --tasking-report-wide Print task switching report wide format

This second set of options are passed to the simulator within the
run command, and to do this you need to use the run command's
option -a as follows:

Simulator options are: (after -a)
 -dsuen Set the DSUEN pin
 -ta Enable AHB bus back trace
 -ti Enable instruction back trace
 -fill Fill memory with test pattern
 -freq F Set the clock frequency to F MHz (default 100)
 -mer R Set memory error rate to R SEUs per second
 -pio BITS PIO power-on bits (default 000)
 -rambs N Set SRAM bank size to N (default 9, or 4 Mbytes)

54

Appendix D. ERC32 Simulator Run Mode

 -sorbw Stop on read-before-write
 -trace-edac Trace any unusual EDAC operations
 -trace-events Trace simulator's events
 -trace-interrupts Trcace interrupt requests and handling
 -trace-timers Trace timer events
 -uart1 DEV Connect UARTA to DEV (default stdin/stdout)
 -uart2 DEV Connect UARTB to DEV
 -uben Swap roles of UARTs 1 and 2
 -wdog WDOG resets CPU
 -no-wdog WDOG is ignored (default)
Trace format is:
 142.000 nzvc 15 spe 7 02000F34 sethi %hi(0x2100000), %g1
 | | | ||| | | |
 | | | ||| | | - Disassembled instruction
 | | | ||| | - Program Counter (PC)
 | | | ||| - Current Window Pointer (CWP)
 | | | ||- Enable Traps (ET)
 | | | |- Previous Supervisor (PS)
 | | | - Supervisor mode (S)
 | | - Processor Interrupt Level (PIL)
 | - IU Condition codes (ICC)
 - CPU time in microseconds

Report problems to <support@xgc.com>

The trace option prints each instruction as it is executed, along with
the execution time in microseconds, and the instruction address.
If the debug option was used when the source files were compiled,
then source code line numbers will be printed too.

D.3. Examples of Simulator Use

The following example shows an instruction trace with line
numbers. We have delayed the trace by 200 microseconds to skip
to the lines of interest.

$ erc-elf-run -t -d 39 hello

-- Instruction trace --

------------+----------------+--------+---+-+--------+---------------------------------------
CPU time in -(p)end-mask(e)- -----psr------ disassembled
microseconds fedcba9876543210 nzvc pil spe c pc instruction

55

Examples of Simulator Use

------------+----------------+--------+---+-+--------+---------------------------------------
 39.010 e 32 0 e 6 40004824 restore
main():
/home/user/xgc/src/erc-ada/examples/b~hello.adb:57
 <main+18>
 39.020 e 32 0 e 7 400015D8 call 0x40001580
 39.030 e 32 0 e 7 400015DC nop
adainit():
/home/user/xgc/src/erc-ada/examples/b~hello.adb:18
 <adainit>
 39.040 e 32 0 e 7 40001580 save %sp, -104, %sp
/home/user/xgc/src/erc-ada/examples/b~hello.adb:20
 39.050 e 32 0 e 6 40001584 sethi
%hi(0x40100000), %o1
 39.060 e 32 0 e 6 40001588 mov -1, %o0
 39.070 e 32 0 e 6 4000158C st %o0, [%o1 +
0x390]
/home/user/xgc/src/erc-ada/examples/b~hello.adb:25
 39.100 e 32 0 e 6 40001590 call 0x40001644
 39.110 e 32 0 e 6 40001594 nop
ada__text_io___elabs():
/opt/erc32-ada-1.8/erc-elf/src/libada/rts/a-textio.ads:208
 <ada__text_io___elabs>
 39.120 e 32 0 e 6 40001644 save %sp, -176, %sp
/opt/erc32-ada-1.8/erc-elf/src/libada/rts/a-textio.ads:214
 39.130 e 32 0 e 5 40001648 mov 1, %o1
 39.140 e 32 0 e 5 4000164C sethi
%hi(0x40100400), %o0
...lots of output...

In this second example we run the demo program then interrupt
with Ctrl+C. Using the -z option we get a short report on tasking
showing task switches and the lock levels in the current task.

$ erc-elf-run demo -z
...
Ctrl-C
...

Tasks, y-axis is task number

 '>' Task running
 '.' Task in ready queue
 ' ' Task blocked

56

Appendix D. ERC32 Simulator Run Mode

> > > > > > >> >>> > > > > > > > >>>> >> > > > > >> >>| 1
 | 2
 > > > > > > > | 3
 > > > > > > > | 4
 > > > > > > > | 5
 > > > > > > > | 6
 > > > > > > > | 7
 > > > > > > > > > > > > > >| 8
 > > > > > > > > > > > > > >| 9
 > > > > > > > > > > > > > .| 10
 > > > > > > > > > > > > > .| 11
 > > > > > > > > > > > > > .| 12
> > > > > > > > > > > > > > > > > > > | 13
> > > > > > > > > > > > > > > > > > > | 14
> > > > > > > > > > > > > > > > > > > | 15
> > > > > > > > > > > > > > > > > > > | 16
> > > > > > > > > > > > > > > > > > > | 17
 | 18
 > | 19
+---------+---------+---------+---------+---------+---------+---------0
-700000 -600000 -500000 -400000 -300000 -200000 -100000
 uSec before end time

Locks and active priority for current task (above), y-axis is priority
Note: blank rows omitted

 'b' No locks, therefore base priority
 '1' One lock, active priority inherited

 1 | 132
1 1 1 1 1 1 11 111 1 1 1 1 1 1 1 111 11 1 1 1 1 11 11| 127
b b b b b b b b b b b b b b b b b b b | 11
 b b b b b b b b b b b b b b| 10
 b | 5
b b b b b b bb bbb b b b b b b b bbbb bb b b b b bb bb| 0
+---------+---------+---------+---------+---------+---------+---------0
-700000 -600000 -500000 -400000 -300000 -200000 -100000
 uSec before end time

D.4. Example of a Coverage Summary

The following example shows a coverage summary for the program
Hello.

57

Example of a Coverage Summary

$ erc-elf-run -c hello
Hello world

Execution Coverage Summary

 section section executable fetched percent section
 address size words words coverage name
--------+-------+----------+----------+--------+----------------------
02000000 5748 1437 306 21 .text
02001674 40 10 10 100 .text.adainit
0200169c 8 2 2 100 .text.adafinal
020016a4 8 2 2 100 .text.__break_start
020016ac 48 12 12 100 .text.main
020016dc 44 11 11 100 .text._ada_hello
02001708 72 18 18 100 .text.xgc__exceptions___elabs
02001750 432 108 108 100 .text.ada__text_io___elabs
02001900 80 20 10 50 .text.ada__text_io__check_file_is_open
02001950 80 20 10 50 .text.ada__text_io__check_write_mode
020019a0 88 22 12 54 .text.ada__text_io__putc
020019f8 164 41 30 73 .text.ada__text_io__new_line
02001a9c 100 25 17 68 .text.ada__text_io__put
02001b00 84 21 21 100 .text.ada__text_io__put$3
02001b54 64 16 16 100 .text.ada__text_io__put_line
02001b94 52 13 13 100 .text.ada__text_io__put_line$2
02001bc8 28 7 0 0 .text.__xgc_raise_exception
02001be4 52 13 13 100 .text.memcpy
02001c18 76 19 14 73 .text.write

58

Appendix D. ERC32 Simulator Run Mode

The package
Ada.Interrupts.Names

Appendix E

The predefined package Ada.Interrupts.Names contains
declarations for the ERC32 as follows:

package Ada.Interrupts.Names is

 -- Maskable asynchronous interrupts

 Masked_Errors : constant Interrupt_ID := 1;
 External_0 : constant Interrupt_ID := 2;
 External_1 : constant Interrupt_ID := 3;
 UART_A_Rx_Tx : constant Interrupt_ID := 4;
 UART_B_Rx_Tx : constant Interrupt_ID := 5;
 Correctable_Memory_Error : constant Interrupt_ID := 6;
 UART_Error : constant Interrupt_ID := 7;
 DMA_Access_Error : constant Interrupt_ID := 8;
 DMA_Timeout : constant Interrupt_ID := 9;
 External_2 : constant Interrupt_ID := 10;
 External_3 : constant Interrupt_ID := 11;
 General_Purpose_Timer : constant Interrupt_ID := 12;
 Real_Time_Clock : constant Interrupt_ID := 13;
 External_4 : constant Interrupt_ID := 14;

 -- Unmaskable asynchronous interrupts

59

 Watchdog_Timeout : constant Interrupt_ID := 15;

 -- Events. All reserved for the run-time system

 System_Call : constant Interrupt_ID := 16;
 Breakpoint : constant Interrupt_ID := 17;
 Suspend : constant Interrupt_ID := 18;
 Program_Exit : constant Interrupt_ID := 19;
 Ada_Exception : constant Interrupt_ID := 20;
 IO_Event : constant Interrupt_ID := 21;
 Timer_Interrupt : constant Interrupt_ID := 22;
 Int_23 : constant Interrupt_ID := 23;

 -- Faults. Available for application health management

 Deadline_Error : constant Interrupt_ID := 24;
 Application_Error : constant Interrupt_ID := 25;
 Numeric_Error : constant Interrupt_ID := 26;
 Illegal_Request : constant Interrupt_ID := 27;
 Stack_Overflow : constant Interrupt_ID := 28;
 Memory_Violation : constant Interrupt_ID := 29;
 Hardware_Fault : constant Interrupt_ID := 30;
 Power_Fail : constant Interrupt_ID := 31;

end Ada.Interrupts.Names;

The interrupt levels for the 15 interrupts are given in the following
table:

Table E.1. Mapping of Interrupt Names to Priorities

Value of
System.Interrupt_Priority

Interrupt Name

129Masked_Errors

130External_0

131External_1

132UART_A_Rx_Tx

133UART_B_Rx_Tx

134Correctable_Memory_Error

135UART_Error

136DMA_Access_Error

1.8DMA_Timeout

60

Appendix E. The package Ada.Interrupts.Names

Value of
System.Interrupt_Priority

Interrupt Name

138External_2

139External_3

140General_Purpose_Timer

141Real_Time_Clock

142External_4

143Watchdog_Timeout

61

62

The Host-Target LinkAppendix F

The host-target link allows the debugger to communicate with the
ERC32 debug support unit or with the monitor via UARTA. The
link uses an RS-232C interface connected to a serial port on the
host computer, and connected to a compatible serial port on the
target computer.

The RS232 standard applies to a connection between a computer
and a modem. The standard does not apply to other kinds of
connection, and for these there are many idiosyncrasies in the
voltages, signals, pinout and connector types. For a host-to-target
connection, the connecting cable must include a null modem. This
is because both serial ports are configured to connect to a modem.
The null modem is simply a cross over that wires the outputs from
one port to the inputs of the other. Details of the wiring are given
in Section F.2, “RS-232 Information” [64].

The following information should help in setting up the links. You
should not underestimate the effort required to get the links working
and to recover when things go wrong.

63

F.1. How to Change the UART Speed

To change the speed of the two UARTs we must change the initial
value of the UART scaler field in the system configuration register.
This field occupies the most significant eight bits of register
SYSCTR and its value is as follows.

Table F.1. Pre-Computed Values for the UART Scaler (For
ubr = 1)

Bits per SecondClock
Frequency in
MHz

11520057600384002880019200144009600

0234710155

2471015213210

37111523324815

410152132426420

613192640538025

715233248649730

Because of rounding errors, the actual speed of the UART is usually
different from the required speed. The following table gives the
percentage error for each of the figures above.

Table F.2. Errors in bit rate (For ubr = 1)

Bits per SecondClock
Frequency in
MHz

11520057600384002880019200144009600

+36%-10%+2%+9%+2%-1%+2%5

-10%+9%+2%-1%+2%-1%-1%10

+2%+2%+2%+2%+2%-1%+0%15

+9%-1%+2%-1%-1%+1%+0%20

-3%-3%+2%+0%-1%+0%+0%25

+2%+2%+2%-1%+0%+0%+0%30

F.2. RS-232 Information

The wiring of a null modem cable is given in Table F.3, “Null
Modem Wiring and Pin Connection” [65].

64

Appendix F. The Host-Target Link

Table F.3. Null Modem Wiring and Pin Connection

 25
Pin

9 Pin 9 Pin25
Pin

FG1N/A----------N/A1FG (Frame Ground)

RD32----------32TD (Transmit Data)

TD23----------23RD (Receive Data)

CTS58----------74RTS (Request To Send)

RTS47----------85CTS (Clear To Send)

SG75----------57SG (Signal Ground)

DTR204----------66DSR (Data Set Ready)

DSR66----------420DTR (Data Terminal
Ready)

The RS-232 standard connection are given in Table F.4, “The
RS-232 Standard” [65].

Table F.4. The RS-232 Standard

 DB-9DCEDB-25

Protective GroundxAA 1

Transmitted DataIBA3TXD2

Received DataOBB2RXD3

Request To SendICA7RTS4

Clear To SendOCB8CTS5

Data Set ReadyOCC6DSR6

Signal GroundxAB5GND7

Received Line Signal
Detector

OCF1CD8

Reserved for data set testingx-- 9

Reserved for data set testingx-- 10

Unassignedx 11

Secndry Rcvd Line Signl
Detctr

O SCF12

Secondary Clear to SendO SCB13

Secondary Transmitted DataI SBA14

65

RS-232 Information

 DB-9DCEDB-25

Transmisn Signl Elemnt
Timng

O DB15

Secondary Received DataO SBB16

Receiver Signal Element
Timing

O DD17

Unassignedx 18

Secondary Request to SendI SCA19

Data Terminal ReadyICD4DTR20

Signal Quality DetectorO CG21

Ring IndicatorOCE9 22

Data Signal Rate SelectorI/O CH/CI23

Transmit Signal Element
Timing

I DA24

Unassignedx 25

Note DB-25 is the 25-pin connector.

Note DB-9 is the 9-pin connector, found on PCs.

Note Some SPARC Stations have a 25-pin connector with
wiring for two RS232 interfaces (usually /dev/ttya and
/dev/ttyb).

A spliiter cable is available from Sun.

66

Appendix F. The Host-Target Link

Questions and AnswersAppendix G

Here is a list of questions and answers.

Q: How do I change the installation directory? 67
Q: How do I un-install ERC32 Ada? 67
Q: Can I do mixed language programming? 68
Q: What is linked into my program over and above my Ada

units? .. 68
Q: Can I build a program with separate code and data

areas? .. 68
Q: Can I use the ERC32 Boot PROM? 68
Q: Which text editor should I use? .. 68
Q: Which UNIX shell should I use? 68
Q: Are programs restart-able? .. 69

Q: How do I change the installation directory?

A: On Solaris and Linux you can install the files in a directory
of your choice then create a symbolic link from
/opt/erc32-ada-1.8/ to that directory.

Q: How do I un-install ERC32 Ada?

A: On GNU/Linux, simply delete the directory
/opt/erc32-ada-1.8/ and its contents.

67

On Solaris, you should use the pkgrm command. For
example, ERC32 Ada Version 1.8 may be removed as
follows:

pkgrm XGClead17

Q: Can I do mixed language programming?

A: Yes. You can write a program using both C and Ada 95
programming languages. In particular you can call the C
libraries from code written in Ada.

Q: What is linked into my program over and above my Ada
units?

A: When you build a program, the linker will include any
run-time system modules that are necessary. The start file
art0.o is always necessary. Other files such as object code
for predefined Ada library units will be included only if they
are referenced.

Q: Can I build a program with separate code and data areas?

A: Yes. Each object code module contains separate sections for
instructions, read-only data, variable data and zeroized data.
During the linking step, sections are collected together under
the direction of the linker script file. The default is to collect
each kind of section separately and to generate an executable
file with separate code and data.

Q: Can I use the ERC32 Boot PROM?

A: Yes. The linker supports an emulation that builds a program
located in Boot PROM and which includes extra code to
copy the code from the Boot PROM into RAM for execution.

Q: Which text editor should I use?

A: ERC32 Ada requires no special editing features and will
work with your favorite text editor. If you use the emacs
editor, then you will be able to run the compiler from the
editor, and then relate any error messages to the source files.
We recommend the universal UNIX editor vi.

Q: Which UNIX shell should I use?

68

Appendix G. Questions and Answers

A: We recommend the GNU Bash shell. It offers a much better
user interface than other shells, and is kept up to date.

Q: Are programs restart-able?

A: Yes. The file art0.S contains code to initialize all variables
in the .data section from a copy in read-only memory.

69

70

Symbols
-AV7, 43
-AV8, 43
-enforce-aligned-data, 43
-TSC695, 43, 43
.common

directive, 44

A
architectures

ERC32, 43

C
common

directive, 44
common directive, ERC32, 44

D
data alignment on ERC32, 43
directive

common, 44
reserve, 45

double directive, ERC32, 44

E
ERC32

architectures, 43
data alignment, 43
floating point, 44
machine directives, 44
options, 43
support, 43

ERC32 options, 41

F
float directive, ERC32, 44
floating point

ERC32, 44

H
half directive, ERC32, 45

M
machine directives

ERC32, 44

Index

71

O
options for ERC32, 43

P
proc directive, ERC32, 45

R
reserve directive, 45

S
seg directive, ERC32, 45
skip directive, ERC32, 45
SPARC V7, 43
SPARC V8, 43
symbol

common, 44

T
TSC695, 43, 43

W
word directive, ERC32, 45

X
xword directive, ERC32, 45

72

Index

